固体酸催化作用下苯和γ-丁内酯气固相合成α-四氢萘酮反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-四氢萘酮是一种重要的合成中间体,可用于抗抑郁剂Sertraline、避孕药异炔诺酮-炔雌醇甲醚片、杀虫剂西维因、塑料软化剂等的合成。已有的文献表明,四氢萘空气氧化法以及苯和γ-丁内酯在AlCl_3的催化作用下可生成α-四氢萘酮,但是四氢萘空气氧化法转化率偏低,AlCl_3催化剂存在腐蚀设备、污染环境和难以重复使用等问题,其反应过程需要进一步绿色化。
     近年来,分子筛在酸催化的F-C反应中受到了较多的关注。分子筛是一种重要的固体酸,具有一定的酸性、规则的孔道以及较大的比表面积,在石油化工、精细化学品的合成领域应用广泛。而且根据需要可对分子筛的性质进行修饰,改变其酸量和孔道结构。分子筛具有较高的热稳定性,可以通过高温烧去积碳的方法再生,降低了工业成本。
     本文主要研究了在固定床反应器中苯与γ-丁内酯的反应,对催化剂的物化性质作了比较系统的表征,并讨论了酸催化条件下的反应规律,提出了可能的微观反应机理。
     主要研究内容和结果如下:
     1.采用等体积浸渍法将ZnCl_2负载到γ-Al_2O_3和活性碳的表面,将杂多酸H_3PW_(12)O_(40)负载到7-Al_2O_3的表面,在气固相固定床反应器中评价了催化剂的反应活性,结果表明:
     ①33.3%ZNCl_2/γ-Al_2O_3和33.3%ZnCl_2/C对气固相苯和γ-丁内酯的反应具有较高的催化活性,但33.3%H_3PW_(12)O_(40)/γ-Al_2O_3不能催化该反应。
     ②33.3%ZnCl_2/Al_2O_3在不同温度下的反应结果表明,在300-360℃的范围内,γ-丁内酯的转化率与温度呈负相关的关系。α-四氢萘酮的选择性和得率很低,产物中除丙苯、2-丁烯酸和α-四氢萘酮外尚有30%以上的产物,反应机理很复杂。
     2.酸性分子筛对苯和γ-丁内酯的气固相反应具有明显的催化作用,各种分子筛的催化结果存在较大差异,但主要产物是丙基苯(包括异丙苯和正丙苯)、2-丁烯酸和α-四氢萘酮。其中HZSM5分子筛对生成四氢萘酮具有较高的选择性和稳定性,提供了一种合成α-四氢萘酮的新方法。文中详细探讨了反应条件对转化率、得率或选择性的影响,并提出了可能的反应机理;另外,HZSM5(Si/Al=50)的水热处理、热处理、磷酸改性以及稀土元素改性也进行了较详细的研究。主要
     研究结果为:
     ①HZSM5分子筛催化气固相苯和γ-丁内酯的反应以硅铝比Si/Al=50的反应结果最佳,HZSM5(Si/Al=50)在反应过程中出现失活现象,高温通入空气或O_2烧去积碳可将催化剂再生,再生使用具有较好的重复性。
     ②磷酸改性、水热处理、热处理以及稀土元素改性等方法可提高分子筛的催化活性,而对产物的选择性没有很大影响。以水热处理和热处理改性得到了较高的活性和稳定性。
     ③苯和γ-丁内酯的气固相反应可能的反应机理为:γ-丁内酯首先开环,与苯反应生成4.苯基丁酸,4-苯基丁酸发生分子内酰基化反应,关环生成α-四氢萘酮。苯和γ-丁内酯的气固相反应可能是E-R机理。反应过程中生成的丙烯和2-丁烯酸可能发生聚合,是导致分子筛失活的主要原因。
     3.分别采用NH_3-TPD、BET、XRD和O_2-TG等方法对酸性分子筛及其改性分子筛进行表征,结果表明:
     ①不同硅铝比的HZSM5分子筛,硅铝比越小则酸量越大。
     ②稀土元素改性、高温焙烧、水热处理以及磷酸改性等方法均可降低HZSM5分子筛的总酸量以及强酸中心和弱酸中心的数量,但不影响HZSM5分子筛的表面物相结构。
     ③HZSM5(Si/Al=50)在反应前后以及再生后,表面物相结构没有发生变化,说明分子筛失活的主要原因是积焦或积碳。
α-tetralone is an important synthesis intermediate,with wide application in antidepressant Sertraline、countraceptives、pesticides carbaryl and plastic softener. Reported methods showed thatα-tetralone can be synthesized by tetralin oxidation or F-C reaction of benzene andγ-butyrolactone under AlCl_3 catalysis.However,Tetralin oxidation method has a problem of low conversion and AlCl_3 is corrosive,polluting and it can not be reused,which is not favored by green chemistry.
     Recently,Zeolite has received much attention in F-C reaction.Zeolite is a kind of important solid acid with certain acidity,regular pore structure and high specific surface area,and has found wide application in petrochemicals and fine chemical synthesis.The physicochemical properties of zeolite can be modified by certain methods,leading to a change in acidity and pore structure.Zeolite is of high thermal stability so that it can be regenerated by O_2 oxidation at high temperature which will reduce the cost.
