基于LIDAR应用的全固化激光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光器是激光雷达的核心,其性能指标直接决定了激光雷达的主要技术参数。基于脉冲测距体制的激光三维成像雷达是激光雷达的重要成员之一,要求激光器需具有高重复频率、窄脉冲宽度、高光束质量、高效率和体积小、重量轻等特点。本论文针对激光三维成像雷达的应用,对半导体激光器(LD)泵浦的被动调Q微腔激光器和基于主振荡功率放大(MOPA)掺Yb~(3+)脉冲全光纤激光器进行了研究,并研制出MOPA脉冲光纤激光器工程样机,在激光三维成像雷达上进行了应用。
     本论文的主要工作和创新结果包括以下几个方面:
     1.基于Cr~(4+):YAG被动调Q速率方程,推导得出了激光脉冲输出特性相对于两个无量纲常变量z和α的函数;利用相应函数,对脉冲能量、峰值功率、脉冲宽度、激光效率等激光脉冲参数特性进行数值模拟和理论分析,为被动调Q微腔激光器的设计提供了理论指导。
     2.搭建了LD泵浦Nd:YAG/Cr~(4+):YAG被动调Q微腔激光器系统,实现稳定调Q激光脉冲输出。并针对在实验研究过程中观察到的双脉冲时间波形现象进行了理论分析和实验研究,发现双脉冲时间波形与激光空间模式分布存在着对应关系,经分析得到了激光器双纵模的振荡是导致这种现象的直接原因。提出了实际应用中避免此现象的解决方案并进行了实验验证。
     3.建立了基于MOPA结构的高峰值功率纳秒掺Yb~(3+)全光纤激光器系统,实现1064nm脉冲宽度<1ns~10ns可调、重复频率10kHz~1MHz可调、峰值功率为123kW的稳定单横模激光脉冲输出。这种峰值功率高、可控性强、稳定性好、可靠性高的全光纤激光器系统,对激光三维成像雷达整机性能的提升有极大的促进作用。
     4.研制出高峰值功率脉冲全光纤激光器工程样机应用于激光三维成像雷达系统,进行三维成像实验,激光三维成像雷达在40o×40o的视场范围内,获得了距离分辨率1.86cm,距离精度±7.5cm,角分辨率0.009°的激光三维扫描图像,成像实验结果表明研制的激光器可满足三维成像雷达的高分辨率成像需求。同时通过激光雷达系统的长期室内和户外工作验证了激光器的可靠性和稳定性。
Laser is the core of LIDAR, which has a great impact on the key parameters ofLIDAR system. And3D imaging LIDAR based on the pulse ranging mechanismplays an important role in the system of LIDAR, which is an active device in that itcarries its own transmitter and does not depend on ambient radiation. As thetransmitter of3D imaging LIDAR, Laser must be required to some specialcharacteristics, such as high repetition rate, narrow temporal duration, excellentbeam quality, high efficiency, robust, and so on. This dissertation focuses on twokind laser technologies for the applications of3D imaging LIDAR: a passivelyQ-switched microchip laser and Yb~(3+)-doped pulse all-fiber amplifier based onMOPA structure. Meanwhile, the practical sample of pulsed all-fiber laser has beensuccessful developed and applied to the3D imaging LIDAR system.
     The main research works and innovations of this dissertation are summarizedas follows:
     1. Basing on the rate equations of Cr~(4+):YAG passively Q-switched laser,the output characteristics of pulsed laser as a function of twodimensionless variables are derived. According to the relationships, thelaser parameters including pulse energy, peak power, pulse width, andlaser efficiency are acquired by means of theoretical analysis andnumerical simulation. It is useful to define the laser parameters whenthe anticipant pulse energy.
     2. Single-and dual-pulse oscillation delivered from a LD pumpedpassively Q-switched Nd:YAG/Cr~(4+):YAG microchip laser has beeninvestigated under the different pump levels. And the dual-pulse waveform consists of a main pulse and a satellite pulse with respectiveintensities and optical spectra. Experimental results indicate that thedual-pulse emission results from double longitudinal mode oscillation.The preponderant oscillating mode gives birth to the main pulse, andthe other oscillating mode corresponds to the satellite pulse.
     3. A compact high power nanosecond all-fiber MOPA system based onYb~(3+)-doped fiber amplifier system is established. Laser pulse withstable wavelength, controllable repetition rate and adjustable pulseduration is obtained. And the peak power is up to123kW. As thetransmitter of3D imaging LIDAR, it is benefit to improve thecapabilities of the entire system. Temporal duration and repetition rateof the laser pulse can choose flexible according to the different practicalapplication.
