40Gb/s长距离传输及信号处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网规模的扩大,IPTV、HDTV等新业务的发展,人们对目前网络带宽的需求越来越高,带动了光通信市场的发展。光传输和光交换是光通信的两个主要方面,本论文围绕着光传输和光交换两个方面,结合国家自然科学基金重点项目“高速光通信系统中的偏振模色散补偿及其相关技术与基础研究”和“全光波长交换技术研究”的实施,针对40Gb/s长距离传输、40Gb/s信号的全光信号处理特别是全光时钟提取技术以及啁啾光纤光栅的组网应用等方面进行了深入的理论分析和实验研究。所取得的主要成果如下:
     ◆在仅采用EDFA放大器、无FEC的前提下,与实验室其他师生合作,实现了40Gb/s NRZ信号基于CFBG色散补偿的500km传输,是目前40Gb/sNRZ码基于CFBG传输的最长距离。详细分析了CFBG反射谱、时延和带宽的非理想特性对40Gb/s不同码型传输系统产生的影响。提出一种评价光栅时延纹波的方法,在光栅制作及光栅挑选中可起到很好的辅助分析作用。对基于非理想CFBG色散补偿的40Gb/s传输系统进行了优化。在基于实测CFBG数据的基础上,得到了非理想CFBG+DCF混合色散补偿40Gb/s的长距离传输优化的跨段组合方案。
     ◆利用建立的数值模型优化了基于SBS的全光时钟提取结构,分析了影响提取光时钟脉冲的因素,探讨了该结构抑制码型效应的原理和方法。实验实现了恶化NRZ信号的时钟提取,分析了该时钟提取结构对输入信号恶化程度的容忍度。首次成功从两路10Gb/s NRZ信号中提取到光时钟信号。实验实现了40Gb/s CSRZ信号的基于SBS时钟提取结构的全光时钟提取,同时成功从经8km传输后的40Gb/s CSRZ信号中提取得到了光时钟。采用了AWG来增强非理想RZ信号的CCR,实现了非理想40Gb/s RZ码的全光时钟提取。首次分析了在调制器驱动信号波形存在一定的上升和下降时间时,NRZ信号光谱的CCR与调制器啁啾系数的关系。根据啁啾40Gb/s NRZ信号的光谱特点,提取得到了其时钟信号。
     ◆完善了基于光路交换的全光网演示系统的网络节点的具体功能模块以及分布式端到端的连接功能。研究了在分布式光路交换系统中分布式网管方案、网络资源的自动发现过程以及分布式网络生存性的实现方案,提高网络运行的可靠性。分析和优化了该光路交换系统的传输性能,讨论了该系统下一步的升级过程中面临的一些问题以及解决方案。
As the scale of the Internet enlarged, as IPTV, HDTV and other new business developed, the network bandwidth demand is growing fast, which drives the development of optical communication market. Optical transmission and optical switching are the two main aspects of optical communications. In this paper, supported by the key projects of National Natural Science Foundation "Research on PMD compensation and related infrastructure technologies in high-speed optical communication systems" and "Study on all-optical circuit switching technology ", we conduct a deep investigation into the theoretical and experiment researches on the 40Gb/s long-haul transmission, novel technology to 40Gb/s All-optical clock extraction and wavelength routing network applications of chirped fiber Bragg grating. The main results achieved are as follows:
     With the effort of other teachers and students of our laboratory, A 500km 40Gb/s error-free transmission was implemented in NRZ-employed system where dispersion was compensated by chirped fiber Bragg gratings(CFBGs). In this transmission system, Only EDFA was used to compensated the fiber attenuation and without FEC. It was the longest distance reported on 40Gb/s NRZ transmission based on CFBGs. A novel CFBG quanlity evaluation method was proposed through the detail analysis on the impact of the CFBG non-ideal characteristic, such as the group delay ripple(GDR), reflectivity ripple(RR) and the bandwidth. This method could be quite helpful in grating fabrication and selection. The optimized span packages of hybrid compensation by both non-ideal CFBG and DCF was achieved on the basis the measured data of non-ideal CFBG in 40Gb/s long-distance transmission.
     Numerical model of all optical stimulated Brillouin scattering(SBS) clock extraction structure was established and optimized. Clock extraction from degraded NRZ signal was experimental realized. The tolerance of the input signal deterioration degree was analyzed. The clocks of dual-wavelength are extracted for the first time, to our best knowledge. Experiments were set up and clocks from 40Gb/s CSRZ 8km and 0km transmission signals were recovered. AWG was adopted to enhance the clock-to-carrier ratio(CCR) of both 40Gb/s non-ideal signal RZ and the chirped NRZ according to their spectrum.
     Specific functional modules of all optical system based on optical circuit switching were established and enhanced. The end-to-end distributed call and connection was realized. The distributed network management, the automatic discovery of network resources as well as the network survival were detail researched. Transmission performance of this system was analyzed and optimized. Some problems that may be probably faced in the case of network upgrading and evolution were discussed.
引文
[1]http://www.cnnic.net.cn/index/0E/00/11/index.htm
    [2]王卫东,适应网络转型需求的宽带接入技术,中国新通信,2007,vol.,9,pp.5-8.
    [3]A.Hidayat,A.F.Abas,D.Sandel,S.Bhandare,H.Zhang,F.Wust,B.Milivojevic,R.Noe,M.Lapointe,Y.Painchaud,and M.Guy,5.94 Tbit/s capacity of a FBG-based multichannel tunable-700 to-1200 ps/nm dispersion compensator,Journal of Optical Communications,2006,vol.,27,pp.17-19.
    [4]D.Sandel,S.Bhandare,A.F.Abas,B.Milivojevic,R.Noe,M.Guy,and M.Lapointe,Automatic tunable chromatic dispersion compensation at 40 gb/s in ASK and DPSK,NRZ,and CSRZ 263-km transmission experiments,Photonics Technology Letters,IEEE,2004,vol.,16,pp.2568-2570.
    [5]G.Barozzi,M.Lo Papa,F.Meli,M.A.Davis,W.A.Helm,and M.A.Putnam,Configurable OADM based on novel tunable Bragg grating,Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS,2000.
    [6]中华人民共和国通信行业标准,“光波分复用系统(WDM)技术要求-160×10Gb/s、80×10Gb/s部分.”
    [7]龚倩,徐荣,叶小华,张民,高速超长距离光传输技术.北京:人民邮电出版社,2005.
    [8]顾畹仪,WDM超长距离光传输技术.北京:北京邮电大学出版社,2005.
    [9]P.Minzioni and A.Schiffini,Unifying theory of compensation techniques for intrachannel nonlinear effects,Optics Express,2005,vol.,13,pp.9.
    [10]K.Nakkeeran,A.B.Moubissi,P.Tchofo Dinda,and S.Wabnitz,Analytical method for designing dispersion-managed fiber systems,Optics Letters,2001,vol.,26,pp.1544-1546.
    [11]S.Zhang and R.Hui,Impact of optical modulation formats on SPM-induced limitation in dispersion-managed optical systems-A simplified model,2004 IEEE/LEOS-Workshop on Advanced Modulation Formats,2004.
    [12]P.Dua,M.El-Aasser,and N.K.Dutta,Analysis on design and optimization of dispersion-managed communication systems,Proceedings of SPIE-The International Society for Optical Engineering,2002.
    [13]S.Kumar,J.C.Mauro,S.Raghavan,and D.Q.Chowdhury,Intrachannel nonlinear penalties in dispersion-managed transmission systems,IEEE Journal on Selected Topics in Quantum Electronics,2002,vol.,8,pp.626-631.
    [14]M.I.Hayee and A.E.Willner,NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,IEEE Photonics Technology Letters,1999,vol.,11,pp.991-993.
    [15]S.Namiki and Y.Emori,Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,IEEE Journal on Selected Topics in Quantum Electronics,2001,vol.,7,pp.3-16.
