白癜风患者外周血皮肤归巢的CD8~+T细胞分析及芹黄素对其抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白癜风是较常见的色素脱失性疾病,其中非节段型白癜风的发病机制与自身免疫功能异常有关。近来,CD8~+T细胞在白癜风发病机制中的作用受到重视,而T细胞从外周循环归巢至皮肤发挥功能并不是一个随机过程,皮肤淋巴细胞归巢抗原(Cutaneous Lymphocyte-associated Antigen, CLA)是效应性T细胞表面重要的皮肤归巢分子,可介导效应性T细胞从外周血向皮肤归巢。新近的研究提示皮肤归巢的CD8~+T细胞(CLA~+CD8~+T细胞)可能是白癜风致病的自身反应性细胞。调节性T细胞(regulatory T cell, Treg)是近年发现的具有免疫抑制功能T细胞亚群,对于维持机体免疫动态平衡具有至关重要的作用,越来越多的证据显示Treg的抑制功能下降,是自身反应性细胞激活的重要因素,我们推测非节段型白癜风患者外周血Treg对自身反应性细胞抑制功能下降参与了白癜风的发病机制。对于白癜风的治疗尚无特效疗法,中药治疗白癜风的历史悠久,但治疗机理有待研究,在有免疫调节作用的中药有效成分中找到对白癜风自身反应性CLA~+CD8~+T细胞具有抑制作用中药单体,旨在为临床上应用和推广提供实验依据,是目前研究的一个新方向。
     目的:
     1.检测非节段型白癜风患者外周血CD8~+T细胞、CLA~+CD8~+T细胞的数量,并分析其杀伤功能相关蛋白穿孔素、颗粒酶B、FasL以及归巢相关趋化因子受体CCR4(C-C chemokine receptor4)、CCR10的表达
     2.分析白癜风患者外周血Treg对自身皮肤归巢的CD8~+T细胞抑制功能是否下降及Treg功能性调节分子的表达。
     3.探究具有免疫调节作用的中药单体对白癜风患者皮肤归巢的CD8~+T细胞是否具有抑制作用,并初步探讨其作用机制。
     方法:
     1.对非节段型白癜风患者进展期15例、稳定期12例,正常人15例,采用流式细胞术,检测外周血CD8~+T细胞、CLA~+CD8~+T细胞的数量,并分析其杀伤功能相关蛋白穿孔素、颗粒酶B、FasL以及归巢相关趋化因子受体CCR4、CCR10的表达。
     2.对非节段型白癜风患者进展期7例、稳定期6例,正常人6例,采用流式细胞术检测外周血Treg功能性调节分子的表达。通过免疫磁珠法分选外周血CD8~+T细胞和Treg,根据CFSE(carboxyfluorescein diacetate succinimidyl ester)标记技术,采用流式细胞术检测外周血CLA~+CD8~+T细胞的增殖能力,并分析Treg对自身CLA~+CD8~+T细胞增殖的抑制能力。
     3.以9例非节段型进展期白癜风患者为研究对象,对文献报道能抑制T细胞功能且所属中药在古中医方剂中被用于治疗白癜风的中药单体,包括芹黄素、汉黄芩素、山奈酚、芍药苷和京尼平苷,通过免疫磁珠法分选外周血CLA~+CD8~+T细胞,采用CCK-8法检测这些中药单体对于外周血CLA~+CD8~+T细胞无杀伤毒性浓度范围,进而在此浓度范围内研究这些中药单体对外周血CLA~+CD8~+T细胞的抑制功能,并初步探讨其作用机制。
     结果:
     1.进展期白癜风外周血CLA~+CD8~+T细胞数量及功能检测
     1)外周血CD8~+T细胞的数量在白癜风进展期、稳定期和对照组之间无明显差异;CD8~+T细胞穿孔素、颗粒酶B和FasL的表达在三组间均无明显差异。2)外周血CLA~+CD8~+T细胞的数量在进展期明显高于稳定期和对照组,且在进展期的数量与白癜风面积及严重程度评分(Vitiligo Area Scoring Index, VASI)正相关;CCR4在CD8~+T细胞的表达在进展期明显高于稳定期和对照组,而CCR10的表达在三组间无明显差异。3)外周血CLA~+CD8~+T细胞穿孔素、颗粒酶B的表达在白癜风进展期明显高于稳定期和对照组,FasL的表达在三组间无明显差异;CCR4和CCR10在CLA~+CD8~+T细胞的表达在三组间均无明显差异。
     2.进展期白癜风患者外周血Treg对自身CLA~+CD8~+T细胞抑制功能检测
     1)外周血Treg表达功能性调节分子细胞毒T淋巴细胞相关抗原4(cytotoxicT lymphocyte-associated antigen-4, CTLA-4)水平在进展期明显高于稳定期和对照组,而表达淋巴细胞活化基因-3分子(lymphocyte activation gene-3, LAG-3)、CD39和CD73水平在三组间无明显差异。2)外周血CLA~+CD8~+T细胞的增殖能力在三组间无明显差异。3)外周血Treg对于自身CLA~+CD8~+T细胞的抑制能力在白癜风进展期明显低于稳定期和对照组。
     3.具有免疫调节作用的中药单体对CLA~+CD8~+T细胞抑制功能检测
     1)芹黄素可抑制进展期白癜风患者外周血CLA~+CD8~+T细胞增殖,而汉黄芩素、山奈酚、芍药苷和京尼平苷无明显抑制作用。2)芹黄素可抑制白癜风CLA~+CD8~+T细胞分泌IL-2,但对IFN-γ和TNF-α无明显抑制作用。3)芹黄素能够诱导白癜风CLA~+CD8~+T细胞周期停滞在G0/G1期。
     结论:
     1.非节段型进展期白癜风患者外周血CLA~+CD8~+T细胞数量增加,杀伤功能相关蛋白穿孔素、颗粒酶B的表达增强,提示CLA~+CD8~+T细胞是白癜风的自身反应性细胞并参与了白癜风的发病机制。
     2.非节段型进展期白癜风患者外周血Treg对自身CLA~+CD8~+T细胞抑制功能下降,可能与CLA~+CD8~+T细胞数量增加有关。
     3.芹黄素对非节段型进展期白癜风患者外周血激活的CLA~+CD8~+T细胞具有抑制作用,从免疫学发病机制方面为芹黄素用于白癜风的治疗提供了实验依据。
Vitiligo is a depigmentation disorder affecting around1%to2%of the generalpopulation. It can be separated into segmental and non-segmental types. The latter is themost common, and generally described as having an autoimmune etiology. Recentworks suggest that CD8~+T cells play an important role in the pathogenesis ofvitiligo.The migration of circulating T lymphocytes to the skin is not a random process,and the cutaneous lymphocyte-associated antigen (CLA) antigen is considered a homingreceptor for effector memory T cells with tropism for the skin. Recent studies suggestthat the CLA~+CD8~+T cells may be the autoreactive cells in vitiligo, and the studies onthe characterization of peripheral CLA~+CD8~+T cells will be helpful to reveal theimmune abnormalities of vitiligo.
     Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheraltolerance via suppression of self-reactive T cells. More and more studies suggested thatan attenuated suppressive function of peripheral Tregs on self-reactive T cells may leadto self-reactive immune responses. We hypothesized that there may be a decreasedinhibition function of peripheral Tregs on autologous CLA~+CD8~+T cells in thepathogenesis of vitiligo.
     Traditional Chinese medicines (TCMs) were used for the treatment of vitiligo witha long history, but the therapeutic mechanism remains to be studied. Recently, someingredients of Chinese medicines which were used to treat vitiligo in TCM prescriptionswere reported for their inhibition to T cell. Thus, studies on ingredients of TCMs withsuppressive function to self-reactive CLA~+CD8~+T cells may provide experimental basisfor the application of these ingredients in the treatment of vitiligo.
     Objective:
     1. To investigate the frequencies of peripheral CD8~+T cells and CLA~+CD8~+T cells,and their expression of cytotoxic molecules (perforin、granzyme-B and FasL), andmigration-related molecules (CCR4and CCR10) in non-segmental vitiligo patients.
     2. To investigate the inhibition effects of peripheral Tregs on proliferation ofautologous CLA~+CD8~+T cells in non-segmental vitiligo patients and the expressionlevels of functional molecules on Tregs.
     3. To seek for ingredients of TCMs with suppressive effects on self-reactiveCLA~+CD8~+T cells, and investigate the mechanisms.
     Methods:
     1. Twenty seven patients (15with active and12with stable non-segmental vitiligo)and15healthy control volunteers were enrolled in the study. The frequencies of CD8~+T cells and CLA~+CD8~+T cells in peripheral blood of participants were investigated byflow cytometry, and their expression levels of cytotoxic molecules (perforin,granzyme-B and FasL) and chemokine receptors (CCR4, CCR10) were evaluated also.
     2. In7active non-segmental vitiligo patients,6stable patients and6controls, theexpression levels of functional molecules on Tregs in peripheral blood of participantswere investigated by flow cytometry. The proliferative responses of peripheralCLA~+CD8~+T cells were assessed in the absence or presence of autologous Tregs usingCFSE.
     3. Nine patients with active non-segmental vitiligo patients were enrolled in thispart. Five ingredients of TCMs, including apigenin, wogonin, kaempferol, peoniflorinand geniposide, were tested. To test the cytotoxicity of the ingredients, the viability ofcells was evaluated by the CCK-8assay. And the inhibition effects and relatedmechanisms of these ingredients on CLA~+CD8~+T cells were investigated.
     Results:
     1. Detection of frequency and hyper-activated cytotoxic functions of peripheralCD8+CLA~+T cells from active vitiligo patients
     1) There was no significant difference in the percentages of peripheral CD8~+T cellsamong the active vitiligo, stable vitiligo and control group. The expression levels ofcytotoxic molecules (perforin、granzyme-B and FasL) were of no significant differenceamong the three groups.
     2) The frequencies of peripheral CD8+CLA~+T cells were significantly higher in theactive vitiligo compared with the stable vitiligo and control group, and a positive correlation was found between Vitiligo Area Scoring Index (VASI) and the frequenciesof CLA~+CD8~+T cells. The expression levels of CCR4on CD8~+T cells were significantlyhigher in the active than in the stable vitiligo or control group, but the expression levelsof CCR10on CD8~+T cells were of no significant difference among the three groups.
     3) Both the expression levels of perforin and granzyme-B on peripheralCD8+CLA~+T cells were significantly higher in the active vitiligo compared with thestable vitiligo and control group, but the expression levels of FasL on CLA~+CD8~+T cellswere of no significant difference among the three groups. And the expression levels ofCCR4and CCR10on CLA~+CD8~+T cells were of no significant difference among thethree groups.
     2. Detection of suppressive function of Tregs on the proliferation of autologousCLA~+CD8~+T cells
     1) The expression levels of cytotoxic T lymphocyte-associated antigen-4(CTLA-4)on peripheral Tregs were significantly higher in the active vitiligo compared with thestable vitiligo and control group, but the expression levels of lymphocyte activationgene-3(LAG-3)、CD39and CD73were of no significant difference among the threegroups.
     2) The percentages of proliferating peripheral CLA~+CD8~+T cells stimulated withanti-CD3/CD28mAbs were of no significant difference among the three groups.However, after cocultured with autologous Tregs, the percentages of proliferatingperipheral CLA~+CD8~+T cells were significantly higher in the active vitiligo comparedwith the stable vitiligo and control group.
     3) Tregs showed an attenuated suppressive function on the proliferation ofautologous CLA~+CD8~+T cells in the active vitiligo compared with the stable vitiligo andcontrol group.
     3. Analysis of inhibition effects of ingredients of TCMs with functions ofimmuno-regulation on peripheral CD8+CLA~+T cells from active vitiligo patients
     1) The proliferative responses of anti-CD3/CD28mAbs stimulated peripheralCLA~+CD8~+T cells from active non-segmental vitiligo patients were inhibited obviouslyby apigenin in a dose-dependent manner, while Wogonin, kaempferol, peoniflorin andgeniposide showed no inhibition effects.
     2) The secretion of IL-2of peripheral CLA~+CD8~+T cells was inhibited obviously.However, the production of IFN-γ and TNF-α was not effected by apigenin.
     3) Apigenin induces peripheral CLA~+CD8~+T cell cycle arrest at G0/G1phase.
     Conclusion:
     1. Patients with active non-segmental vitiligo have a higher frequency of peripheralCD8+CLA~+T cells with hyper-activated cytotoxic functions (perforin and granzyme-B),which may be involved in the pathogenesis of non-segmental vitiligo.
     2. Tregs showed an attenuated suppressive function on the proliferation ofautologous CLA~+CD8~+T cells, which may be responsible for the increased population ofperipheral CLA~+CD8~+T cells in the active non-segmental vitiligo.
     3. Apigenin showed an obvious inhibition on the proliferation of activatedperipheral CD8+CLA~+T cells, which provides experimental basis for the application ofapigenin in the treatment of vitiligo.
引文
[1] Santamaria-Babi LF. CLA(+)T cells in cutaneous diseases. Eur J Dermatol,2004,14:13-18.
    [2] Reiss Y, Proudfoot AE, Power CA, et al. CC chemokine receptor (CCR)4and theCCR10ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocytetrafficking to inflamed skin. J Exp Med,2001,194:1541-1547.