     4. The proposed fiber amplifier is used as the laser source ofthree-dimension (3D) imaging LIDAR system, which achieves thefunction of3D imaging and gives the scanning imaging results. Theperformance of the laser is verified. The imaging results show that theproposed fiber amplifiers with high peak power have the excellentreliability and stability and are very suitable for3D imaging LIDARsystem. The3D scanning image has the ranging resolution of1.86cm,the ranging accuracy of±7.5cm, and the angular resolution of0.009°.
引文
[1] B. Koetz, F. Morsdorf, G. Sun, et al. Inversion of a Lidar Waveform Model forForest Biophysical Parameter Estimation. IEEE Geoscience and Remote SensingLetters,2006,3(1):49-53.
    [2] F. Yuan, J. X. Zhang, L. Zhang, J. X. Gao. Urban DEM Generation from AirborneLidar Data. IEEE Urban Remote Sensing Joint Event,2009,978-1-4244-3641-9.
    [3] X. Y. Liu. Airborne Lidar for DEM generation: some critical issues. Clayton,School of Geography and Environmental Science Monash University, p.1-49.
    [4] F. Bretar, N. Chehata. Terrain Modeling From Lidar Rang Data in NaturalLandscapes: A Predictive and Bayesian Framework. IEEE Transactions onGeoscience and Remote Sensing,2010,48(3):1568-1578.
    [5] J. J. Zayhowski, C. Dill Ⅲ. Diode-pumped passively Q-switched picosecondmicrochip lasers. Opt. Lett,1994,19:1427-1429.
    [6] Y. F. Chen, T. M. Huang. Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser. Electron. Lett.,1997,33:1880-1881.
    [7] W. J. Mandeville, K. M. Dinndorf. Characterization of passively Q-switchedmicrochip lasers for laser radar. Proc. SPIE,1996,2748:358–366.
    [8] R. T. Su, P. Zhou, H. Xiao, et al.96.2W All-Fiberized NanosecondSingle-Frequency Fiber MOPA. Laser Phys.,2012,22(1):248-251.
    [9] C. S. Yang, S. H. Xu, S. P. Mo, et al.10.9W kHz-linewidth one-stage all-fiberlinearly-polarized MOPA laser at1560nm. Opt. Express,2013,16(24):12546-12551.
    [10]C. Liu, Y. F. Qi, Y. Q. Ding, et al. All-fiber, high power single-frequency linearlypolarized ytterbium-doped fiber amplifier. Chin. Opt. Lett.,2011,9(3):031402.
    [11]刘少龙. Cr4+:YAG被动调Q微晶片激光器输出脉冲特性研究.西安:中国科学院研究生院西安光学精密机械研究所,2007.
    [12]J. J. Zayhowski, A. Mooradian. Frequency-modulated Nd:YAG microchip lasers.Opt. Lett.,1989,14:618-620.
    [13]J. J. Zayhowski, C. Dill III. Coupled-cavity electro-optically Q-switchedNd:YVO4microchip lasers. Opt Lett.,1995,20(7):716-718.
    [14]N. MacKinnon, C. J. Norrie, et al. Laser-diode-pumped, electro-optically tunableNd:MgO:LNIbO3microchip laser. J. Opt. Soc.Am.,1994, B11:19-22.
    [15]X. Zhang, S. Zhao, Q. Wang, et al. Optimization of Cr4+-doped saturable absorberQ-switched lasers. IEEE J.Quantum Electron.,1997,3:2286-2294.
    [16]陈军,葛剑虹,洪治等. LD泵浦的Cr4+:Nd4+:YAG自调Q激光器研究.强激光与粒子束,2000,12:163-166.
    [17]P. Wang, S. H. Zhou, K. K. Lee, et al. Picosecond laser pulse generation in amonolithic self-Q-switched solid-state laser. Opt. Commun.1995,114:439-441.
    [18]L. Fulbert, J. Marty, B. Ferrand, E. Molva. Passively Q-switched monolithicmicrochip laser. CLEO Tech. Dig.,1995,15:176.
    [19]R. Fluck, B.Braun, U. Keller, et al. Passively Q-switched microchip lasers at1.3μm and1.5μm. CLEO Tech. Dig.,1997,11:355-359.
    [20]H. Liu, M. Fukazawa, Y. Kawai. Gain-switched picosecond pulse (    [21]C. Yan, K. P. J. Reddy, R. K. Jain, et al. Picosecond pulse generation in CWsemiconductor lasers using a novel regenerative gain-switching technique. IEEEPhotonics Technol. Lett.,1993,5:494-497.
