五层玻璃与铝静电键合机理及应力数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电键合是利用电、热、力等多场耦合作用下实现金属或半导体与非金属(如玻璃、陶瓷等)固相热扩散连接的一种特殊方法,具有优异的工艺特点:温度低、压力低、快速和简便等。这种工艺方法现已发展成为一种用于微机械电子系统(MEMS)器件封装的关键技术之一。随着微电子技术的深入发展对巨大产业的需求,静电键合技术也朝着更加复杂和实用的方向发展,并不断在新的领域开展应用研究,多层静电键合技术就是在不断产生的实际需求中发展起来的。
     针对目前静电键合通常采用两个电极通过一次电极反接的方式实现多层样片之间的键合存在的缺陷,如第二次键合过程中在第一次键合面形成的反向电压会减弱键合的强度等,对以前的键合设备进行了改进,研制了一套能使用两步法和共阳极法的多层静电键合的专用设备,并应用该设备采用共阳极法进行了玻璃与铝的五层的静电键合工艺试验;键合完成的试样采用光学金相显微镜、扫描电镜等观察了微观组织。从多层静电键合过程中键合界面的静电场分布规律、离子迁移规律、紧密接触区的变化规律等特征方面入手,深入分析多层静电键合的微观形貌特征及反应产物在过渡层中的分布规律,深入探讨界面极化、界面结构及离子传输特征等,最终形成多层静电键合的离子动态迁移机理;采用MARC非线性有限元分析软件,分析五层玻璃与铝静电键合试件从500℃冷却到室温时试件的翘曲变形量和变形形状、应力和应变分布的规律。
     玻璃与铝五层共阳极键合时,在铝的两侧玻璃中同时产生对称的离子流和Na+离子耗尽层,五层玻璃与铝共阳极静电键合时各元素的分布在铝的两侧呈对称分布,玻璃与铝五层共阳极键合电流的变化趋势和玻璃与铝两层键合时的电流变化趋势大体一致,没有发现五层键合时的电流—时间关系和三层、两层有绝对的数量关系。
     研究表明,玻璃与铝静电键合试样在由键合温度恢复到室温后,试样中会产生残余应力和变形;通过五层玻璃与铝共阳极静电键合试件的有限元分析结果发现,整个试样中的最大等效应力和最大剪应力都出现在键合试件的过渡层上,这种现象类似于金属焊接时残余应力的最大值出现在热影响区,所以多层玻璃与铝静电键合时过渡层成为静电键合的薄弱环节,五层玻璃与铝静电键合时的最大变形量和等效应变明显小于两层玻璃与铝的静电键合,这是由于五层玻璃与铝静电键合试件在铝的两侧玻璃呈对称分布,键合试样在铝的两侧界面附近的残余应力和应变也呈对称分布,这一结构的存在减缓了变形,这对于MEMS器件在封装时的结构设计和合理安排具有重要价值,对于MEMS封装质量的提高也具有重要的意义。
Static bonding is a special method using electricity, heat, power and other fields to bond with the metal, non-metals and semiconductors (such as glass, ceramics, etc.) by solid-phase thermal diffusion. The process has excellent characteristics: lower temperature, lower pressure, fast and easy and so on. The process has been developed as key technologies for packaging of micro-electromechanical system (MEMS) device. With the further development of microelectronics technology and the huge industrial demand, static bonding technology is used complexly and practically, and multi-layer static bonding is continuously generated according to actual demand and continuously developing in the new field of applied research.
     Because of the flaw of using two electrodes, like in the second bonding process reversal potential during the second bonding between the first bonding interface makes the strength on the first bonded interface worse and so on, it has made the improvement to use two steps and common anodic process multi-layered static electricity, and using this equipment to carry on the glass and the aluminum three-layer and five-layer static bonding experiment with common anodic process; By means of the scanning electron microscopy (SEM) and metallurgical microscope, the microstructure of the joining interfaces is analyzed; The microstructure of the bonding samples is analyzed by KEVEX SUPERDR 4 scanning electron microscopy (SEM) and metallurgical microscope, the fracture morphology of the shear areas of samples and distribution of chemical elements is analyzed by ultra-light element energy dispersive spectroscopy(EDS). It analyzes thoroughly the microscopic characteristic of transitional layer, discusses the interfacial polarization, the interface structure and the ion transport characteristic and so on, forms the ion dynamic migration mechanism about the multi-layered static bonding finally by these technological means. The paper uses the multi- function material testing machine to test the bonding intensity and the mechanical properties, and uses MARC software to analyze glass and the aluminum multi-layer static bonding warp amount of deformation and the distortion shape, the stress and the strain distribution rule when temperature cools from 500℃to 20℃.