    [16]Y.Emori and S.Narniki,100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes,Conference on Optical Fiber Communication,Technical Digest Series,1999,pp.3.
    [17]N.S.Bergano,D.G.Foursa,C.R.Davidson,M.Nissov,M.A.Mills,L.Xu,J.X.Cai,A.N.Pilipetskii,Y.Cai,C.Breverman,R.R.Cordell,T.J.Carvelli,P.C.Corbett,and H.D.Kidorf,2.56 Tb/s transmission over 11,000 km using hybrid Raman/EDFAs with 80 nm of continuous bandwidth,Conference on optical Fiber Communication,Technical Digest Series,2002.
    [18]H.Masuda,A.Sano,Y.Kobayashi,E.Yoshida,Y.Miyamoto,Y.Hibino,and Kazuo,20.4-Tb/s (204×111 Gb/s)Transmission over 240 km Using Bandwidth-Maximized Hybrid Raman/EDFAs,OFC2007,2007.
    [19]D.Chert,T.J.Xia,G.Wellbrock,and D.Peterson,Long span 10x160 km 40 Gb/s Line Side,OC-768c Client Side Field Trial Using Hybrid Raman/EDFA Amplifiers,ECOC2005,2005.
    [20]A.Puc,G.Grosso,P.Gavrilovic,H.Fevrier,A.Kaminski,S.Burtsev,D.Chang,M.Foster,W.Pelouch,and P.Perrier,Ultra-wideband 10.7 Gb/s NRZ terrestrial transmission beyond 3000km using all-Raman amplifiers,Optical Communication,2005.ECOC 2005.31st European Conference on,2005.
    [21]G.Raybon,A.Agarwal,S.Chandrasekhar,and R.J.A.E.R.J.Essiambre,Transmission of 42.7-Gb/s VSB-CSRZ over 1600 km and four OADM nodes with a spectral efficiency of 0.8-bit/s/Hz,Optical Communication,2005.ECOC 2005.31 st European Conference on,2005.
    [22] T. Hirooka, M. Okazaki, K. Osawa, and M. Nakazawa, 160 Gbit/s - 900 km DPSK Transmission with Time-domain Optical Fourier Transformation, ECOC 2007, 2007.
    [23] R. Ludwig, S. Weisser, C. Schmidt-Langhorst, L. Raddatz, and C. Schubert, Unrepeatered Transmission of 160 Gb/s RZ-DPSK over 240 km Dispersion Managed Fiber, ECOC 2007,2007.
    [24] L. d. Mouza, S. Dupont, P. Marmier, V. Letellier, and G Charlet, 70 x 10 Gbps (mixed RZ-OOK and RZ-DPSK) upgrade of a 7224 km conventional 32 x 10 Gbps designed system,ECOC 2007, 2007.
    [25] D. van den Borne, S. L. Jansen, E. Gottwald, P. M. Krummrich, G D. Khoe, and H. de Waardt,1.6-b/s/Hz Spectrally Efficient Transmission Over 1700 km of SSMF Using 40* 85.6-Gb/s POLMUX-RZ-DQPSK, Lightwave Technology, Journal of, 2007, vol., 25, pp. 222-232.
    [26] "The ITU Telecommunication Standardization G.707," http://www.itu.int/ITU-T/
    [27] "The ITU Telecommunication Standardization G.975," http://www.itu.int/ITU-T/
    [28] "The ITU Telecommunication Standardization G.709," http://www.itu.int/ITU-T/
    [29] J. L. Pamart, E. Lefranc, S. Morin, G. Balland, Y. C. Chen, T. M. Kissell, and J. L. Miller,Forward error correction in a 5 Gbit/s 6400 km EDFA based system, Electronics Letters, 1994,vol., 30, pp. 342-343.
    [30] T. Mizuochi, Recent progress in forward error correction and its interplay with transmission impairments, Selected Topics in Quantum Electronics, IEEE Journal of, 2006, vol., 12, pp.544-554.
    [31] K. Seki, K. Mikami, M. Baba, A. Katayama, H. Tanaka, Y. Hara, M. Kobayashi, and O. N.,Single-chip FEC codec LSI using iterative CSOC decoder for 10 Gb/s long-haul optical transmission systems, Custom Integrated Circuits Conference, 2002. Proceedings of the IEEE 2002, 2002.
    [32] T. MIZUOCHI, Recent Progress in Forward Error Correction for Optical Communication Systems, IEICE TRANSACTIONS on Communications, 2005, vol., E88-B, pp. 1934-1946.
    [33] C. Wree, J. Leibrich, and W. Rosenkranz, RZ-DQPSK Format with High Spectral Efficiency and High Robustness Towards Fiber Nonlinearities, Optical Communication, 2002. ECOC 2002. 28th European Conference on, 2002.
    [34] I. Morita and N. Yoshikane, Merits of DQPSK for ultrahigh capacity transmission, Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 2005.
    [35] I. morita and S. L.Jansen, High speed transmission techonolgies for 100-Gbit/s-class Ethernet,ECOC 2007, 2007.
    [36] M. Ohm and J. Speidel, Differential optical 8-PSK with direct detection (8-DPSK/DD),ITG-Fachbericht, 2003.
    [37] Y. Choi, H. B. Lee, S.-B. Park, B.-H. Hong, S.-Y. Lee, and K. H. Tchah, A unified GFSK,π/4-shifted DQPSK, and 8-DPSK baseband controller for enhanced data rate Bluetooth SoC, Current Applied Physics, 2006, vol., 6, pp. 862-872.
    [38] M. Ohm, Optical 8-DPSK and receiver with direct detection and multilevel electrical signals,2004IEEE/LEOS - Workshop on Advanced Modulation Formats, 2004.
    [39] Y. Imai, K. Iizuka, and R. T. B. James, Phase-noise-free coherent optical communication system utilizing differential polarization shift keying (DPolSK), Journal of Lightwave Technology, 1990, vol., 8, pp. 691-698.
    [40] R. C. Lee, H. A. Abdul-Rashid, M. T. Al-Qdah, H. T. Chuah, M. B. Tayahi, and S. Lanka, The effects of phase errors on optical SSB system performance, Microwave and Optical Technology Letters, 2006, vol., 48, pp. 1574-1578.
    [41] Y. Yamada, S. I. Nakagawa, Y. Kurosawa, T. Kawazawa, H. Taga, and K. Goto, 2 Tbit/s (200*10 Gbit/s) over 9240 km transmission experiment with 0.15 nm channel spacing using VSB format, Electronics Letters, 2002, vol., 38, pp. 328-330.
    [42] A. Matsuura, K. Yonenaga, Y. Miyamoto, A. Sano, H. Toba, and M. Yoneyama, High power tolerant optical duobinary signal transmission, IEICE Transactions on Communications, 2001,vol.,E85-B,pp. 1173-1178.
    [43] Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, 2.6 terabit/s WDM transmission experiment using optical duobinary coding, European Conference on Optical Communication, ECOC, 1996.
    [44] D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, Phase-shaped binary transmission (PSBT):A new technique to transmit far beyond the chromatic dispersion limit, European Conference on Optical Communication, ECOC, 1996.
    [45] G G Luther, New fibers for ultra-high-capacity transmission systems, Conference on Optical Fiber Communication, Technical Digest Series, 2002.
    [46] P. Nouchi, L. De Montmorillon, P. Sillard, and A. Bertaina, Advance in Long-Haul Fibers,Conference on Optical Fiber Communication, Technical Digest Series, 2003.
    [47] W. J. Tomlinson, Technologies for Dynamic Gain and Channel Power Equalization,Conference on Optical Fiber Communication, Technical Digest Series, 2003.
    [48] M. F. S. Ferreira and M. H. Sousa, Dispersion-managed solitons in optical fiber systems,Proceedings of 2005 7th International Conference on Transparent Optical Networks, ICTON2005,2005.