    [3] Wu XS, Lonsdorf AS, Hwang ST, et al. Cutaneous T-cell lymphoma: roles forchemokines and chemokine receptors. J Invest Dermatol,2009,129:1115-1119.
    [4] van den Boorn JG, Konijnenberg D, Dellemijn TA, et al. Autoimmune destructionof skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol,2009,129:2220-2232.
    [5] Gregg RK, Nichols L, Chen Y, et al. Mechanisms of spatial and temporaldevelopment of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. JImmunol,2010,184:1909-1917.
    [6] Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, et al.Immunopolarization of CD4+and CD8+T cells to Type-1-like is associated withmelanocyte loss in human vitiligo. Lab Invest,2003,83:683-695.
    [7] van den WR, Wankowicz-Kalinska A, Le PC, et al. Local immune response in skinof generalized vitiligo patients. Destruction of melanocytes is associated with theprominent presence of CLA+T cells at the perilesional site. Lab Invest,2000,80:1299-1309.
    [8] Ogg GS, Rod DP, Romero P, et al. High frequency of skin-homingmelanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med,1998,188:1203-1208.
    [9] Chavez-Galan L, renas-Del Angel MC, Zenteno E, et al. Cell death mechanismsinduced by cytotoxic lymphocytes. Cell Mol Immunol,2009,6:15-25.
    [10]Tu CX, Jin WW, Lin M, et al. Levels of TGF-beta(1) in serum and culturesupernatants of CD4(+)CD25(+) T cells from patients with non-segmental vitiligo.Arch Dermatol Res,2011,303:685-689.
    [11]Taieb A, Picardo M, VETF Members. The definition and assessment of vitiligo: aconsensus report of the Vitiligo European Task Force. Pigment Cell Res,2007,20:27-35.
    [12]Huggins RH, Schwartz RA, Janniger CK, et al. Vitiligo. Acta Dermatovenerol AlpPanonica Adriat,2005,14:137-145.
    [13]Sharquie KE, Mehenna SH, Naji AA, et al. Inflammatory changes in vitiligo: stageI and II depigmentation. Am J Dermatopathol,2004,26:108-112.
    [14]Hann SK, Park YK, Chung KY, et al. Peripheral blood lymphocyte imbalance inKoreans with active vitiligo. Int J Dermatol,1993,32:286-289.
    [15]Pichler R, Sfetsos K, Badics B, et al. Lymphocyte imbalance in vitiligo patientsindicated by elevated CD4+/CD8+T-cell ratio. Wien Med Wochenschr,2009,159:337-341.
    [16]Gunduz K, Ozturk G, Terzioglu E, et al. T cell subpopulations and IL-2R in vitiligo.J Dermatol,2004,31:94-97.
    [17]Oyarbide-Valencia K, van den Boorn JG, Denman CJ, et al. Therapeuticimplications of autoimmune vitiligo T cells. Autoimmun Rev,2006,5:486-492.
    [18]Jones SM, Dixey J, Hall ND, et al. Expression of the cutaneous lymphocyte antigenand its counter-receptor E-selectin in the skin and joints of patients with psoriaticarthritis. Br J Rheumatol,1997,36:748-757.
    [19]Campbell JJ, Brightling CE, Symon FA, et al. Expression of chemokine receptorsby lung T cells from normal and asthmatic subjects. J Immunol,2001,166:2842-2848.
    [20]Yano S, Nakamura K, Okochi H, et al. Analysis of the expression of cutaneouslymphocyte-associated antigen on the peripheral blood and cutaneous lymphocytesof alopecia areata patients. Acta Derm Venereol,2002,82:82-85.
    [21]Sigmundsdottir H, Gudjonsson JE, Jonsdottir I, et al. The frequency of CLA+CD8+T cells in the blood of psoriasis patients correlates closely with the severityof their disease. Clin Exp Immunol,2001,126:365-369.
    [22]Le Gal FA, Avril MF, Bosq J, et al. Direct evidence to support the role ofantigen-specific CD8(+) T cells in melanoma-associated vitiligo. J Invest Dermatol,2001,117:1464-1470.
    [23]Kim NH, Jeon S, Lee HJ, et al. Impaired PI3K/Akt activation-mediated NF-kappaBinactivation under elevated TNF-alpha is more vulnerable to apoptosis invitiliginous keratinocytes. J Invest Dermatol,2007,127:2612-2617.
    [24]Harper EG, Simpson EL, Takiguchi RH, et al. Efalizumab therapy for atopicdermatitis causes marked increases in circulating effector memory CD4+T cellsthat express cutaneous lymphocyte antigen. J Invest Dermatol,2008,128:1173-1181.
    [25]Vugmeyster Y, Kikuchi T, Lowes MA, et al. Efalizumab (anti-CD11a)-inducedincrease in peripheral blood leukocytes in psoriasis patients is preferentiallymediated by altered trafficking of memory CD8+T cells into lesional skin. ClinImmunol,2004,113:38-46.
    [26]Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms andclinical consequences. Nat Rev Immunol,2004,4:211-222.
    [27]Picker LJ, Treer JR, Ferguson-Darnell B, et al. Control of lymphocyte recirculationin man. II. Differential regulation of the cutaneous lymphocyte-associated antigen,a tissue-selective homing receptor for skin-homing T cells. J Immunol,1993,150:1122-1136.
    [28]Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4in vascularrecognition by cutaneous but not intestinal memory T cells. Nature,1999,400:776-780.
    [29]Homey B, Wang W, Soto H, et al. Cutting edge: the orphan chemokine receptor Gprotein-coupled receptor-2(GPR-2, CCR10) binds the skin-associated chemokineCCL27(CTACK/ALP/ILC). J Immunol,2000,164:3465-3470.
    [30]Islam SA, Luster AD, et al. T cell homing to epithelial barriers in allergic disease.Nat Med,2012,18:705-715.
    [31]Fujimoto S, Uratsuji H, Saeki H, et al. CCR4and CCR10are expressed onepidermal keratinocytes and are involved in cutaneous immune reaction. Cytokine,2008,44:172-178.
    [32]Campbell JJ, O'Connell DJ, Wurbel MA, et al. Cutting Edge: Chemokine receptorCCR4is necessary for antigen-driven cutaneous accumulation of CD4T cells underphysiological conditions. J Immunol,2007,178:3358-3362.
    [33]Wenzel J, Gutgemann I, Distelmaier M, et al. The role of cytotoxic skin-homingCD8+lymphocytes in cutaneous cytotoxic T-cell lymphoma and pityriasislichenoides. J Am Acad Dermatol,2005,53:422-427.
    [34]Teraki Y, Miyake A, Takebayashi R, et al. Homing receptor and chemokinereceptor on intraepidermal T cells in psoriasis vulgaris. Clin Exp Dermatol,2004,29:658-663.
    [35]Notohamiprodjo M, Segerer S, Huss R, et al. CCR10is expressed in cutaneousT-cell lymphoma. Int J Cancer,2005,115:641-647.