    [22]盛芳,李东明,陈军.增益开关型Nd3+:YVO4微片激光器的研究.中国激光,2004,31:61-64.
    [23]周炳琨,高以智,陈倜嵘等.激光原理,国防工业出版社,第六版,2009.
    [24]陈钰清,王静环.激光原理,浙江大学出版社,第一版,2005.
    [25]M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, Opt. Lett.,1992,17(13):929
    [26]A. M. Malyarevich, et al. Appl. Phys. Lett. B,1998,67:555
    [27]Y. K. Kuo, M. F. Huang, M. Bimhaum. IEEE J. Quantum Electron., QE-31(4),1995,57
    [28]P. Yankov, J. Phys. D:Appl. Phys.,27(6),1994,1118
    [29]Y. Shimony. Z. Burshtein, and Y. Kalis, IEEE J. Quantum Electron.,QE-31(10)(1995)1738
    [30]H. Eliars, K R. HoPfmann, W. M. Dennis. Appl. Phys. Lett.,61(25)(1992)2958
    [31]H. X. Wang, X. Q. Yang, S. Zhao, et al.2ns-pulse compact and reliablemicrochip laser by Nd:YAG/Cr4+:YAG composite crystal. Laser Phys.,2009,19(8):1824-1827.
    [32]X. Q. Yang, H. X. Wang, J. L. He, et al. A compact passively Q-switchedintra-cavity frequency doubled Nd:YAG/Cr4+:YAG composite crystal green laser.Laser Phys.,2009,19(10):1964-1968.
    [33]N. Pavel, M. Tsunekane, T. Taira. Enhancing performances of a passivelyQ-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating outputcoupler. Opt. Lett.,2010,35(10):1617-1619.
    [34]J. J. Zayhowski, C. Dill III. Diode-pumped passively Q-switched picosecondmicrochip laser. Opt. Lett.,1994,19(18):1427-1429.
    [35]J. J.Zayhowski. Passively Q-switched Nd:YAG microchip lasers and applications.Journal of Alloys and Compounds,2000,303-304:393-400.
    [36]Y. F. Chen, T. M. Huang Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser. Electron. Lett.,1997,33:1880-1881.
    [37]J. M. Maillard, D. Guillot. Up to350microjoules with a microchip laser at1064nm. CLEO.,2000,5:349-352.
    [38]H. Sakai, H. Kan, T. Taira.>1MW peak power single-mode high-brightnesspassively Q-switched Nd3+:YAG microchip laser. Opt. Express,2008,16(24):19891-19899.
    [39]N. Pavel, M. Tsunekane, T. Taira. Composite, all-ceramics, high-peak powerNd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engineignition. Opt. Express,2011,19(10):9378-9384.
    [40]赵尚弘,占生宝,石磊.高功率光纤激光技术.科学出版社,2010,2-13.
    [41]楼祺洪.高功率光纤激光器及其应用.中国科技大学出版社,2010,18-24.
    [42]F. D. Teodoro, C. D. Brooks.1.1MW peak-power,7W average-power,high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiberamplifier. Opt. Lett.,2005,30(20):2694-2696.
    [43]A. Galvanauskas, G. C. Cho, et al. Generation of high-energy femtosecond pulsesin multimode-core Yb-fiber chirped-pulse amplification systems. Opt. Lett.,2001,26(12):935-937.
    [44]J. Limpert, S. Hofer, et al.100-W average-power, high-energy nanosecond fiberamplifier. Appl. Phys. B,2002,75:477-479.
    [45]F. D. Teodoro, C. D. Brooks. Multistage Yb-doped fiber amplifier generatingmegawatt peak-power, subnanosecond pulses. Opt. Lett.,2005,30:3299-3301.
    [46]M. Y. Cheng, Y. C. Chang, et al. High-energy and high-peak-power nanosecondpulse generation with beam quality control in200-pm core highly multimodeYb-doped fiber amplifiers. Opt. Lett.,2005,30(4):358-360.
    [47]Y. Wang, H. Po. Dynamic characteristics of double-clad fiber amplifiers forhigh-power pulse amplification. Lightwave Technol.,2003,21(10):2262-2270.
    [48]J. R. Marciante and J. D. Zuegel, High-gain, polarization-preserving, Yb-dopedfiber amplifier for low-duty-cycle pulse amplification. Appl. Opt.,2006,45(26):6798-6804.