    [49] Y. H. C. Kwan and P. K. A. Wai, Design of dispersion managed soliton systems, Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 2001.
    [50] H. Onaka, H. Miyata, G Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinoshita, M. Seino, H.Nishimoto, and T. Chikama, 1.1 Tb/s WDM transmission over a 150 km 1.3 um zero-dispersion single-mode fiber, Optical Fiber Conference, 1996.
    [51] A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, One terabit/s transmission experiment, OFC1996,1996.
    [52] K. Fukuchi, 10.92 Tbit/s (273x40 Gbit/s) triple-band/ultradense WDM optical repeated transmission experiment, OFC2001,2001.
    [53] H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T.Yamada, T. Furuta, and H. Fukuyama, 20.4-Tb/s (204 x 111 Gb/s) Transmission over 240 km Using Bandwidth-Maximized Hybrid Raman/EDFAs, OFC2007,2007.
    [54] A. H. Gnauck, G Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T.Kawanishi, T. Sakamoto, and K. Higuma, 25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals, Lightwave Technology, Journal of, 2008, vol.,26, pp. 79-84.
    [55] 甘朝钦,高速传送: 40Gbps M100Gbps, 通信世界, 2007, vol., 6, pp. 83-84.
    
    [56] C. Rasmussen, T. Fjelde, J. Bennike, F. A. L. F. Liu, S. A. D. S. Dey, B. Mikkelsen, P.Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P.Reeves-Hall, DWDM 40 G transmission over trans-Pacific distance (10,000 km) casing CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km UltraWave/spl trade/ fiber spans, Optical Fiber Communications Conference, 2003. OFC 2003, 2003.
    [57] D. Z. Chen, T. J. Xia, G. Wellbrock, P. Mamyshev, S. Penticost, G Grosso, A. Puc, P. Perrier,and H. Fevrier, New Field Trial Distance Record of 3040 km on Wide Reach WDM With 10 and 40 Gb/s Transmission Including OC-768 Traffic Without Regeneration, Lightwave Technology, Journal of, 2007, vol., 25, pp. 28-37.
    [58] S. N. Knudsen and L. Gruner-Nielsen, New fibers for future telecommunication systems,Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. 13th Annual Meeting.IEEE, 2000.
    [59] T. Tsuda, Y. Akasaka, S. Sentsui, K. Aiso, Y. Suzuki, and T. Kamiya, Broad band dispersion slope compensation of dispersion shifted fiber using negative slope fiber, Optical Communication, 1998. 24th European Conference on, 1998.
    [60] M. Guy and Y. Painchaud, FBG-based Dispersion Compensation: Present and Future Perspectives OFC 2006, 2006.
    [61] C. Yong, C. Jihong, C. Ting, and J. Shuisheng, Advanced modulation formats for long-haul optical-transmission systems with dispersion compensation by chirped FBG, Microwave and Optical Technology Letters, 2006, vol., 48, pp. 344-347.
    [62] N. Tigang, T. Zhongwei, C. Yong, P. Li, T. Zhi, Z. Jingjing, C. Jihong, Z. Feng, L. Yan, L. Bin,Q. Xi, C. Ming, L. Bo, and J. Shuisheng, 8*10Gb/s transmission system over more than 2000km with dispersion compensation by cascaded chirped fiber Bragg gratings, APOC2006,2006.
    [63] Z. Tan, S. Jian, Y. Liu, and T. Ning, 10Gbs transmission over 1400km of G652 fiber using chirped fiber bragg gratings dispersion compensation, APOC2004, 2004.
    [64] Y. Chen, J. Cao, T. Chen, and S. Jian, Optimal modulation formats for 2560 km optical transmission with low-power penalty, Guangxue Xuebao/Acta Optica Sinica, 2006, vol., 26, pp.331-335.
    [65] C. Jihong, C. Yong, C. Ting, and J. Shuisheng, RZ and CSRZ ULH transmission system based on dispersion compensation CBG, APOC 2005, 2005.
    [66] S. Jian, F. Yan, T. Li, W. Jian, L. Pei, and T. Ning, 4x10 Gb/s 800 km transmission system on G.652 fiber with dispersion compensation by chirped FBG, Science in China, Series E:Technological Sciences, 2002, vol., 45, pp. 661-665.
    [67] J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, Fibre dispersion compensation using a chirped in-fibre Bragg grating, Electronics Letters, 1994, vol., 30, pp. 985-987.
    [68] L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, 16*10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings, IEEE Photonics Technology Letters, 1999, vol., 11, pp. 484-486.
    [69] Y. Liu, Y. Fu, Z. Tan, T. Ning, and S. Jian, Dispersion compensation of 2*10 Gb/s 1000 km WDM system using chirped fiber Bragg gratings, 2002.
    [70] D. v. d. Borne, V. Veljanovski, E. d. Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G D. Khoe, and H. d. Waardt, Cost effective 10.7-Gbit/s Long-Haul Transmission using Fiber Bragg Gratings for In-line Dispersion Compensator, OFC 2007,2007.
    [71] A. Sahara, T. Komukai, E. Yamada, and M. A. N. M. Nakazawa, 40 Gbit/s return-to-zero transmission over 500 km of standard fiber using chirped fiber Bragg gratings with small group delay ripples, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001,2001.
    [72] D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G D.Khoe, and H. de Waardt, 42.8-Gb/s RZ-DQPSK Transmission With FBG-Based In-Line Dispersion Compensation, Photonics Technology Letters, IEEE, 2007, vol., 19, pp. 1069-1071.
    [73] S. Bhandare, D. Sandel, A. Hidayat, A. F. Abas, H. Zhang, F. Wust, B. Milivojevic, R. Noe, M. Guy, M. Lapointe, and Y. Painchaud, 1.6-Tb/s (40/spl times/40 Gb/s) transmission over 44,...,94 km of SSMF with adaptive chromatic dispersion compensation, Photonics Technology Letters, IEEE, 2005, vol., 17, pp. 2748-2750.
    [74] T. Ning, K. Zheng, X. Dong, L. Pei, Y. Liu, Z. Tan, and S. Jian, Impact of the delay ripple of cascaded gratings on dispersion compensation of long-haul fiber transmission systems,Microwave and Optical Technology Letters, 2004, vol., 42, pp. 100-102.
    [75] Z. Tan, Y. Liu, T. Ning, and S. Jian, Generation of group delay ripple of chirped fiber gratings,Chinese Optics Letters, 2004, vol., 2, pp. 18-20.
    [76] Z.-W. Tan, K. Zheng, Y. Liu, Y.-J. Fu, Y. Chen, J.-H. Cao, T.-G Ning, X.-W. Dong, L.-N. Ma,and S.-S. Jian, Application of dispersion compensator based on chirped fiber gratings in ultra long-haul DWDM system, Acta Physica Sinica, 2005, vol., 54, pp. 5218-23.
    [77] M. Poulin, Y. Vasseur, F. Trepanier, M. Guy, M. Morin, Y. Painchaud, and J. Rothenberg,Apodization of a multichannel dispersion compensator by phase modulation coding of a phase mask, 2005.
    [78] B. Franz, Optical signal processing for very high speed (>40 Gbit/s) ETDM binary NRZ clock recovery, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001, 2001.
    [79] C. Kim, I. Kim, X. Li, and G Li, All-optical clock recovery of NRZ data at 40 Gbit/s using Fabry-Perot filter and two-section gain-coupled DFB laser, Electronics Letters, 2003, vol., 39,pp. 1456-1458.
    [80] W. W. Tang, M. P. Fok, and C. Shu, All-optical clock recovery from NRZ data using a NRZ-to-PRZ converter constructed with a polarization-maintaining fiber loop mirror filter,2005.