    [36]Homey B, Alenius H, Muller A, et al. CCL27-CCR10interactions regulate Tcell-mediated skin inflammation. Nat Med,2002,8:157-165.
    [1] Shevach EM. Special regulatory T cell review: How I became a T suppressor/regulatory cell maven. Immunology,2008,123:3-5.
    [2] Bernard F, Romano A,Granel B, et al. Regulatory T cells and systemic autoimmunediseases: systemic lupus erythematosus, rheumatoid arthritis, primary Sjogren'ssyndrome. Rev Med Interne,2010,31:116-127.
    [3] Kriegel MA, Lohmann T, Gabler C, et al. Defective suppressor function of humanCD4+CD25+regulatory T cells in autoimmune polyglandular syndrome type II. JExp Med,2004,199:1285-1291.
    [4] Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression byCD4+CD25+regulatory T cells in patients with multiple sclerosis. J Exp Med,2004,199:971-979.
    [5] Maeda A, Beissert S, Schwarz T, et al. Phenotypic and functional characterizationof ultraviolet radiation-induced regulatory T cells. J Immunol,2008,180:3065-3071.
    [6] Schwarz T.25years of UV-induced immunosuppression mediated by T cells-fromdisregarded T suppressor cells to highly respected regulatory T cells. PhotochemPhotobiol,2008,84:10-18.
    [7] Klarquist J, Denman CJ, Hernandez C, et al. Reduced skin homing by functionalTreg in vitiligo. Pigment Cell Melanoma Res,2010,23:276-286.
    [8]白明辉,王竞,涂彩霞,等.白癜风患者外周血CD4+CD25+调节性T细胞的检测.中华皮肤科杂志,2009,42(7):460-463.
    [9]王竞,涂彩霞,张蕴颖,等.白癜风患者外周血CD4+CD25+Foxp3+和CD4+CD25+HLA-DR+T细胞的测定.中华皮肤科杂志,2010,43(1):54.
    [10]Tu CX, Jin WW, Lin M, et al. Levels of TGF-beta(1) in serum and culturesupernatants of CD4(+)CD25(+)T cells from patients with non-segmental vitiligo.Arch Dermatol Res,2011,303:685-689.
    [11]van den Boorn JG, Konijnenberg D, Dellemijn TA, et al. Autoimmune destructionof skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol,2009,129(9):2220-2232.
    [12]Vignali DA, Collison LW, Workman CJ, et al. How regulatory T cells work. NatRev Immunol,2008,8:523-532.
    [13]Ben AM, Zaraa I, Rekik R, et al. Functional defects of peripheral regulatory Tlymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res,2012,25:99-109.
    [14]Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on selftolerance and autoimmunity. Nat Immunol,2010,11:7-13.
    [15]Maggi E, Cosmi L, Liotta F, et al. Thymic regulatory T cells. Autoimmun Rev,2005,4:579-586.
    [16]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintainedby activated T cells expressing IL-2receptor alpha-chains (CD25). Breakdown of asingle mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995,155:1151-1164.
    [17]Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence ofdevelopmental abnormality of a T cell subpopulation. J Exp Med,1996,184:387-396.
    [18]Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells inimmunological tolerance to self and non-self. Nat Immunol,2005,6:345-352.
    [19]Antiga E, Kretz CC, Klembt R, et al. Characterization of regulatory T cells inpatients with dermatomyositis. J Autoimmun,2010,35:342-350.
    [20]Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion inactive systemic lupus erythematosus. J Immunol,2005,175:8392-8400.
    [21]Lili Y, Yi W, Ji Y, et al. Global activation of CD8+cytotoxic T lymphocytescorrelates with an impairment in regulatory T cells in patients with generalizedvitiligo. PLoS One,2012,7: e37513.
    [22]Shevach EM. Mechanisms of foxp3+T regulatory cell-mediated suppression.Immunity,2009,30:636-645.
    [23]Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintainedby CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic Tlymphocyte-associated antigen4. J Exp Med,2000,192:303-310.
    [24]Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28costimulation is essential for thehomeostasis of the CD4+CD25+immunoregulatory T cells that controlautoimmune diabetes. Immunity,2000,12:431-440.
    [25]Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiationdynamics of human CD4+T cells expressing the FoxP3transcription factor.Immunity,2009,30:899-911.
    [26]Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintainedby CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic Tlymphocyte-associated antigen4. J Exp Med,2000,192:303-310.
    [27]Marson A, Kretschmer K, Frampton GM, et al. Foxp3occupancy and regulation ofkey target genes during T-cell stimulation. Nature,2007,445:931-935.
    [28]Ono M, Yaguchi H, Ohkura N, et al. Foxp3controls regulatory T-cell function byinteracting with AML1/Runx1. Nature,2007,446:685-689.
    [29]Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4control over Foxp3+regulatoryT cell function. Science,2008,322:271-275.
    [30]Arandi N, Mirshafiey A, Abolhassani H, et al. Frequency and Expression ofInhibitory Markers of CD4+CD25+FOXP3+Regulatory T Cells in Patients withCommon Variable Immunodeficiency. Scand J Immunol,2013.
    [31]Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissueCD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrainedpathogenic effector T cell proliferation. J Immunol,2005,174:164-173.
    [32]Chambers CA, Kuhns MS, Egen JG, et al. CTLA-4-mediated inhibition inregulation of T cell responses: mechanisms and manipulation in tumorimmunotherapy. Annu Rev Immunol,2001,19:565-594.
    [33]Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4complex that inhibits human immune responses. Nature,2001,410:608-611.
    [34]Dejean AS, Beisner DR, Ch'en IL, et al. Transcription factor Foxo3controls themagnitude of T cell immune responses by modulating the function of dendritic cells.Nat Immunol,2009,10:504-513.
    [35]Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophancatabolism in vivo. Nat Immunol,2002,3:1097-1101.
    [36]Huang CT, Workman CJ, Flies D, et al. Role of LAG-3in regulatory T cells.Immunity,2004,21:503-513.
    [37]Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3regulates CD8+T cellaccumulation and effector function in murine self-and tumor-tolerance systems. JClin Invest,2007,117:3383-3392.
    [38]Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39andCD73expressed on regulatory T cells mediates immune suppression. J Exp Med,2007,204:1257-1265.
    [39]李冬梅,李向培. CD39和CD73与调节性T淋巴细胞研究进展.中华风湿病学杂志,2008,12(11),785-788.
    [40]Zarek PE, Huang CT, Lutz ER, et al. A2A receptor signaling promotes peripheraltolerance by inducing T-cell anergy and the generation of adaptive regulatory Tcells. Blood,2008,111:251-259.
    [41]韩凌.银屑病患者外周血CD4~+CD25~+调节性T细胞的检测及免疫学意义:
    [博士学位论文].上海:复旦大学,2008.