     The finite element simulation results show that the samples of glass and aluminum of static bonding will produce residual stress and distortion from the bonding temperature to room temperature, and finite element analysis results showed that the maximum equivalent stress and maximum shear stress appears at the transition layer bonded on the specimen the sample, similarly to metal welding residual stress maximum is in the heat affection zone. Therefore, it is a weak point, but the finite element analysis of five-layer samples of static bonding glass and aluminum shows the maximum equivalent strain and deformation was significantly less than the two layers, which is due to five-layer glass and aluminum of static bonding were symmetrically distribution by the glass, so the residual stress and strain also showed a symmetrical distribution. The existence of this structure can slow deformation, which has a great value for MEMS devices in the package design and reasonable arrangements, and improve the quality of the MEMS package.
引文
[1]温诗铸.关于微机电系统研究[J].中国机械工程,2003,14(2):160-163.
    [2]Yazdi N, Salian A, Najafi K.A high sensitivity capacitive microaccelerometer with a folded-electrode structure. In: Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS99).Orlando,FL,USA.January,1999.
    [3]Pomerantz D I, Wallis G. Field assisted glass-metal sealing[J].J. Appl. Phys, 1969,40(10):3946-3949.
    [4]邢世凯.陶瓷-金属连接工艺研究现状及进展[J].材料保护,2004,37(5):35-39.
    [5]谭天亚,傅正义,张东明.扩散焊接异种金属及陶瓷/金属的研究进展[J].硅酸盐通报,2003,1:59-63.
    [6]叶大萌,熊惟皓,徐华安.金属陶瓷与金属焊接技术的研究现状与展望[J].材料导报,2006,20(8):72-75.
    [7]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2003.49.
    [8]李志远等.先进连接方法[M].北京:机械工业出版社, 2000,127-155.
    [9]李淑华,王建江,李树堂.陶瓷与金属的连接[J].特种铸造及有色合金,2000,2:51-53.
    [10]李华平,杜大明,赵世坤.陶瓷的封接技术及研究进展[J].佛山陶瓷,2004,14(6):39-41.
    [11] Xing Q F, Sasaki G, Fukunaga H. Interfacial microstructure of anodic-bonded Al/glass [J]. J.Mater.Sci: Mater. Electron., 2002,13(2):83-88.
    [12] Schmidt B, Nitzsche P, Grigull S, et al. In situ. Investigation of ion drift processe in glass during anodic bonding [J].Sensors and Actuators A:Physical,1998,67(3):191-198.
    [13] Wise K D. Integrated sensors: Key to future VLSI systems.In: Proceedings of IEEE 6th Sensor Symposium.Japan.May,1986.
    [14] Petersen K, Brown J,Renken W. High-Precision, High-Performance Mass-Flow Sensor with Integrated laminrar Flow Micto-Channels. In: Microsensors R S.Muller, R T. Howe, S D Senturai, et al., Ed.IEEE Press,1991,246.
    [15] Muller R S. Heat and strain-sensitive thin-film transducers[J].Sensors and Actuators, 1983,4(2):173-182.
    [16] MEMS市场发展的新动向.陈裕全摘译, Microwave&RF,2007.
    [17] Yazdi N, Salian A, Najafi K.A high sensitivity capacitive microaccelerometer with a folded-electrode structure. In: Proceedings of the 12th IEEE International Conference onMicro Electro Mechanical Systems (MEMS99).Orlando,FL,USA.January,1999.
    [18] Baltes H P, Popovic R. S.Integrated semiconductor maganetic field sensors. In: Microsensors. Muller R S, Howe R T, Senturai S D, et al, Ed.IEEE Press,1991,389.
    [19] Emmerich H, Schofthaler M, Knauss U.A novel micromachined magnetic-field sensor. In: Proceedings of the 12th IEEE International Conference on Micro Electro.Mechanical Systems (MEMS99).Orlando,FL,USA.January17-21,1999.
    [20] Janson S W. Spacecraft as an assembly of ASIMS. In: Microengineering Technology for Space Systems. Helvajian H, Ed. Aerospace Corporation Report Number ATR-95(8168)-2.1995,181-258.
    [21] Mehregany M, Gabriel K J, Trimmer W S N. Integrated fabrication of polysilicon mechanisms. IEEE Transcations on Electron Devices,1988,35(6):719-723.
    [22] Fodor S P A, Read J L, Pirrung M C, et al. Light-Directed, Spatially Addressable Parallel Chemical Synthesis[J].Science,1991,251(4995):767-773.
    [23] van Helvoort A T J, Knowles K M, Holmestad R, et al. Anodic oxidation during electrostatic bonding[J].Philosophical Magazine,2004,84(6):505-519.
    [24]李宏,程金树,汤李缨,全健,曹欣,微晶玻璃与不锈钢材料的超低温阳极键合方法:中国,200510020000 [P].2005.03.02.