    [81] H. K. Lee, J. T. Ann, M. Y. Jeon, K. H. Kim, D. S. Lim, and E. H. Lee, Optical clock recovery based on all-fibre devices from NRZ data of 10 Gbit/s, European Conference on Optical Communication, ECOC, 1998.
    [82] H. J. Lee, H. G Kim, J. Y. Choi, and H. K. Lee, All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier, Electronics Letters, 1999, vol., 35, pp. 989-990.
    [83] S. Betti, C. Bulli, F. Curti, E. Duca, S. Persia, A. Reale, and G M. Tosi-Beleffi, Optical clock recovery from 10-Gb/s NRZ signal, Microwave and Optical Technology Letters, 2004, vol., 42, pp.435-437.
    [84]W.Mao,Y.Li,M.A1-Mumin,and G.Li,All-optical clock recovery for both RZ and NRZ data,IEEE Photonics Technology Letters,2002,vol.,14,pp.873-875.
    [85]L.Yin,Y.Yan,Y.Zhou,J.Wu,and J.Lin,Novel scheme for all-optical clock recovery from NRZ signal,Microwave and Optical Technology Letters,2006,vol.,48,pp.516-521.
    [86]L.Yin,Y.Yan,Y.Zhou,J.Wu,and J.Lin,All-optical clock recovery from 10-Gb/s NRZ data and NRZ to RZ format conversion,Chinese Optics Letters,2006,vol.,4,pp.4-7.
    [87]L.Yin,G.Liu,J.Wu,and J.Lin,Clock recovery from NRZ data at 10 Gb/s using SOA loop mirror and mode-locked fiber ring laser based on SOA,Chinese Optics Letters,2006,vol.,4,pp.72-75.
    [88]A.D.Ellis,K.Smith,and D.M.Patrick,All optical clock recovery at bit rates up to 40 Gbit/s,Electronics Letters,1993,vol.,29,pp.1323-1324.
    [89]T.Ohno,K.Sato,R.Iga,Y.Kondo,T.Ito,T.Furuta,K.Yoshino,and H.Ito,Recovery of 160GHz optical clock from 160 Gbit/s data stream using modelocked laser diode,Electronics Letters,2004,vol.,40,pp.265-267.
    [90]L.Yuhua,K.Cheolhwan,L.Guifang,Y.Kaneko,R.L.Jungerman,and O.Buccafusca,Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser,Photonics Technology Letters,IEEE,2003,vol.,15,pp.590-592.
    [91]G.Contestabile,M.Presi,N.Calabretta,and E.Ciaramella,All-optical clock recovery from 40Gbit/s NRZ signal based on clock line enhancement and sharp periodic filtering,Electronics Letters,2004,vol.,40,pp.1361-1362.
    [92]D.H.Kim,S.H.Kim,J.C.Jo,and S.S.Choi,Ultrahigh-speed clock recovery with optical phase lock loop based on four-wave-mixing in a semiconductor optical amplifier,Optics Communications,2000,vol.,182,pp.329-334.
    [93]C.Johnson,K.Demarest,C.Allen,R.Hui,K.V.Peddanarappagari,B.Zhu,and R.K.Butler,Multiwavelength all-optical clock recovery,Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS,1998.
    [94]D.L.Butler,J.S.Wey,M.W.Chbat,G.L.Burdge,and J.Goldhar,Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,Optics Letters,1995,vol.,20,pp.560-562.
    [95]F.Zhang,Y.Chen,and S.-S.Jian,Clock recovery from CSRZ based on stimulated Brillouin scattering,Guangdianzi Jiguang/Journal of Optoelectronics Laser,2007,vol.,18,pp.808-812.
    [96]F.Zhang,Y.Chen,and S.Jian,All-optical clock recovery from non-return to zero data stream based on semiconductor optical amplifier and stimulated Brillouin scattering,Guangxue Xuebao/Acta Optica Sinica,2007,vol.,27,pp.987-992.
    [97]F.Zhang,M.Chen,X.Qin,B.Lu,D.Lu,Y.Chen,J.-H.Cao,and S.-S.Jian,All optical clock recovery from degraded non-return-to-zero data stream,Zhongguo Jiguang/Chinese Journal of Lasers,2007,vol.,34,pp.1101-1105.
    [98]杨淑雯,全光光纤通信网.北京:科学出版社,2004.
    [99]简水生,新一代、高度安全、超大容量、无阻塞全光网是信息社会的基础,光通信,2003,vol.,12,pp.14-21.
    [100]简水生,通信由电到光的革命兼论绿色能源革命(节选),光通信,2006,vol.,12,pp.22-24.
    [101]简水生,数字信息安全网是人类进一步改变生活方式、工作方式、学习方式的根本保证,数字通信世界,2005,vol.,1,pp.10-10.
    [102]“能力”与“效率”的双引擎驱动——新形势下光通信发展趋势展望,”http://www.cnii.com.cn/20071008/ca443296.htm
    [103]张杰等,自动交换光网络ASON.北京:人民邮电出版社,2004.
    [104]"GENI:global environment for network innovations,"http://www.geni.net/
    [105]"FIND:future Internet network design,"http://find.isi.edu/
    [106]张宏科,董平,杨冬,新互联网体系理论及关键技术,中兴通信技术,2008,vol.,77.
    [107]纪越峰等,光突发交换网络.北京:北京邮电大学出版社,2005.
    [1]韦乐平,光纤通信技术的发展与展望,电信技术,2006,vol.,11,pp.13-17.
    [2]S.N.Knudsen and L.Gruner-Nielsen,New fibers for future telecommunication systems,Lasers and Electro-Optics Society 2000 Annual Meeting.LEOS 2000.13th Annual Meeting.IEEE,2000.
    [3]T.Tsuda,Y.Akasaka,S.Sentsui,K.Aiso,Y.Suzuki,and T.Kamiya,Broad band dispersion slope compensation of dispersion shifted fiber using negative slope fiber,Optical Communication,1998.24th European Conference on,1998.
    [4]A.Hidayat,A.F.Abas,D.Sandel,S.Bhandare,H.Zhang,F.Wust,B.Milivojevic,R.Noe,M.Lapointe,Y.Painchaud,and M.Guy,5.94 Tbit/s capacity of a FBG-based multichannel tunable-700 to -1200 ps/nm dispersion compensator,Journal of Optical Communications,2006,vol.,27,pp.17-19.
    [5]D.Sandel,S.Bhandare,A.F.Abas,B.Milivojevic,R.Noe,M.Guy,and M.Lapointe,Automatic tunable chromatic dispersion compensation at 40 gb/s in ASK and DPSK,NRZ,and CSRZ 263-km transmission experiments,Photonics Technology Letters,IEEE,2004,vol.,16,pp.2568-2570.
    [6]L.Poladian,Understanding profile-induced group-delay tipple in Bragg gratings,Applied Optics,2000,vol.,39,pp.1920-1923.
    [7]L.S.Yah,T.Luo,Q.Yu,Y.Xie,K.M.Feng,R.Khosravani,and A.E.Willner,Investigation of performance variations due to the amplitude of group-delay ripple in chirped fiber Bragg gratings,Optical Fiber Technology,2006,vol.,12,pp.238-242.
    [8]Y.H.C.Kwan and P.K.A.Wai,Effects of group delay tipple on solitons in grating compensated dispersion managed systems,Pacific Rim Conference on Lasers and Electro-Optics,CLEO-Technical Digest,2001.
    [9]J.C.Cartledge and H.Chen,Influence of modulator chirp in assessing the performance implications of the group delay ripple of dispersion compensating fiber bragg gratings,Journal of Lightwave Technology,2003,vol.,21,pp.1621-1628.
    [10]M.Sumetsky,P.S.Westbrook,P.I.Reyes,N.M.Litchinitser,B.J.Eggleton,Y.Li,R.Deshmukh,C.Soccolich,F.Rosca,J.Bennike,F.Liu,and S.Dey,Reduction of chirped fiber grating group delay ripple penalty through UV post processing,Conference on Optical Fiber Communication,Technical Digest Series,2003.