    [49]F. He, J. H. V. Price, et al. Optimization of cascaded Yb fiber amplifier chainsusing numerical-modelling. Opt. Express,2006,14(26):12846-12858.
    [50]高存孝.脉冲光纤激光器和放大器技术的研究.西安:中国科学院研究生院西安光学精密机械研究所,2008.
    [51]E. Snitzer, H. Po, F. Hakimi. Double-clad offset core Nd fiber laser. Optical FiberCommunication T echnicalDigest., PD5, OSA,1988.
    [52]H.Po, E.Snitzer, R.Tummelini. Double clad high brightness Nd fiber laserpumped by GaAlAs phased array. Proc. OFC, Houston,TX,1989, PD7.
    [53]S. Bedo, W. Luthy, H. P. Weber. The effective absorption coefficient indouble-clad fibers. Opt. Commun.,1993,99(5-6):331-335.
    [54]A. Hardy, R. Oron. Signal amplification in strongly pumped fiber amplifiers.IEEE J. Quantum Electron.,1997,33(3):307-313.
    [55]A. A. Hardy, R. Oron. Amplified spontaneous emission and Rayleigh back-scattering in strongly pumped fiber amplifiers. J. Lightwave Technol.,1998,16(10):1865-1873.
    [56]A. Liu, J. Song, K. Kamatani, et al. R ectangular doubled-clad fiber laser withtwo-end-bundled pump. Electron. Lett.,1996,32(18):1673-1674.
    [57]A. Liu, K. Ueda. The absorption characteristics of circular, offset, and rect-angular double-clad fibers. Opt. Commun.,1996,132(5-6):511-518.
    [58]周军,楼祺洪,李铁军.用于光纤拉曼放大的高功率光纤激光器.激光与光电子学进展,2002,39(8):40-46.
    [59]Z. Jun, L. Q. hong, L. T. jun. A new inner cladding shape for high-powerdouble-clad fiber lasers. Proc. SPIE,2002(4914):146-150.
    [60]C. R. Giles, E. Desurvire. Modeling Erbium-doped fiber amplifiers. Journal ofLightwave Technology,1991,9:271-283.
    [61]A. J. Budz, A. S. Logan, H. K. Haugen, et al. Strickland. Ultrashort PulseGeneration at1075nm With a Mode-Locked Semiconductor Laser and aYtterbium-Doped Fiber Amplifier. OSA,2006.
    [62]M. Stephen, M. Krainak, H. Riris, et al. Allan. Narrowband, tunable,frequency-doubled, erbium-doped fiber-amplifed transmitter. Opt. Lett.,2007,32(15):2073-2075.
    [63]K. K. Chen, J. H. V. Price, S. Alam, et al. Polarisation maintaining100W Yb-fiberMOPA producing uJ pulses tunable in duration from1to21ps. Opt.Express,2010,18(14):14385-14394.
    [64]L. Pearson, J. W. Kim, Z. Zhang, et al. Clarkson.High-powerlinearly-polarizedsingle-frequency thulium-doped fiber master-oscillator power-amplifier. Opt.Express,2010,18(2):1607-1612.
    [65]S. P. Chen, H. W. Chen, J. Hou, et al.100W all fiber picosecond MOPA laser.Opt. Express,2009,17(26):24008-240012.
    [66]P. P. Jiang, D. Z. Yang, Y. X. Wang, et al. All-fiberized MOPA structuredsingle-mode pulse Yb fiber laser with a linearly polarized output power of30W.Laser Phys. Lett.,2009,6(5):384-387.
    [67]C. X. Gao, S. L. Zhu, W. Zhao, et al. Eye-safe, high-energy, single-mode all-fiberlaser with widely tunable repetition rate. Chin. Opt. Lett.,2009,7(7):611-613.
    [68]Z. Y. Dong, S. Z. Zou, Z. H. Han, et al. High power, high energy nanosecondpulsed fiber amplifier with a20-μm-core fiber. Laser Phys.,2011,21(3):536-539.
    [69]C. Zheng, H. T. Zhang, W. Y. Cheng, et al. All-fiber millijoule energy andnanoseconds pulse operation of a high beam quality multi-stage pulse-pumpedYb-doped amplifier cascade. Laser Phys.,2012,22(3):605-608.
    [70]孟庆季,张续严,周凌等.机载激光3D探测成像系统的关键技术.中国光学,2011,4(3):327-339.
    [71]胡春生.脉冲半导体激光器高速三维成像激光雷达研究.国防科技大学博士毕业论文,2005.