    [1] Verbeek R, Plomp AC, van Tol EA, et al. The flavones luteolin and apigenin inhibitin vitro antigen-specific proliferation and interferon-gamma production by murineand human autoimmune T cells. Biochem Pharmacol,2004,68:621-629.
    [2] Ohtake N, Yamamoto M, Takeda S, et al. The herbal medicine Sho-saiko-toselectively inhibits CD8+T-cell proliferation. Eur J Pharmacol,2005,507:301-310.
    [3] Okamoto I, Iwaki K, Koya-Miyata S, et al. The flavonoid Kaempferol suppressesthe graft-versus-host reaction by inhibiting type1cytokine production and CD8+Tcell engraftment. Clin Immunol,2002,103:132-144.
    [4] Wu H, Wei W, Song L, et al. Paeoniflorin induced immune tolerance of mesentericlymph node lymphocytes via enhancing beta2-adrenergic receptor desensitizationin rats with adjuvant arthritis. Int Immunopharmacol,2007,7:662-673.
    [5] Chang WL, Wang HY, Shi LS, et al. Immunosuppressive iridoids from the fruits ofGardenia jasminoides. J Nat Prod,2005,68:1683-1685.
    [6] Lee WR, Shen SC, Lin HY, et al. Wogonin and fisetin induce apoptosis in humanpromyeloleukemic cells, accompanied by a decrease of reactive oxygen species,and activation of caspase3and Ca(2+)-dependent endonuclease. BiochemPharmacol,2002,63:225-236.
    [7] Cho J, Lee HK. Wogonin inhibits ischemic brain injury in a rat model of permanentmiddle cerebral artery occlusion. Biol Pharm Bull,2004,27:1561-1564.
    [8] Chi YS, Cheon BS, Kim HP, et al. Effect of wogonin, a plant flavone fromScutellaria radix, on the suppression of cyclooxygenase-2and the induction ofinducible nitric oxide synthase in lipopolysaccharide-treated RAW264.7cells.Biochem Pharmacol,2001,61:1195-1203.
    [9] Zhang K, Guo QL, You QD, et al. Wogonin induces the granulocytic differentiationof human NB4promyelocytic leukemia cells and up-regulates phospholipidscramblase1gene expression. Cancer Sci,2008,99:689-695.
    [10]Guo Q, Zhao L, You Q, et al. Anti-hepatitis B virus activity of wogonin in vitro andin vivo. Antiviral Res,2007,74:16-24.
    [11]Bobe G, Sansbury LB, Albert PS, et al. Dietary flavonoids and colorectal adenomarecurrence in the Polyp Prevention Trial. Cancer Epidemiol Biomarkers Prev,2008,17:1344-1353.
    [12]Martini ND, Katerere DR, Eloff JN, et al. Biological activity of five antibacterialflavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol,2004,93:207-212.
    [13]Kou Y, Inaba H, Kato T, et al. Inflammatory responses of gingival epithelial cellsstimulated with Porphyromonas gingivalis vesicles are inhibited by hop-associatedpolyphenols. J Periodontol,2008,79:174-180.
    [14]Crespo I, Garcia-Mediavilla MV, Gutierrez B, et al. A comparison of the effects ofkaempferol and quercetin on cytokine-induced pro-inflammatory status of culturedhuman endothelial cells. Br J Nutr,2008,100:968-976.
    [15]Fang XK, Gao J, Zhu DN, et al. Kaempferol and quercetin isolated from Euonymusalatus improve glucose uptake of3T3-L1cells without adipogenesis activity. LifeSci,2008,82:615-622.
    [16]Liu DZ, Xie KQ, Ji XQ, et al. Neuroprotective effect of paeoniflorin on cerebralischemic rat by activating adenosine A1receptor in a manner different from itsclassical agonists. Br J Pharmacol,2005,146:604-611.
    [17]Yu HY, Liu MG, Liu DN, et al. Antinociceptive effects of systemic paeoniflorin onbee venom-induced various 'phenotypes' of nociception and hypersensitivity.Pharmacol Biochem Behav,2007,88:131-140.
    [18]Liu DF, Wei W, Song LH, et al. Protective effect of paeoniflorin on immunologicalliver injury induced by bacillus Calmette-Guerin plus lipopolysaccharide:modulation of tumour necrosis factor-alpha and interleukin-6MRNA. Clin ExpPharmacol Physiol,2006,33:332-339.
    [19]Hung JY, Yang CJ, Tsai YM, et al. Antiproliferative activity of aucubin is throughcell cycle arrest and apoptosis in human non-small cell lung cancer A549cells. ClinExp Pharmacol Physiol,2008,35:995-1001.
    [20]Tang LM, Liu IM, Cheng JT, et al. Stimulatory effect of paeoniflorin on adenosinerelease to increase the glucose uptake into white adipocytes of Wistar rat. PlantaMed,2003,69:332-336.
    [21]Lee P, Lee J, Choi SY, et al. Geniposide from Gardenia jasminoides attenuatesneuronal cell death in oxygen and glucose deprivation-exposed rat hippocampalslice culture. Biol Pharm Bull,2006,29:174-176.
    [22]Yamazaki M, Sakura N, Chiba K, et al. Prevention of the neurotoxicity of theamyloid beta protein by genipin. Biol Pharm Bull,2001,24:1454-1455.
    [23]Koo HJ, Lee S, Shin KH, et al. Geniposide, an anti-angiogenic compound from thefruits of Gardenia jasminoides. Planta Med,2004,70:467-469.
    [24]Wang CJ, Lee MJ, Chang MC, et al. Inhibition of tumor promotion inbenzo[a]pyrene-initiated CD-1mouse skin by crocetin. Carcinogenesis,1995,16:187-191.
    [25]Koo HJ, Song YS, Kim HJ, et al. Antiinflammatory effects of genipin, an activeprinciple of gardenia. Eur J Pharmacol,2004,495:201-208.
    [26]Koo HJ, Lim KH, Jung HJ, et al. Anti-inflammatory evaluation of gardenia extract,geniposide and genipin. J Ethnopharmacol,2006,103:496-500.
    [27]秀琴,李荣华,唐涛.芹菜素抗氧化作用研究进展.中国现代医生.2009,47(27):34-35.
    [28]Lim R, Barker G, Wall CA, et al. Dietary phytophenols curcumin, naringenin andapigenin reduce infection-induced inflammatory and contractile pathways in humanplacenta, foetal membranes and myometrium. Mol Hum Reprod,2013,
    [29]Yang CS, Landau JM, Huang MT, et al. Inhibition of carcinogenesis by dietarypolyphenolic compounds. Annu Rev Nutr,2001,21:381-406.