    [25] Shuichi Shoji, Hiroto Kikuchi, Hirotaka Torigoe. Low-temperature Anodic Bonding Using Lithium Aluminosilicateβ-quartz Glass Ceramic[J].Sensors and Actuators A,1998, 64:95-100.
    [26]高陇桥.21世纪陶瓷.金属封接技术展单[J].真空电子技术,2001,(6):11—16.
    [27]Rudolf F, Jornod A, Leuthold H. Precision Accelerometers withμg Resolution. Sensors and Actuators, 1990,A 21- 23: 297~302.
    [28] Huang Xinyu.Low—Cost Integrated Composite Seal for S0Fc: Materials and Design Methodologies [C]. FY2005 Annual Report,2005.
    [29]冯勇建,多层结构键合密封保护式电容压力传感器及制造方法:中国,CN200410078387.9 [P].2005.03.02.
    [30]罗君;杜军;唐群;毛昌辉;多层高储能密度玻璃陶瓷电容器的串式内电极设计[J];科学通报;2009年04期.
    [31]刘会杰,冯吉才,李广等.陶瓷与金属扩散连接的研究现状[J].焊接,2000,(9):7-12.
    [32]李淑华,李树堂,尹玉军等.陶瓷—金属焊接研究的现状与分析[J].河北科技大学学报,2001,22(2):35-40.
    [33]杨敏,邹增大,刘秀忠等.陶瓷与金属连接的研究进展[J].山东冶金,2004,26(1):37-40.
    [34]Qian Li, Hans Goosen, Fred van Keulen et al. Microsyst Technol, 15(2009)161-168.
    [35]Thomas R,Anthony. Dielectric isolation of silicon by anodic bonding. J. Appil. phys, 1985,58(3),12-18.
    [36]Weichels, Reus R de,Bouaidat S,etc. low-temperature anodic bonding to silicon nitride, sensors and actuators A,2000,82,249-253.
    [37]王从曾.材料性能学,北京,北京工业大学出版社,2002,1,14-25.
    [38]刘翠荣,贾托胜,孟庆森等.多层静电键合专用设备的研制[J].焊接技术,2011,40(1):50-52.
    [39]张廷凯,甘志银,张鸿海.两电极多层阳极键合实验研究[J],传感器与微系统, 2009,28(7):21-23.
    [40]汪学方,杨俊波,张鸿海.多功能真空键合设备的研制[J],机械与电子,2005(5):32-34.
    [41] Danick Briand, Patrick Weber, NicolaasF. deRooij. Bonding roperties of metals anodically bonded to glass Sensor and Actuators A114(2004)543~549.
    [42] Nitesh D. Nimkar, Sushil H. Bhavnani. Development of an anodically-bonded test surface to obtain fudamental liquid immersion thermal management data for electronic devices [J].Sensor and Actuators A,2004,113:212-217.
    [43]张丽娜,喻萍,孟庆森.钠硼硅酸盐玻璃与铝阳极焊工艺及结合机理[J].中国有色金属学报,2001,11(2):160-163.
    [44]孟庆森,张丽娜.金属与硼硅玻璃场致扩散连接形成机理[J].焊接学报,2001,22:63-65.
    [45]孟庆森,薛锦.陶瓷与铝基复合材料场致扩散连接界面微观结构分析[J].硅酸盐学报,2002,30(4):447-450.
    [46]陈少平,孟庆森.陶瓷与金属场致扩散连接应用与发展[J].太原理工大学学报,2003,34(2):173-176.
    [47]马宏伟,张广明,王彤等.钎焊缺陷的超声无损检测[J].西安交通大学学报,1998,32(7):10-13.
    [48] Albaugh K B, Rasmussen D. Rate processes during anodic bonding. [J].J. Am. Ceram. Soc. 1992, 75(10):2644-2648.
    [49] Knowles K M, van Helvoort A T J. Anodic bonding[J].International Materials Reviews,2006,51(5):273-311.
    [50]周青春,陈铮,董师润.平板电极间玻璃中的电场分布[J].华东船舶工业学院学报,2001, 15(5):82-86.
    [51]蔚晓嘉.铝与钠玻璃阳极焊的电场特性研究[J].西安交通大学学报,2000,34(1):62-65.
    [52] ALBAUGH K B.Electrode phenomena during anodic bonding of silicon to sodium borosilicate glass[J].Journal of the Electr0chemical Society.1991.138(10):3089—3094.
    [53] RIOS A N,GRACIAS A C,MAIA I A,et a1.Modeling the anodic current in silicon—glass bonding[J].Rev Bras Aplic Vacno,2000.19:31—34.
    [54]张久海,何鹏.扩散连接接头行为数值模拟的发展现状[J].焊接学报, 2000,21(4):85-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700