    [11]M.C.Santos,S.P.De Bemardo-Rodi,and M.A.Mitre-Gutierrez,New modulation zero-shift method to characterize fast group delay ripple of dispersion-compensating fiber Bragg gratings,IEEE Photonics Technology Letters,2007,vol.,19,pp.1298-1300.
    [12]T.Komukai,T.Inui,and M.Nakazawa,Origin of group delay ripple in chirped fiber Bragg gratings and its effective reduction method,Electronics and Communications in Japan,Part Ⅱ:Electronics(English translation of Denshi Tsushin Gakkai Ronbunshi),2003,vol.,86,pp.76-84.
    [13]T.Sugawara and S.Makio,Demonstration of 40-Gb/s low-group-delay-ripple tunable dispersion compensator using angled etalon with multiple reflections,IEEE Photonics Technology Letters,2006,vol.,18,pp.2377-2379.
    [14]M.L.Rocha,R.Kashyap,R.F.Souza,A.Paradisi,M.R.X.Barros,and C.Coral,A technique to increase the dispersion and to reduce the penalties associated with group delay ripple in dispersion compensating gratings,SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings,2001.
    [15]A.Sahara,T.Komukai,E.Yamada,and M.A.N.M.Nakazawa,40 Gbit/s return-to-zero transmission over 500 km of standard fiber using chirped fiber Bragg gratings with small group delay ripples,Optical Fiber Communication Conference and Exhibit,2001.OFC 2001,2001.
    [16]D.van den Borne,V.Veljanovski,U.Gaubatz,C.Paquet,Y.Painchaud,E.Gottwald,G D.Khoe,and H.de Waardt,42.8-Gb/s RZ-DQPSK Transmission With FBG-Based In-Line Dispersion Compensation,Photonics Technology Letters,IEEE,2007,vol.,19,pp.1069-1071.
    [17]S.Bhandare,D.Sandel,A.Hidayat,A.F.Abas,H.Zhang,F.Wust,B.Milivojevic,R.Noe,M.Guy,M.Lapointe,and Y.Painchaud,1.6-Tb/s(40/spl times/40 Gb/s)transmission over 44,…,94 km of SSMF with adaptive chromatic dispersion compensation,Photonics Technology Letters,IEEE,2005,vol.,17,pp.2748-2750.
    [18]http://www.shf.de/en/communication/products/high_speed_modules/mux_demur/
    [19]C.Henry,Phase noise in semiconductor lasers,Lightwave Technology,Journal of 1986,vol.,4,pp.298-311.
    [20]J.C.Cartledge,Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides,Photonics Technology Letters,IEEE,1995,vol.,7,pp.1090-1092.
    [21]J.C.Cartledge,C.Rolland,S.Lemerle,and A.Solheim,Theoretical performance of 10 Gb/s lightwave systems using a Ⅲ-Ⅴ semiconductor Mach-Zehnder modulator,Photonics Technology Letters,IEEE,1994,vol.,6,pp.282-284.
    [22]G.P.Agrawal,非线性光纤光学原理及应用.北京:电子工业出版社,2002.
    [23]R.W.Tkach,A.R.Chraplyvy,F.Forghieri,A.H.Gnauck,and R.M.Derosier,Four-photon mixing and high-speed WDM systems,Lightwave Technology,Journal of 1995,vol.,13,pp.841-849.
    [24]G.Keiser著;李玉权等译,光纤通信(第三版).北京:电子工业出版社,2002.
    [25]余建军,管克俭,杨伯君,10Gbit/s单信道长距离光通信系统的数值模拟,光通信研究,1999,vol.,91,pp.5-12.
    [26]K.Ennser,M.Ibsen,M.Durkin,M.N.Zervas,and R.I.Laming,Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,Photonics Technology Letters,IEEE,1998,vol.,10,pp.1476-1478.
    [27]"The ITU Telecommunication Standardization G.957," http://www.itu.int/ITU-T/
    [28]C.J.Anderson and J.A.Lyle,Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference,Electronics Letters,1994,vol.,30,pp.71-72.
    [29]I.Eugenio,F.Matera,A.Mecozzi,and M.Settembre,Nonlinear Optical Communication Networks:John Wiley,1998.
    [30]Z.Tan,Y.Liu,Y.Chen,J.Cao,X.Dong,L.Ma,D.Chang,T.Ning,and S.Jian,8*10-Gb/s transmission system over 1500 km on(2652 fiber dispersion compensated by chirped fiber gratings,Chinese Optics Letters,2005,vol.,3,pp.441-443.
    [31]Y.Chen,J.Cao,T.Chen,and S.Jian,2560km low penalty transmission with modified CSRZ,APOC2005,2005.
    [32]Y.Chen,J.Cao,T.Chen,and S.Jian,Optimal modulation formats for 2560 km optical transmission with low-power penalty,Guangxue Xuebao/Acta Optica Sinica,2006,vol.,26,pp.331-335.
    [33]S.Jian,F.Yan,T.Li,W.Jian,L.Pei,and T.Ning,4x10 Gb/s 800 km transmission system on G.652 fiber with dispersion compensation by chirped FBG,Science in China,Series E:Technological Sciences,2002,vol.,45,pp.661-665.
    [34]K.Ennser,R.I.Laming,and M.N.Zervas,Evaluation of RZ-and NRZ-format 40 Gb/s transmission over embedded standard fibre employing chirped fibre grating dispersion compensators,Microwave and Optoelectronics Conference,1997.'Linking to the Next Century'.Proceedings.,1997 SBMO/IEEE MTT-S International,1997.
    [35]龚倩,徐荣,叶小华,张民,高速超长距离光传输技术.北京:人民邮电出版社,2005.
    [36]T.-G.Ning,L.Pei,Y.Liu,Z.-W.Tan,Z.Tong,F.-P.Yan,and S.-S.Jian,Optimization of electron-beam-written step-chirped phase masks to improve quality of the chirped FBG,Guangdianzi Jiguang/Journal of Optoelectronics Laser,2006,vol.,17,pp.1409-1412.
    [37]Z.-W.Tan,B.Li,Y.-H.Wang,W.-H.Ren,Y.Liu,T.-G.Ning,and S.-S.Jian,Background loss of the fiber induced by the ultraviolet light exposure,Zhongguo Jiguang/Chinese Journal of Lasers,2007,vol.,34,pp.239-242.
    [38]Y.Liu,B.Li,K.Zheng,Z.-W.Tan,Y.Chen,Y.H.Wang,W.-H.Ren,and S.-S.Jian,Temperature or strain induced adjustable-chirp characteristics of uniform fibre grating with tapered metal coating,Chinese Physics,2007,vol.,16,pp.1694-1699.
    [39]Z.-W.Tan,T.-G.Ning,Y.Liu,Z.Tong,and S.-S.Jian,Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,Chinese Physics,2006,vol.,15,pp.1819-1823.
    [40]Y.Liu,K.Zheng,Z.-W.Tan,B.Li,Y.Chen,T.-G.Ning,and S.-S.Jian,Good performance of chirped fiber Bragg gratings obtained by asymmetrically one-side exposure apodization,Wuli Xuebao/Acta Physica Sinica,2006,vol.,55,pp.5859-5865.
    [41]Z.-W.Tan,J.-H.Cao,Y.Chen,Y.Liu,T.-G.Ning,and S.-S.Jian,Multi-wavelength dispersion compensator based on fiber gratings with low crosstalk,Wuli Xuebao/Acta Physica Sinica,2007,vol.,56,pp.274-279.
    [42]K.Hinton and J.Arkwright,Impact of grating delay and reflectivity ripple in optical systems,Conference Record/IEEE Global Telecommunications Conference,1998,vol.,2,pp.986-991.