    [72]J. Limpert, S. Hofer, A. Liem.100-W average-power, high-energy nanosecondfiber amplifier. Appl. Phys. B,2002,75(4):477-479.
    [73]V. Philippov, C. Codemard, Y. Jeong. High-energy in fiber pulse amplification forcoherent lidar applications. Opt. Lett.,2004,29(22):2590-2592.
    [74]M. Cheng, Y. Chang, A. Galvanauskas. High-energy and high-peak-powernanosecond pulse generation with beam quality control in200μm core highlymultimode Yb-doped fiber amplifiers. Opt. Lett.,2005,30(4):358-360.
    [75]K. L. Feng, L. Q. Hong, Z. Jun.133-W pulsed fiber amplifier withlarge-mode-area fiber. Opt. Engng.,2006,45(1):010502.
    [76]F. D. Teodoro, C. D. Brooks. Multi-MW peak power, single transverse modeoperation of a100micron core diameter, Yb-doped photonic crystal rod amplifier.SPIE,2006,6453:645318.
    [77]IPG photonics announces major expansion of ytterbium pulsed fiber laserofferings.http://investor.ipgphotonics.com/releasedetail.cfm?ReleaseID=250035
    [78]J. Boullet, R. Dubrasquet, C. Medina. Millijoule-class Yb-doped pulsed fiberlaser operating at977nm. Opt. Lett.,2010,25(10):1650-1652.
    [79]W. Shi, E. B. Petersen, Z. D. Yao. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited100ns pulsed fiber laser at1530nm. Opt.Lett.,2010,35(14):2418-2420.
    [80]J. He, P. Yan, Q. Liu.30W output of short pulse duration nanosecond green lasergenerated by a hybrid fiber-bulk MOPA system. Laser Phys.,2011,21(4):708-711.
    [1] W. Kochner, Solid State Laser Engineering,6thed.(Springer–Verlag, Berlin,2005), Chap.8.5, pp.525.
    [2] Y. Shimony, Z. Burshtein, Y. Kalisky. Cr4+:YAG as passive Q-switch andBrewster plate in a Nd:YAG laser. IEEE J. Quantum Electron.,1995,31:1738-1741.
    [3] Y. Shimony, Z. Burshtein, A. Ben-Amax, et al. Repetitive Q-switching of a CWNd:YAG laser using Cr4+:YAG saturable absorbers. IEEE J. Quantum Electron.,1996,32:305-310.
    [4] W. Chen, K. Spariosu, R. Stultz. Cr4+:GSGG saturable absorber Q-switched forthe ruby laser. Opt. Commun.,1993,104:71-74.
    [5] H. Eilers, K. R. Hofman, W. M. Dennis, et al. Saturation of1.064um absorptionin Cr, Ca:Y3A15O12crystals. Appl. Phys. Lett.,1992,61:2958-2960.
    [6] A. Sennaroglu, C. R. Pollock, et al. Efficient continuous-wave chromium-dopedYAG laser. J. Opt. Sec. Am. B,1995,12:930-937.
    [7] S. Kuck, K. Petermann, et al. Near-infrared emission of Cr4+-doped garnets:lifetimes, quantum efficiencies, and emission cross section. Phys. Rev. B,1995,51:17323-17331.
    [8] X. Y. Zhang, S. Z. Zhao, Q. P. Wang, et al. Optimization of Cr4+-Doped Saturable-Absorber Q-switched Lasers. IEEE J. Quantum Electron.,1997,33:305-310.
    [9] S. Zhao, X. Zhang, etal. Passively Q-switched self-frequency doubling Nd:YABlaser with Cr4+:YAG saturable absorber. Opt. Laser Technol.,1998,30:239-242.
    [10]M Hercher. An Analysis of Saturable Absorbers. Appl. Opt.,1967,6(5):947-953.
    [11]F. Q. Liu, H.R. Xia, S.D. Pan. Passively Q-switched Nd:LuVO4laser usingCr4+:YAG as saturable absorber. Optics&Laser Technol.,2007,39:1449-1453.
    [12]Y. X. Bai, N. L. Wu, J. Zhang, et al. Passively Q-switched Nd:YVO4laser with aCr4+:YAG crystal saturable absorber. Appl. Opt.,1997,36(12):2468–2472.
    [13]D. Y. Tang, S. P. Ng, L. J. Qin, et al. Deterministic chaos in a diode-pumpedNd:YAG laser passively Q switched by a Cr4+:YAG crystal. Opt. Lett.,2003,28(5):325–327.