    [30]Choudhury D, Ganguli A, Dastidar DG, et al. Apigenin shows synergisticanticancer activity with curcumin by binding at different sites of tubulin. Biochimie,2013.
    [31]林茂,卢珊珊,张蕴颖,等.芹黄素对过氧化氢所致黑素细胞凋亡的作用.中国皮肤性病学杂志.2011,25(8);583-586.
    [32]Benczik M, Gaffen SL, et al. The interleukin (IL)-2family cytokines: survival andproliferation signaling pathways in T lymphocytes. Immunol Invest,2004,33:109-142.
    [33]Singh S, Singh U, Pandey SS, et al. Serum concentration of IL-6, IL-2, TNF-alpha,and IFNgamma in Vitiligo patients. Indian J Dermatol,2012,57:12-14.
    [34]涂彩霞,傅红文,林熙然.白癜风患者血清及皮肤组织液可溶性白介素2受体的检测.中华皮肤科杂志.1997,30(4):224-226.
    [35]Yeo UC, Yang YS, Park KB, et al. Serum concentration of the soluble interleukin-2receptor in vitiligo patients. J Dermatol Sci,1999,19:182-188.
    [36]Galadari I. Serum levels of the soluble interleukin-2receptor in vitiligo patients inUAE. Eur Ann Allergy Clin Immunol,2005,37:109-111.
    [37]Rubin LA, Nelson DL. The soluble interleukin-2receptor: biology, function, andclinical application. Ann Intern Med,1990,113:619-627.
    [38]Gaulton GN, Williamson P. Interleukin-2and the interleukin-2receptor complex.Chem Immunol,1994,59:91-114.
    [39]Lyu SY, Park WB. Production of cytokine and NO by RAW264.7macrophagesand PBMC in vitro incubation with flavonoids. Arch Pharm Res,2005,28:573-581.
    [40]Panitch HS, Bever CT Jr. Clinical trials of interferons in multiple sclerosis. Whathave we learned? J Neuroimmunol,1993,46:155-164.
    [41]Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes preventprimary tumour development and shape tumour immunogenicity. Nature,2001,410:1107-1111.
    [42]Lili Y, Yi W, Ji Y, et al. Global activation of CD8+cytotoxic T lymphocytescorrelates with an impairment in regulatory T cells in patients with generalizedvitiligo. PLoS One,2012,7: e37513.
    [43]Alghamdi KM, Khurrum H, Taieb A, et al. Treatment of generalized vitiligo withanti-TNF-alpha Agents. J Drugs Dermatol,2012,11:534-539.
    [44]Gupta S, Gollapudi S. Molecular mechanisms of TNF-alpha-induced apoptosis innaive and memory T cell subsets. Autoimmun Rev,2006,5:264-268.
    [45]Laddha NC, Dwivedi M, Begum R, et al. Increased Tumor Necrosis Factor(TNF)-alpha and its promoter polymorphisms correlate with disease progressionand higher susceptibility towards vitiligo. PLoS One,2012,7: e52298.
    [46]Zou J, Rudwaleit M, Brandt J, et al. Down-regulation of the nonspecific andantigen-specific T cell cytokine response in ankylosing spondylitis during treatmentwith infliximab. Arthritis Rheum,2003,48:780-790.
    [47]Koide T, Kamei H, Hashimoto Y, et al. Influence of flavonoids on cell cycle phaseas analyzed by flow-cytometry. Cancer Biother Radiopharm,1997,12:111-115.
    [48]Liu Y, Gao X, Deeb D, et al. Anticancer agent xanthohumol inhibits IL-2inducedsignaling pathways involved in T cell proliferation. J Exp Ther Oncol,2012,10:1-8.
    [1] Fuhlbrigge RC, Kieffer JD, Armerding D, et al. Cutaneous lymphocyte antigen is aspecialized form of PSGL-1expressed on skin-homing T cells. Nature,1997,389:978-981.
    [2] Hunger RE, Yawalkar N, Braathen LR, et al. The HECA-452epitope is highlyexpressed on lymph cells derived from human skin. Br J Dermatol,1999,141:565-569.
    [3] Picker LJ, Treer JR, Ferguson-Darnell B, et al. Control of lymphocyte recirculationin man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, atissue-selective homing receptor for skin-homing T cells. J Immunol,1993,150:1122-1136.
    [4] Picker LJ, Michie SA, Rott LS, et al. A unique phenotype of skin-associatedlymphocytes in humans. Preferential expression of the HECA-452epitope bybenign and malignant T cells at cutaneous sites. Am J Pathol,1990,136:1053-1068.
    [5] Jones SM, Dixey J, Hall ND, et al. Expression of the cutaneous lymphocyte antigenand its counter-receptor E-selectin in the skin and joints of patients with psoriaticarthritis. Br J Rheumatol,1997,36:748-757.
    [6] Campbell JJ, Brightling CE, Symon FA, et al. Expression of chemokine receptorsby lung T cells from normal and asthmatic subjects. J Immunol,2001,166:2842-2848.
    [7] Picker LJ, Kishimoto TK, Smith CW, et al. ELAM-1is an adhesion molecule forskin-homing T cells. Nature,1991,349:796-799.
    [8] Berg EL, Yoshino T, Rott LS, et al. The cutaneous lymphocyte antigen is a skinlymphocyte homing receptor for the vascular lectin endothelial cell-leukocyteadhesion molecule1. J Exp Med,1991,174:1461-1466.
    [9] Zollner TM, Asadullah K, et al. Selectin and selectin ligand binding: a bittersweetattraction. J Clin Invest,2003,112:980-983.
    [10] Dimitroff CJ, Bernacki RJ, Sackstein R, et al. Glycosylation-dependent inhibition ofcutaneous lymphocyte-associated antigen expression: implications in modulatinglymphocyte migration to skin. Blood,2003,101:602-610.
    [11] Erdmann I, Scheidegger EP, Koch FK, et al. Fucosyltransferase VII-deficient micewith defective E-, P-, and L-selectin ligands show impaired CD4+and CD8+T cellmigration into the skin, but normal extravasation into visceral organs. J Immunol,2002,168:2139-2146.
    [12] Smithson G, Rogers CE, Smith PL, et al. Fuc-TVII is required for T helper1and Tcytotoxic1lymphocyte selectin ligand expression and recruitment in inflammation,and together with Fuc-TIV regulates naive T cell trafficking to lymph nodes. J ExpMed,2001,194:601-614.
    [13] Wagers AJ, Lowe JB, Kansas GS, et al. An important role for the alpha1,3fucosyltransferase, FucT-VII, in leukocyte adhesion to E-selectin. Blood,1996,88:2125-2132.
    [14] Wagers AJ, Waters CM, Stoolman LM, et al. Interleukin12and interleukin4control T cell adhesion to endothelial selectins through opposite effects on alpha1,3-fucosyltransferase VII gene expression. J Exp Med,1998,188:2225-2231.