    [43]Z.Lin,C.Minghua,Z.Yejin,and X.Shizhong,Impacts of cascaded filters with group delay ripples on 40-Gb/s WDM transmission system,Photonics Technology Letters,IEEE,2002,vol.,14,pp.1518-1520.
    [44]顾畹仪,WDM超长距离光传输技术,北京:北京邮电大学出版社,2005.
    [45]M.Sumetsky and B.J.Eggleton,Theory of group delay ripple generated by chirped fiber gratings,Optics Express,2002,vol.,10,pp.332-340.
    [46]H.Qiao,C.He,J.Yu,J.Dai,and E.Yang,New dispersion-decreasing dispersion management,Proceedings of SPIE-The International Society for Optical Engineering,2004.
    [47]A.Royset,S.Bjornstad,and D.R.Hjelme,Optimal dispersion management for 40 Gbit/s non-repeatered transmission systems using positive and negative dispersion fibre,Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS,1999,vol.,1,pp.364-365.
    [48]M.Tur,U.Levy,and Y.Danziger,Modules for chromatic dispersion and dispersion slope management,Conference on Optical Fiber Communication,Technical Digest Series,2002.
    [49]Z.Tong,S.Jian,W.guangQuan,C.Hong,L.JuHao,Z.Lei,C.Zhangyuan,W.Ziyu,Z.Lixin,X.Anshi,H.Guangrning,Z.YaMing,W.Huai,N.Tigang,L.Yan,and T.Zhongwei,Ultra-long haul L-band WDM transmission over a standard single-mode fibre loop using DCF+CFBG hybrid dispersion compensation,Chinese Physics Letters,2006,vol.,23,pp.392-395.
    [1]A.D.Ellis,K.Smith,and D.M.Patrick,All optical clock recovery at bit rates up to 40 Gbit/s,Electronics Letters,1993,vol.,29,pp.1323-1324.
    [2]L.Yuhua,K.Cheolhwan,L.Guifang,Y.Kaneko,R.L.Jungerman,and O.Buccafusca,Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser,Photonics Technology Letters,IEEE,2003,vol.,15,pp.590-592.
    [3]G.Contestabile,M.Presi,N.Calabretta,and E.Ciaramella,All-optical clock recovery from 40Gbit/s NRZ signal based on clock line enhancement and sharp periodic filtering,Electronics Letters,2004,vol.,40,pp.1361-1362.
    [4]D.H.Kim,S.H.Kim,J.C.Jo,and S.S.Choi,Ultrahigh-speed clock recovery with optical phase lock loop based on four-wave-mixing in a semiconductor optical amplifier,Optics Communications,2000,vol.,182,pp.329-334.
    [5]D.L.Butler,J.S.Wey,M.W.Chbat,G.L.Burdge,and J.Goldhar,Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,Optics Letters,1995,vol.,20,pp.560-562.
    [6]C.Johnson,K.Demarest,C.Allen,R.Hui,K.V.Peddanarappagari,B.Zhu,and R.K.Butler, Multiwavelength all-optical clock recovery,Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS,1998.
    [7]G.P.Agrawal,非线性光纤光学原理及应用:北京:电子工业出版社,2002.
    [8]R.W.Tkach,A.R.Chraplyvy,and R.M.Derosier,Spontaneous Brillouin scattering for single-mode optical fiber characterization,Optical Soc of America,1987.
    [9]H.Kawakami,Y.Miyamoto,T.Kataoka,and K.Hagimoto,All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,IEICE Transactions on Communications,1995,vol.,E78-B,pp.694-701.
    [10]X.Zhou,H.H.M.Shalaby,L.Chao,T.H.Cheng,and P.Ye,Performance analysis of all-optical clock extraction circuit based on stimulated Brillouin scattering,Journal of Lightwave Technology,2000,vol.,18,pp.1453-1466.
    [11]Y.Shen,X.Zhang,and K.Chen,Optical carrier-suppression of microwave signals with stimulated brillouin scattering in long fiber ring,Microwave and Optical Technology Letters,2004,vol.,43,pp.258-260.
    [12]Y.-C.Shen,M.-P.Song,X.-M.Zhang,and K.-S.Chen,Analysis and measurement of stimulated Brillouin scattering threshold in single mode fiber,Zhongguo Jiguang/Chinese Journal of Lasers,2005,vol.,32,pp.497-500.
    [13]V.I.Kovalev and R.G.Harrison,Threshold for stimulated Brillouin scattering in optical fiber,Optics Express,2007,vol.,15,pp.17625-17630.
    [14]T.Wang,C.Lou,L.Huo,Z.Wang,and Y.Gao,Combination of Comb-Like Filter and SOA for Preprocessing to Reduce the Patten Effect in the Clock Recovery,IEEE Photonics Technology Letters,2004,vol.,16,pp.614-616.
    [15]"The ITU Telecommunication standardization G.957,"http://www.itu.int/ITU-T
    [16]F.Zhang,M.Chen,X.Qin,B.Lu,D.Lu,Y.Chen,J.-H.Cao,and S.-S.Jian,All optical clock recovery from degraded non-return-to-zero data stream,Zhongguo Jiguang/Chinese Journal of Lasers,2007,vol.,34,pp.1101-1105.
    [17]W.Mao,Y.Li,M.AI-Mumin,and G.Li,All-optical clock recovery for both RZ and NRZ data,IEEE Photonics Technology Letters,2002,vol.,14,pp.873-875.
    [18]H.J.Lee,H.G.Kim,J.Y.Choi,and H.K.Lee,All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,Electronics Letters,1999,vol.,35,pp.989-990.
    [19]L.Yin,G.Liu,J.Wu,and J.Lin,Clock recovery from NRZ data at 10 Gb/s using SOA loop mirror and mode-locked fiber ring laser based on SOA,Chinese Optics Letters,2006,vol.,4,pp.72-75.
    [20]H.K.Lee,J.T.Ahn,M.Y.Jeon,K.H.Kim,D.S.Lim,and E.H.Lee,Optical clock recovery based on all-fibre devices from NRZ data of 10 Gbit/s,European Conference on Optical Communication,ECOC,1998.
    [21]L.Yin,Y.Yan,Y.Zhou,J.Wu,and J.Lin,Novel scheme for all-optical clock recovery from NRZ signal,Microwave and Optical Technology Letters,2006,vol.,48,pp.516-521.
    [22]F.Zhang,Y.Chen,and S.Jian,All-optical clock recovery from non-return to zero data stream based on semiconductor optical amplifier and stimulated Brillouin scattering,Guangxue Xuebao/Acta Optica Sinica,2007,vol.,27,pp.987-992.
    [23]陈勇,全光通信网关键技术的研究与实现,博士学位论文.北京:北京交通大学,2006.
    [24] G. P. Agrawal and N. A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers, IEEE Journal of Quantum Electronics, 1989, vol., 25, pp.2297-2306.
    [25] H. Wei, H. Dexiu, S. Junqiang, and L. Deming, Numerical simulation of recovery enhancement by a CW pump light in semiconductor optical amplifiers, Optics Communications, 2002, vol., 214, pp.335-341.
    [26] A. E. Willner and W. Shieh, Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability, Journal of Lightwave Technology, 1995, vol., 13, pp.771-781.
    [27] A. Mecozzi and J. Mork, Saturation induced by picosecond pulses in semiconductor optical amplifiers, Journal of the Optical Society of America B: Optical Physics, 1997, vol., 14, pp.761-770.
    [28] D. M. Patrick and R. J. Manning, 20 Gbit/s all-optical clock recovery using semiconductor nonlinearity, Electronics Letters, 1994, vol., 30, pp. 151-152.
    [29] K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. A. A. H. Avramopoulos, 30 Gb/s all-optical clock recovery circuit, Photonics Technology Letters, IEEE, 2000, vol., 12, pp. 705-707.