    [14]Y. F. Chen and Y. P. Lan. Comparison between c-cut and a-cut Nd:YVO4laserspassively Q-switched with Cr4+:YAG saturable absorber. Appl. Phys. B,2002,74:415–418.
    [15]J. Y. Huang, H. C. Liang, K. W. Su, et al. High power passively Q-switchedytterbium fiber laser with Cr4+:YAG as a saturable absorber. Opt. Express,2007,15(2):473–479.
    [16]J. J. Zayhowski and A. Wilson. Pump-induced bleaching of saturable absorber inshort pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers. IEEE J.Quantum Electron.,2003,39(12):1588–1593.
    [17]A. Szabo and R. A. Stein. Theory of laser giant pulsing by a saturable absorber. J.Appl. Phys.,1965,36:1562-1566.
    [18]J. J. Degnan, Theory of the optimally coupled Q-switched laser. IEEE J. QuantumElectron.,1989,25(2):214-220.
    [19]R. Courant and D. Hilbert. Methods f Matematical Physics. New York:Interscience,1953, ch.4.
    [20]W. Kochner, Solid State Laser Engineering,6thed.(Springer–Verlag, Berlin,2005), Chap.2.3, pp.60.
    [21]W. F. Krupke, M. D. Shine, J. W. Marion, J. A. Caird and V. Stokowski, J. Opt.Soc. Am. B,31(1986)124.
    [22]Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, fit. R. Kota, IEEE J. Quantum.Electron.,34(1998)292.
    [23]G. M. Zverev, A. V. Shestakov, Tuable near-infrared oxide crystal lasers,inTunable Solid-state Iasers,Vo1.5of OSA Proc. Series, Osa, Washington D.C.,1989, p66.
    [24]J. J. Degnan. Optimization of Passively Q-switched Lasers. IEEE J. QuantumElectron.,1995,31(11):1890-1901.
    [1] J. J. Zayhowski, A. Mooradian. Frequency-modulated Nd:YAG microchip lasers.Opt. Lett.,1989,14:618-620.
    [2] J. J. Zayhowski, A. Mooradian. Single-frequency microchip Nd lasers. Opt. Lett.,1989,14:24-26.
    [3] J. J. Zayhowski and C. Dill Ⅲ. Diode-pumped passively Q-switched picosecondmicrochip lasers. Opt. Lett,1994,19:1427-1429.
    [4] Y. F. Chen, T. M. Huang Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser. Electron. Lett.,1997,33:1880-1881.
    [5] J. J. Zayhowski. Passively Q-Switched Microchip Lasers and Applications. LaserReview,1998,26:841-846.
    [6] J. J. Zayhowski and Alexander (Sandy) L. Wilson, Jr. Pump-Induced Bleaching ofthe Saturable Absorber in Short-Pulse Nd:YAG/Cr4+:YAG Passively Q-SwitchedMicrochip Lasers. IEEE J. Quantum Electron.,2003,39:1588-1593.
    [7] J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen. High power passivelyQ-switched ytterbium fiber laser with Cr4+:YAG as a saturable absorber. Opt.Express,2007,15(2):473–479.
    [8] H. Sakai, H. Kan, and T. Taira.>1MW peak power single-mode high-brightnesspassively Q-switched Nd3+:YAG microchip laser. Opt. Express,2008,16(24):19891-19899.
    [9] N. Pavel, J. Saikava, S. Kurimura. Jap. J. Appl. Phys,2011,40:1253.
    [10]T. Y. Fan, R. L. Byer. IEEE J. Quantum Electron. QE,1988,24:895
    [11]D. Shen, S. C. Tam, Y. L. Law, T. Kobayshi. Opt. Rew.,2000,7(5):451
    [12]姜东升.二极管泵浦脉冲固体激光技术.成都:电子科技大学,1999
    [13]I. Freitag, A. Tunnermann, H. Welling. Opt. Lett.,1997,22(10):706.
    [14]W. Kochner. Solid State Laser Engineering,6thed.(Springer–Verlag,2005), Chap.5.2, pp.256.
    [15]X. Delen, F. Balembois, P. Georges. Temperature dependence of the emissioncross section of Nd:YVO4around1064nm and consequences on laser operation.J. Opt. Soc. Am. B,2011,28(5):972–976.
    [16]D. K. Sardar, R. M. Yow. Stark components of4F3/24I9/2and4I11/2manifoldenergy levels and effects of temperature on the laser transition of Nd3+: in YVO4.Opt. Mater.,2000,14:5–11.
    [17]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, et al. Study on Thermal Lens of Nd3+:YAG Laser Pumped by a Laser Diode. Chinese Journal of Lasers,2000,27(9):777-781.