    [15] Leung DY, Gately M, Trumble A, et al. Bacterial superantigens induce T cellexpression of the skin-selective homing receptor, the cutaneouslymphocyte-associated antigen, via stimulation of interleukin12production. J ExpMed,1995,181:747-753.
    [16] Zollner TM, Podda M, Pien C, et al. Proteasome inhibition reducessuperantigen-mediated T cell activation and the severity of psoriasis in a SCID-humodel. J Clin Invest,2002,109:671-679.
    [17] Mortarini R, Borri A, Tragni G, et al. Peripheral burst of tumor-specific cytotoxic Tlymphocytes and infiltration of metastatic lesions by memory CD8+T cells inmelanoma patients receiving interleukin12. Cancer Res,2000,60:3559-3568.
    [18] Santamaria LF, Torres R, Gimenez-Arnau AM, et al. Rolipram inhibitsstaphylococcal enterotoxin B-mediated induction of the human skin-homingreceptor on T lymphocytes. J Invest Dermatol,1999,113:82-86.
    [19] Nakayama F, Teraki Y, Kudo T, et al. Expression of cutaneouslymphocyte-associated antigen regulated by a set of glycosyltransferases in humanT cells: involvement of alpha1,3-fucosyltransferase VII andbeta1,4-galactosyltransferase I. J Invest Dermatol,2000,115:299-306.
    [20] Akdis M, Klunker S, Schliz M, et al. Expression of cutaneouslymphocyte-associated antigen on human CD4(+) and CD8(+) Th2cells. Eur JImmunol,2000,30:3533-3541.
    [21] Zollner TM, Podda M, Pien C, et al. Proteasome inhibition reducessuperantigen-mediated T cell activation and the severity of psoriasis in a SCID-humodel. J Clin Invest,2002,109:671-679.
    [22] Yamanaka KI, Kakeda M, Kitagawa H, et al.1,24-Dihydroxyvitamin D(3)(tacalcitol) prevents skin T-cell infiltration. Br J Dermatol,2010,162:1206-1215.
    [23] Issa F, Hester J, Milward K, et al. Homing of regulatory T cells to human skin isimportant for the prevention of alloimmune-mediated pathology in an in vivocellular therapy model. PLoS One,2012,7: e53331.
    [24] Dimitroff CJ, Kupper TS, Sackstein R, et al. Prevention of leukocyte migration toinflamed skin with a novel fluorosugar modifier of cutaneous lymphocyte-associated antigen. J Clin Invest,2003,112:1008-1018.
    [25]盛珉旻,闵仲生.皮肤淋巴细胞相关抗原T细胞与白癜风的研究进展.临床皮肤科杂志,2012,41(6):387-388.
    [26]刘江波.皮肤T淋巴细胞归巢.国外医学免疫学分册.2000,23(5):287-289.
    [27] Kunstfeld R, Lechleitner S, Groger M, et al. HECA-452+T cells migrate throughsuperficial vascular plexus but not through deep vascular plexus endothelium. JInvest Dermatol,1997,108:343-348.
    [28] Biedermann T, Schwarzler C, Lametschwandtner G, et al. Targeting CLA/E-selectininteractions prevents CCR4-mediated recruitment of human Th2memory cells tohuman skin in vivo. Eur J Immunol,2002,32:3171-3180.
    [29] Laudanna C, Kim JY, Constantin G, et al. Rapid leukocyte integrin activation bychemokines. Immunol Rev,2002,186:37-46.
    [30] Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4in vascularrecognition by cutaneous but not intestinal memory T cells. Nature,1999,400:776-780.
    [31] Homey B, Wang W, Soto H, et al. Cutting edge: the orphan chemokine receptor Gprotein-coupled receptor-2(GPR-2, CCR10) binds the skin-associated chemokineCCL27(CTACK/ALP/ILC). J Immunol,2000,164:3465-3470.
    [32] Gunther C, Carballido-Perrig N, Kaesler S, et al. CXCL16and CXCR6areupregulated in psoriasis and mediate cutaneous recruitment of human CD8+T cells.J Invest Dermatol,2012,132:626-634.
    [33] Homey B, eu-Nosjean MC, Wiesenborn A, et al. Up-regulation of macrophageinflammatory protein-3alpha/CCL20and CC chemokine receptor6in psoriasis. JImmunol,2000,164:6621-6632.
    [34] Rottman JB, Smith TL, Ganley KG, et al. Potential role of the chemokine receptorsCXCR3, CCR4, and the integrin alphaEbeta7in the pathogenesis of psoriasisvulgaris. Lab Invest,2001,81:335-347.
    [35] Santamaria Babi LF, Moser B, Perez Soler MT, et al. The interleukin-8receptor Band CXC chemokines can mediate transendothelial migration of human skinhoming T cells. Eur J Immunol,1996,26:2056-2061.
    [36] Santamaria Babi LF, Picker LJ, Perez Soler MT, et al. Circulating allergen-reactiveT cells from patients with atopic dermatitis and allergic contact dermatitis expressthe skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. JExp Med,1995,181:1935-1940.
    [37] Koelle DM, Liu Z, McClurkan CM, et al. Expression of cutaneouslymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. JClin Invest,2002,110:537-548.
    [38] van den WR, Wankowicz-Kalinska A, Le PC, et al. Local immune response in skinof generalized vitiligo patients. Destruction of melanocytes is associated with theprominent presence of CLA+T cells at the perilesional site. Lab Invest,2000,80:1299-1309.
    [39] Le Gal FA, Avril MF, Bosq J, et al. Direct evidence to support the role ofantigen-specific CD8(+) T cells in melanoma-associated vitiligo. J Invest Dermatol,2001,117:1464-1470.
    [40] Ogg GS, Rod DP, Romero P, et al. High frequency of skin-homingmelanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med,1998,188:1203-1208.
    [41] Palermo B, Campanelli R, Garbelli S, et al. Specific cytotoxic T lymphocyteresponses against Melan-A/MART1, tyrosinase and gp100in vitiligo by the use ofmajor histocompatibility complex/peptide tetramers: the role of cellular immunity inthe etiopathogenesis of vitiligo. J Invest Dermatol,2001,117:326-332.
    [42] Antelo DP, Filgueira AL, Cunha JM, et al. Reduction of skin-homing cytotoxic Tcells (CD8+-CLA+) in patients with vitiligo. Photodermatol PhotoimmunolPhotomed,2011,27:40-44.
    [43] Homey B, Alenius H, Muller A, et al. CCL27-CCR10interactions regulate Tcell-mediated skin inflammation. Nat Med,2002,8:157-165.
    [44] Sigmundsdottir H, Gudjonsson JE, Jonsdottir I, et al. The frequency of CLA+CD8+T cells in the blood of psoriasis patients correlates closely with the severity of theirdisease. Clin Exp Immunol,2001,126:365-369.