    [30] W. Tong, L. Caiyun, H. Li, A. Z. W. Zhaoxin Wang, and A. Y. G. Yizhi Gao, Combination of comb-like filter and SOA for preprocessing to reduce the pattern effect in the clock recovery, Photonics Technology Letters, IEEE, 2004, vol., 16, pp. 614-616.
    [31] W. Tong, L. Zhihong, L. Caiyun, A. Y. W. Yue Wu, and A. Y. G. Yizhi Gao, Comb-like filter preprocessing to reduce the pattern effect in the clock recovery based on SOA, Photonics Technology Letters, IEEE, 2002, vol., 14, pp. 855-857.
    [32] R. J. Manning and D. A. O. Davies, Three-wavelength device for all-optical signal processing,Optics Letters, 1994, vol., 19,pp. 889-891.
    [33] R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, Semiconductor laser amplifiers for ultrafast all-optical signal processing, Journal of the Optical Society of America B: Optical Physics,1997, vol., 14,pp. 3204-3216.
    [34] M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y.Emery, Extremely fast high-gain and low-current SOA by optical speed-up at transparency, IEEE Photonics Technology Letters, 2000, vol., 12, pp. 1453-1455.
    [35] J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H.Joyner, Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength, IEEE Photonics Technology Letters, 2002, vol., 14, pp. 12-14.
    [36] L. Yin, G. Liu, J. Wu, and J. Lin, Reduction of pattern effect for clock recovery based on semiconductor optical amplifier using cw assist light, Optical Engineering, 2006, vol., 45, pp.045001.
    [37] I. Monfils, C. Ito, and J. C. Cartledge, Optical 3R regeneration using a clock-modulated pump and higher-order four-wave mixing, Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, 2006.
    [38] J. Slovak, C. Bornholdt, S. Bauer, J. Kreissl, M. Schlak, and B. Sartorius, Novel concept for all-optical clock recovery from NRZ format PRBS data streams, 2006 Optical Fiber Communication Conference, and the 2006 National Fiber Optic Engineers Conference, 2006.
    [39]X.S.Yao and G.Lutes,A high-speed photonic clock and carder recovery device,Photonics Technology Letters,IEEE,1996,vol.,8,pp.688-690.
    [40]王兆欣,王桐,霍力,娄采云,高以智,10、20、40Gb/s速率下恶化信号的光时钟提取,光子学报,2003,vol.,32,pp.1090-1093.
    [41]"The ITU Telecommunication standardization G825,"http://www.itu.int/ITU-T
    [42]"The ITU Telecommunication standardization G.813,"http://www.itu.int/ITU-T
    [43]T.von Lerber,J.Tuominen,H.Ludvigsen,S.Honkanen,and F.Kueppers,Multichannel and rate all-optical clock recovery,IEEE Photonics Technology Letters,2006,vol.,18,pp.1395-1397.
    [44]顾畹仪,WDM超长距离光传输技术.北京:北京邮电大学出版社,2005.
    [45]J.C.Cartledge,Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides,IEEE Photonics Technology Letters,1995,vol.,7,pp.1090-1092.
    [46]S.K.Kim,O.Mizuhara,Y.K.Park,L.D.Tzeng,Y.S.Kim,and J.Jeong,Theoretical and experimental study of 10 Gb/s transmission performance using 1.55 um LiNbO3-based transmitters with adjustable extinction ratio and chirp,Journal of Lightwave Technology,1999,vol.,17,pp.1320-1325.
    [47]A.H.Gnauck,S.K.Korotky,J.J.Veselka,J.Nagel,C.T.Kemmerer,W.J.Minford,and D.T.Moser,Dispersion penalty reduction using an optical modulator with adjustable chirp,IEEE Photonics Technology Letters,1991,vol.,3,pp.916-918.
    [48]K.P.Ho and J.M.Kahn,Spectrum of externally modulated optical signals,Journal of Lightwave Technology,2004,vol.,22,pp.658-663.
    [49]S.Balsamo,P.Bravetti,R.Brouard,and V.Rouffiange,Effects of chirp mechanism on spectrum broadening of extemal modulators,Conference on Optical Fiber Communication,Technical Digest Series,2005.
    [50]F.Koyama and K.Oga,Frequency chirping in external modulators,Journal of Lightwave Technology,1988,vol.,6,pp.87-93.
    [1]许永明等,IPTV—技术与应用实践.北京:电子工业出版社,2006
    [2]张念春,杨寿保,因特网与电信智能网的比较与互通方案分析,计算机工程,2002,vol.,28,pp.3-4.
    [3]简水生,数字信息安全网是人类进一步改变生活方式、工作方式、学习方式的根本保证,数字通信世界,2005,vol.,1,pp.10-10.
    [4]简水生,通信由电到光的革命兼论绿色能源革命(节选),光通信,2006,vol.,12,pp.22-24.
    [5]简水生,新一代、高度安全、超大容量、无阻塞全光网是信息社会的基础,光通信,2003,vol.,12,pp.14-21.
    [6]张杰等,自动交换光网络ASON.北京:人民邮电出版社,2004.
    [7]"The ITU Telecommunication standardization G.7713,"http://www.itu.int/ITU-T
    [8]顾畹仪等编,光传送网.北京:机械工业出版社,2003.
    [9]张云勇,IPv6网络中DNS自动发现技术,中国新通信,2005,vol.,10,pp.71-73.
    [10]"The ITU Telecommunication standardization G.7714,"http://www.itu.int/ITU-T
    [11]N.Skorin-Kapov and M.Kos,Static routing and wavelength assignment in wavelength routed WDM networks,Electrotechnical Conference,2006.MELECON 2006.IEEE Mediterranean,2006.
    [12]A.E.Ozdaglar and D.P.Bertsekas,Routing and wavelength assignment in optical networks,Networking,IEEE/ACM Transactions on,2003,vol.,11,pp.259-272.
    [13]H.Pin-Han and H.T.Mouftah,A novel survivable routing algorithm for shared segment protection in mesh WDM networks with partial wavelength conversion,Selected Areas in Communications,IEEE Journal on,2004,vol.,22,pp.1548-1560.
    [14]H.Jun and M.Brandt-Pearce,Dynamic Wavelength Assignment Using Wavelength Spectrum Separation for Crosstalk Limited Networks,Broadband Communications,Networks and Systems,2006.BROADNETS 2006.3rd International Conference on,2006.
    [15]P.Saengudomlert,E.H.Modiano,and R.G.Gallager,Dynamic Wavelength Assignment for WDM All-Optical Tree Networks,Networking,IEEE/ACM Transactions on,2005,vol.,13,pp.895-905.
    [16]A.E.Eshoul and H.T.Mouftah,IFF:a novel wavelength assignment scheme for WDM optical networks,Electrical and Computer Engineering,2004.Canadian Conference on,2004.
    [17]Q.Hao,Z.Shi,and L.Zengji,Dynamic routing and wavelength assignment for limited-range wavelength conversion,Communications Letters,IEEE,2003,vol.,7,pp.136-138.
    [18]W.Ying,C.Tee Hiang,and B.Mukherjee,Dynamic routing and wavelength assignment scheme for protection against node failure,Global Telecommunications Conference,2003.GLOBECOM'03.IEEE,2003.
    [19]M.Knoke and H.L.Hartmann,Dynamic wavelength assignment schemes for wavelength routed WDM ring transport networks,Global Telecommunications Conference,2003.GLOBECOM'03.IEEE,2003.
    [20]陈勇,全光通信网关键技术的研究与实现,博士学位论文.北京:北京交通大学,2006.
    [21]S.-I.Kim,X.J.Zhang,and S.S.Lumetta,Rapid and efficient protection for all-optical WDM mesh networks,IEEE Journal on Selected Areas in Communications,2007,vol.,25,pp.68-82.
    [22]W.Fawaz,K.Chen,and G.Pujolle,Priority-enabled optical shared protection:An online efficiency evaluation study,Computer Communications,2007,vol.,30,pp.3690-3697.