    [18]W. J. Mandeville, K.M. Dinndorf. Characterization of passively Q-switchedmicrochip lasers for laser radar. Proc. SPIE,1996,2748:358–366.
    [19]T. Kimura and K. Otsuka. Thermal Effects of a Continuously Pumped Nd3+:YAGLaser. IEEE J. Quantum Electron.,1971,7(8):403-407.
    [20]W. A. Clarkson. Thermal effects and their mitigation in end-pumped solid-statelaser. J. Phys. D: Appl. Phys.,2001,34:2381-2395.
    [21]巩马理,闫平,谢韬.被动调Q激光器的预抽运技术.中国激光,2003,30(7):585-589.
    [22]韦光,李兵斌,王石语,蔡德芳,过振.增益预泵浦被动调Q DPL频率稳定性研究.红外与激光工程,2008.
    [23]洪治,陈军,葛剑虹.用预泵浦技术实现Cr4+,Nd3+双掺YAG激光器自调Q可控输出.光子学报,2000,29(10):913-916.
    [24]杨昱冰,蔡德芳,王石语,文建国,过振.被动调Q激光器输出特性的实验研究.应用光学,2006.
    [25]王为宇,巩马理,刘兴占,金国藩.被动调Q固体激光器的稳定性及增益预泵浦技术.红外与激光工程,2000.
    [26]韦光.提高被动调QDPL频率稳定性的泵浦技术研究.西安:西安电子科技大学,2008.
    [1] H. M. Pask, R. J. Carman. Ytterbium-doped silica fiber lasers: versatile sourcesfor the1-1.2μm region. IEEE J. Select. Topics Quantum Electronics,1995,1(1):2-13.
    [2] R.Paschotta, J. Nilsson. Ytterbium-doped fiber amplifiers. Quantum Electronics,1997,33(7):1049-1055.
    [3] R. Paschotta, J. Nilsson, P. R. Barber. Lifetime quenching in Yb-doped fibres. Opt.Commun.,1997,136(5-6):375-378.
    [4]付圣贵.高功率双包层光纤激光器的理论与实验研究.天津:南开大学,2005.
    [5]郭占城.掺镱双包层光纤放大器和激光束相干合成的基础研究.天津:南开大学,2007.
    [6] C. Larsen, K. Dybdal. Fiber lasers and amplifiers. DOPS-NYT(in Danish),1989,1:9-14.
    [7] B. J. Ainslie, S. P. Graig, S. T. Davey. The absorption and fluorescence spectra ofrare earth ions in silica-based monomode fiber. IEEE. J. Lightwave Technol.,1988,6(2):287-293.
    [8] J. T. Kringlebotn, J.-L. A., L. Reekie. Highly-efficient low-noise grating-feedbackEr3+/Yb3+-codoped fiber laser. Electronics Lett.,1994,30(12):972-973.
    [9] R. Paschotta, J. Nilsson, A. C. Tropper. Ytterbium-doped fiber amplifiers. IEEEJournal of QE,1997,33:1049-1056.
    [10]周炳坤.激光原理.北京:国防工业出版社.2000.
    [11]Y. Wang and H. Po. Dynamic characteristics of double-clad fiber amplifiers forhigh-power pulse amplification. Lightwave Technol.,2003,21(10):2262-2270.
    [12]J. R. Marciante and J. D. Zuegel, High-gain, polarization-preserving. Yb-dopedfiber amplifier for low-duty-cycle pulse amplification. Applied Optics,2006,45(26):6798-6804.
    [13]F. He, J.H.V. Price. Optimisation of cascaded Yb fiber amplifier chains usingnumerical-modelling. Opt. Express,2006,14(26):12846-12858.
    [14]金艳丽. L波段掺饵光纤放大器增益控制技术研究.天津:南开大学,2007.
    [15]安伟,明海等,1053nm掺Yb光纤放大器脉冲放大实验研究.量子电子学报,2002,19(3):254-257.
    [16]黄晶,吕新杰.1053nm掺Yb3+双包层光纤放大器脉冲放大特性研究.中国激光,2005,32(8):1022-1026.
    [17]N. A. Brilliant, R. J. Beach. Narrow-line ytterbium fiber master-oscillator poweramplifier. Opt. Soc. Am. B2002,19(5):981-991.
    [18]L. M. Frantz, J. S. Nodvik. Theory of Pulse Propagation in a Laser Amplifier.Journal of Applied Physics,1963,34(8):2346-2349.