    [45] Ferran M, Galvan AB, Rincon C, et al. Streptococcus Induces Circulating CLA(+)Memory T-Cell-Dependent Epidermal Cell Activation in Psoriasis. J InvestDermatol,2013,133:999-1007.
    [46]韩凤娴,徐丽敏,赵宏丽.皮肤淋巴细胞相关抗原在寻常性银屑病中的表达.中国中西医结合皮肤性病学杂志.2009,8(3):154-157.
    [47]陈珊宇,杨森,高昱.寻常型银屑病皮肤中皮肤归巢T细胞免疫组化研究.中华皮肤科杂志,2002,35(2):91-93
    [48] Ellis CN, Krueger GG. Treatment of chronic plaque psoriasis by selective targetingof memory effector T lymphocytes. N Engl J Med,2001,345:248-255.
    [49] Gottlieb AB, Krueger JG, Wittkowski K, et al. Psoriasis as a model forT-cell-mediated disease: immunobiologic and clinical effects of treatment withmultiple doses of efalizumab, an anti-CD11a antibody. Arch Dermatol,2002,138:591-600.
    [50] Jung K, Linse F, Pals ST, et al. Adhesion molecules in atopic dermatitis: patch testselicited by house dust mite. Contact Dermatitis,1997,37:163-172.
    [51] Cavani A, Mei D, Guerra E, et al. Patients with allergic contact dermatitis to nickeland nonallergic individuals display different nickel-specific T cell responses.Evidence for the presence of effector CD8+and regulatory CD4+T cells. J InvestDermatol,1998,111:621-628.
    [52] Traidl C, Sebastiani S, Albanesi C, et al. Disparate cytotoxic activity ofnickel-specific CD8+and CD4+T cell subsets against keratinocytes. J Immunol,2000,165:3058-3064.
    [53]张丽,齐瑞群,孙艳,等.卡介菌多糖核酸对特应性皮炎外周血CLA+T细胞表达不同细胞因子的影响.中国医科大学学报,2009,10:764-766.
    [54] Kakinuma T, Sugaya M, Nakamura K, et al. Thymus and activation-regulatedchemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect thedisease activity of mycosis fungoides. J Am Acad Dermatol,2003,48:23-30.
    [55] Kakinuma T, Saeki H, Tsunemi Y, et al. Increased serum cutaneous T cell-attractingchemokine (CCL27) levels in patients with atopic dermatitis and psoriasis vulgaris.J Allergy Clin Immunol,2003,111:592-597.
    [56] Borowitz MJ, Weidner A, Olsen EA, et al. Abnormalities of circulating T-cellsubpopulations in patients with cutaneous T-cell lymphoma: cutaneouslymphocyte-associated antigen expression on T cells correlates with extent ofdisease. Leukemia,1993,7:859-863.
    [57] Heald PW, Yan SL, Edelson RL, et al. Skin-selective lymphocyte homingmechanisms in the pathogenesis of leukemic cutaneous T-cell lymphoma. J InvestDermatol,1993,101:222-226.
    [58] Ferenczi K, Fuhlbrigge RC, Pinkus J, et al. Increased CCR4expression in cutaneousT cell lymphoma. J Invest Dermatol,2002,119:1405-1410.
    [59] Gonzalez FJ, Carvajal MJ, Leiva L, et al. Expression of the cutaneouslymphocyte-associated antigen in circulating T cells in drug-allergic reactions. IntArch Allergy Immunol,1997,113:345-347.
    [60] Gonzalez FJ, Leyva L, Posadas S, et al. Participation of T lymphocytes in cutaneousallergic reactions to drugs. Clin Exp Allergy,1998,28Suppl4:3-6.
    [61] Leyva L, Torres MJ, Posadas S, et al. Anticonvulsant-induced toxic epidermalnecrolysis: monitoring the immunologic response. J Allergy Clin Immunol,2000,105:157-165.
    [62] Blanca M, Leyva L, Torres MJ, et al. Memory to the hapten in non-immediatecutaneous allergic reactions to betalactams resides in a lymphocyte subpopulationexpressing both CD45RO and CLA markers. Blood Cells Mol Dis,2003,31:75-79.
    [63] Blanca M, Posadas S, Torres MJ, et al. Expression of the skin-homing receptor inperipheral blood lymphocytes from subjects with nonimmediate cutaneous allergicdrug reactions. Allergy,2000,55:998-1004.
    [64] Teraki Y, Hotta T, Shiohara T, et al. Skin-homing interleukin-4and-13-producingcells contribute to bullous pemphigoid: remission of disease is associated withincreased frequency of interleukin-10-producing cells. J Invest Dermatol,2001,117:1097-1102.
    [65] Yano S, Nakamura K, Okochi H, et al. Analysis of the expression of cutaneouslymphocyte-associated antigen on the peripheral blood and cutaneous lymphocytesof alopecia areata patients. Acta Derm Venereol,2002,82:82-85.
    [66] Musette P, Bachelez H, Flageul B, et al. Immune-mediated destruction ofmelanocytes in halo nevi is associated with the local expansion of a limited numberof T cell clones. J Immunol,1999,162:1789-1794.
    [67] Adams DH, Yannelli JR, Newman W, et al. Adhesion of tumour-infiltratinglymphocytes to endothelium: a phenotypic and functional analysis. Br J Cancer,1997,75:1421-1431.
    [68] Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms andclinical consequences. Nat Rev Immunol,2004,4:211-222.
    [69] Piletta PA, Wirth S, Hommel L, et al. Circulating skin-homing T cells in atopicdermatitis. Selective up-regulation of HLA-DR, interleukin-2R, and CD30anddecrease after combined UV-A and UV-B phototherapy. Arch Dermatol,1996,132:1171-1176.
    [70] bernathy-Carver KJ, Sampson HA, Picker LJ, et al. Milk-induced eczema isassociated with the expansion of T cells expressing cutaneous lymphocyte antigen. JClin Invest,1995,95:913-918.
    [71] Sigmundsdottir H, Gudjonsson JE, Valdimarsson H, et al. The effects of ultravioletB treatment on the expression of adhesion molecules by circulating T lymphocytesin psoriasis. Br J Dermatol,2003,148:996-1000.
    [72] Teraki Y, Hotta T, Shiohara T, et al. Skin-homing interleukin-4and-13-producingcells contribute to bullous pemphigoid: remission of disease is associated withincreased frequency of interleukin-10-producing cells. J Invest Dermatol,2001,117:1097-1102.
    [73] Yano S, Nakamura K, Okochi H, et al. Analysis of the expression of cutaneouslymphocyte-associated antigen on the peripheral blood and cutaneous lymphocytesof alopecia areata patients. Acta Derm Venereol,2002,82:82-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700