    [23]G.Lei,L.Lemin,Y.Hongfang,and C.Jin,New and enhanced protection scheme in survivable meshed WDM optical networks,European Transactions on Telecommunications,2007,vol.,18,pp.163-8.
    [24]N.S.C.Correia and M.C.R.Medeiros,Cost effectiveness of protection schemes for IP-over-WDM networks,Journal of Optical Networking,2007,vol.,6,pp.248-62.
    [25]C.Sheng,Evolution of protection technologies in metro core optical networks,2006International Conference on Networking and Services,2006.
    [26]S.Gowda,M.Sivakumar,and K.M.Sivalingam,Protection mechanisms for optical WDM networks based on wavelength converter multiplexing and backup path relocation techniques,Photonic Network Communications,2006,vol.,12,pp.65-78.
    [27]R.R.Iraschko and W.D.Grover,A highly efficient path-restoration protocol for management of optical network transport integrity,IEEE Journal on Selected Areas in Communications,2000,vol.,18,pp.779-94.
    [28]L.Shen and B.Ramamurthy,Provisioning and restoration in the next-generation optical core,Optical Networks Magazine,2003,vol.,4,pp.32-45.
    [29]R.Asthana and Y.N.Singh,Protection and restoration in optical networks,IETE Journal of Research,2004,vol.,50,pp.319-29.
    [30]M.M.A.Azim,X.Jiang,P.-H.Ho,S.Horiguchi,and M.Guo,Restoration probability modelling for active restoration-based optical networks with correlation among backup routes,IEEE Transactions on Parallel and Distributed Systems,2007,vol.,18,pp.1592-1606.
    [31]B.T.Mangara and F.W.Leuschner,Automated dynamic protection planning for improved survivability of DWDM optical networks:performance analysis for distributed restoration algorithms,2004 IEEE Africon.7th Africon Conference in Africa(IEEE Cat.No.04CH37590),2004.
    [32]D.G.Karpat and S.Bilgen,Distributed restoration in optical networks using feed-forward neural networks,Photonic Network Communications,2006,vol.,12,pp.53-64.
    [33]S.Rani,A.K.Sharma,and P.Singh,Restoration approach in WDM optical networks,Optik,2007,vol.,118,pp.25-8.
    [34]S.Jian,F.Yan,T.Li,W.Jian,L.Pei,and T.Ning,4x10 Gb/s 800 km transmission system on G.652 fiber with dispersion compensation by chirped FBG, Science in China, Series E: Technological Sciences, 2002, vol., 45, pp. 661-665.
    [35] L. Pei, S. Jian, F. Yan, T. Ning, and T. Li, Dispersion compensation of optical fiber Bragg grating on the long-distance G652 fiber transmission system, Guangxue Xuebao/Acta Optica Sinica, 2004, vol., 24, pp. 220-224.
    [36] Z. Tan, Y. Liu, Y. Chen, J. Cao, X. Dong, L. Ma, D. Chang, T. Ning, and S. Jian, 8*10-Gb/s transmission system over 1500 km on G652 fiber dispersion compensated by chirped fiber gratings, Chinese Optics Letters, 2005, vol., 3, pp. 441-443.
    [37] Z. Tan, S. Jian, Y. Liu, and T. Ning, 10Gbs transmission over 1400km of G652 fiber using chirped fiber bragg gratings dispersion compensation, APOC2004, 2004.
    [38] C. Jihong, C. Yong, C. Ting, and J. Shuisheng, RZ and CSRZ ULH transmission system based on dispersion compensation CBG, APOC 2005, 2005.
    [39] Y. Chen, J. Cao, T. Chen, and S. Jian, Optimal modulation formats for 2560 km optical transmission with low-power penalty, Guangxue Xuebao/Acta Optica Sinica, 2006, vol., 26, pp.331-335.
    [40] Y. Chen, J. Cao, T. Chen, and S. Jian, 2560km low penalty transmission with modified CSRZ,APOC2005, 2005.
    [41] C. Yong, C. Jihong, C. Ting, and J. Shuisheng, Advanced modulation formats for long-haul optical-transmission systems with dispersion compensation by chirped FBG, Microwave and Optical Technology Letters, 2006, vol., 48, pp. 344-347.
    [42] N. Tigang, T. Zhongwei, C. Yong, P. Li, T. Zhi, Z. Jingjing, C. Jihong, Z. Feng, L. Yan, L. Bin,Q. Xi, C. Ming, L. Bo, and J. Shuisheng, 8*10Gb/s transmission system over more than 2000km with dispersion compensation by cascaded chirped fiber Bragg gratings, APOC2006,2006.
    [43] L. Rapp, Transient behavior of EDFA stages using pump power splitting or pump bypass technique, Journal of Lightwave Technology, 2007, vol., 25, pp. 726-32.
    [44] S. Pachnicke, M. Obholz, E. Voges, P. M. Krummrich, and E. Gottwald, Electronic EDFA gain control for the suppression of transient gain dynamics in long-haul transmission, Optical Fiber Communication Conference National Fiber Optic Engineers Conference, OFCNFOEC 2007.Technical Digest, 2007.
    [45] M. Males and A. Cantoni, Experimental comparison of two pump control schemes for suppressing transient gain excursions in EDFA's, APOC2005, 2005.
    [46] P. S. Chan and H. K. Tsang, Minimizing gain transient dynamics by optimizing the erbium concentration and cavity length of a gain clamped EDFA, Optics Express, 2005, vol., 13, pp.7520-7526.
    [47] L. Wonkyoung, P. Heuk, C. Hee Sang, and C. Moo-Jung, Transient behavior of C-band EDFA under various wavelength allocations of add/drop channels, CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics, 2003.
    [48] J. J. Pan, W. Wang, X. Qiu, M. Zhang, K. Guan, J. Jiang, and J. Zhang, Simplified fast transient control in coolerless pump EDFA for metro applications, Acta Opt. Sin. (China), 2003.
    [49] Z. Tan, Y. Liu, T. Ning, and S. Jian, Generation of group delay ripple of chirped fiber gratings,Chinese Optics Letters, 2004, vol., 2, pp. 18-20.
    [50]T.Ning,K.Zheng,X.Dong,L.Pei,Y.Liu,Z.Tan,and S.Jian,Impact of the delay ripple of cascaded gratings on dispersion compensation of long-haul fiber transmission systems,Microwave and Optical Technology Letters,2004,vol.,42,pp.100-102.
    [51]Z.-W.Tan,K.Zheng,Y.Liu,Y.-J.Fu,Y.Chen,J.-H.Cao,T.-G.Ning,X.-W.Dong,L.-N.Ma,and S.-S.Jian,Application of dispersion compensator based on chirped fiber gratings in ultra long-haul DWDM system,Acta Physica Sinica,2005,vol.,54,pp.5218-23.
    [52]曹继红,高速超长距离传输系统及新型光路交换网研究,博士学位论文.北京:北京交通大学,2007.
    [53]C.Ming,Z.Feng,Q.xi,C.Yong,C.Jihong,L.Bo,L.Dan,and J.shuisheng,The implementation of multicast in wavelength routing optical network based on chirped fiber gratings,Journal of Optoelectronics laser,2008,vol.,19,pp.331-334.
    [54]D.van den Borne,V.Veljanovski,E.de Man,U.A.G.U.Gaubatz,C.A.Z.C.Zuccaro,C.A.P.C.Paquet,Y.A.P.Y.Painchaud,S.L.A.J.S.L.Jansen,E.A.G.E.Gottwald,G.D.A.K.G.D.Khoe,and H.A.d.W.H.de Waardt,Cost-effective 10.7-Gbit/s Long-Haul Transmission using Fiber Bragg Gratings for In-line Dispersion Compensation,Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007.OFC/NFOEC 2007.Conference on,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700