    [19]J. Limpert, S. Hofer, A. Liem.100-W average-power, high-energy nanosecondfiber amplifier. Applied Physics B,2002,75:477-479.
    [20]F. D. Teodoro, C. D. Brooks.1.1MW peak-power,7W average-power,high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiberamplifier. Opt. Lett.,2005,30(20):2694-2696.
    [1] Y. Wang. Optimization of pulse amplification in ytterbium-doped double-clad fiberamplifiers. J. Lightwave Technol.,2005,23(6):2139–2147.
    [2] J. He, P. Yan, X. Wushouer, et al.72-kW high-peak-power linearly-polarizedsingle-mode pulsed fiber laser with80kHz repetition rate and4.5ns duration. LaserPhys.,2011,21(1):180–183.
    [3] F. D. Teodoro, C. D. Brooks. Multistage Yb-doped fiber amplifier generating megawattpeak-power, subnanosecond pulses. Opt. Lett.,2005,30(24):3299–3301.
    [4] J. Limpert, S. H fer, A. Liem, et al.100-W average-power, high-energy nanosecond fiberamplifier. Appl. Phys B: Lasers&Optics,2002,75(4-5):477–479.
    [5] D. Taverner, D. J. Richardson.158-mJ pulses from a single-transverse-mode,large-mode-area erbium-doped fiber amplifier. Opt. Lett.,1997,22(6):378-380.
    [6] C. J. S.deMatos and J. R. Taylor. Multi-kilowatt. all-fiber integrated chirped-pulseamplification system yielding40×pulse compression using air-core fiber andconventional erbium-doped fiber amplifier. Opt. Express,2004,12(3):405-409.
    [7] C. Codemard, C. Farrell. Milljoule, high-peak power, narrow-linewidth,sub-hundred nanosecond pulsed fiber Master-Oscillator Power-Amplifier at1.55um. C. R. Phsique,2006,7:170-176.
    [8] P. Dupriez, A. Piper.321W average power,1GHz,20ps,1060nm pulsed fiberMOPA source. OFC2005, PDP3.
    [9] P. Dupriez, A. Piper. High Average Power, High Repetition Rate, PicosecondPulsed Fiber Master Oscillator Power Amplifier Source Seeded by aGain-Switched Laser Diode at1060nm. IEEE Photonics Technol. Lett.,2006,18(9):1013-1015.
    [10]M. Y. Cheng, Y. C. Chang, A, Galvanauskas. High-energy and high-peak-powernanosecond pulse generation with beam quality control in200-um core highlymultimode Yb-doped fiber amplifiers. Opt. Lett.,2005,30(4):358-360.
    [11]G. P. Agrawal. Nonlinear Fiber Optics.4thed (Academic Press, Boston,2007).
    [12]M. Peroni, M. Tamburrini. Gain in erbium-doped fiber amplifiers: a simpleanalytical solution fortherate equations. Opt. Lett.,1990,15(15):842~844.
    [13]徐玲玲.全光纤脉冲掺镱放大器.天津:南开大学,2008.
    [14]高存孝.脉冲光纤激光器和放大器技术的研究.西安:中国科学院研究生院(西安光学精密机械研究所),2008.
    [15]F. D. Teodoro.1.1MW peak-power,7W average-power, high-spectral-brightness,diffraction-limited pulses from a photonic crystal fiber amplifier Opt. Lett.,2005,30:2694–2696.
    [16]K. T. Vu. High power nanosecond pulsed fiber laser amplifiers. Thesis for thedegree of Master of Philosophy. University Of Southampton,2008.
    [1].赵尚弘,占生宝,石磊.高功率光纤激光技术.科学出版社,2010,2-13.
    [2].楼祺洪.高功率光纤激光器及其应用.中国科技大学出版社,2010,18-24.
    [3].戴永江.激光雷达技术.电子工业出版社,2010,578-609.
    [4].云剑,孙传东,高存孝,朱少岚,何浩东,冯莉,牛林全,董利军.双模式人眼安全MOPA全光纤激光器.深圳大学学报理工版,2012,29(4):311-315.
    [5]. J. Yun, C. X. Gao, S. L. zhu, et al. High-peak-power, single-mode, nanosecondpulsed, all-fiber laser for high resolution3D imaging LIDAR system. Chin. Opt.Lett.,2012,10(12):121402.
    [6].高存孝,朱少岚,曹宗英,何浩东,冯莉,孙启兵.高重复频率、单模纳秒脉冲全光纤激光器.光子学报,2009,38(10):2481-2484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700