     In this paper we have investigated the vapor phase reaction of benzene withγ-butyrolactone.The properties of catalysts are systemically characterized.The results are discussed and a possible reaction mechanism is proposed.
     The main results are as follow:
     1.ZnCl_2 was supported on the surface ofγ-Al_2O_3 and active carbon.Heteroploy acid H_3PW_(12)O_(40) was supported on the surface ofγ-Al_2O_3.The catalysts were evaluated in a fix bed reactor.The result showed that:
     ①33.3%ZnCl_2/γ-Al_2O_3 and 33.3%ZNCl_2/C are highly effective in the vapor phase reaction of benzene withγ-butyrolactone while 33.3%H_3PW_(12)O_(40)/γ-Al_2O_3 do not catalyze the reaction.
     ②By 33.3%ZnCl_2/γ-Al_2O_3 catalyst,in the temperature range of 300-360℃,the conversion is inversely correlated with temperature.The selectivity and yield ofα-tetralone is low.Besides propylbenzene(including isopropylbenzene and n-propylbenzene)、2-butenoic acid andα-tetralone,Over 30%of the product are unexpected and the reaction mechanism is very complex.
     2.The Acidic zeolites are apparently effective for the vapor phase reaction of benzene withγ-butyrolactone.The result may varied much among zeolites,but the major products are propylbenzene、2-butrnoic acid andα-tetralone.HZSM5 provides a new way for the synthesis ofα-tetralone with high selectivity and stability. The effects of reaction condition on conversion and selectivity are discussed and a possible reaction mechanism is proposed.The steam treatment、thermal treatment and phosphoric acid modification are investigated.The results are as follow:
     ①HZSM5 is highly effective for the synthesis ofα-tetralone and the best silica to alumina ratio is 50.The deactivated HZSM5(Si/Al=50) can be regenerated simply by air or O_2 oxidation and its activity is recovered.
     ②The steam treatment、thermal treatment and phosphoric acid modification exert a positive influence on the activity and selectivity,but no apparent effect is observed on the selectivity.The steam treatment and thermal treatment showed good activity and stability.
     ③The possible reaction mechanism for vapor phase reaction of benzene with γ-butyrolactone is:γ-butyrolactone opens the ring and reacts with benzene to form 4-phenylbutyric acid by intermolucular alkylation;4-phenylbutyric acid producesα-tetralone by intramolucular acylation.The vapor phase reaction of benzene withγ-butyrolactone is proposed as E-R mechanism.Propene and 2-butenoic acid may be the precursors for the carbon deposition to make the catalyst deactivated.
     3.The acidic zeolites are characterized by NH_3-TPD、BET、XRD and O_2-TG. The result showed that:
     ①For HZSM5 with different silica to alumina ratio,the acidic amount is inversely correlated with silica to alumina ratio.
     ②The steam treatment、thermal treatment and phosphoric acid reduced the acidic amount of zeolite(both weak acidic center and strong acidic center),but these treatment do not affect the bulk phase structure of HZSM5.
     ③After the deactivation and regeneration,HZSM5(Si/Al=50) showed no change on the bulk phase structure so that the main reason for deactivation is carbon deposition on the surface of catalyst.
引文
1.Corma,A.,Garcia,H.,Lewis acids:From conventional homogeneous to green homogeneous and heterogeneous catalysis.Chemical Review,2003.103(11):p.4307-4365.
    2.Satori,G.,Maggi,R.,Use of Solid Catalysts in Friedel-Crafts reactions.Chemical Review,2006.106:p.1077-1104.
    3.Busca,G.,Acid Catalysts in Industrial Hydrocarbon Chemistry.Chemical Review,2007.107:p.5366-5410.
    4.Tao,Y.,Kanoh,H.,Abrams,L.,Kaneko,K.,Mesopore-Modified Zeolites:Preparation,Characterization,and Applications.Chemical Review,2006.106:p.896-910.
    5.王全义,李丹东,齐越,曹祖斌,刘中民,具有二次介孔分子筛材料的制备和应用.工业催化,2007.15(7):p.10-16.
    6.Bejblova,M.,Prochazkova,D.,Cejka,a.J.,Acylation Reactions over Zeolites and Mesoporous Catalysts.ChemSusChem,2009.2:p.486-499.
    7.袁冰,乔卫红,李宗石,沸石分子筛在Friedel-Crafts酰基化反应中的应用.化学进展,2005.17(4):p.686-692.
    8.Sheldon,R.A.,Beckkum,H.V.,Fine Chemicals through Heterogeneous Catalysis.Vol.4.2001,Weinheim.151-172.
    9.Degnan,T.F.,Jr.C.M.Smith,Venkat,C.R.,Alkylation of aromatics with ethylene and propylene:recent developments in commercial processes.Applied Catalysis A:General,2001:p.283-294.
    10.Stocker,M.,Gas phase catalysis by zeolites.Microporous and Mesoporous Materials,2005.82:p.257-292.
    11.Perego,C.,Ingallina,P.,Recent advances in the industrial alkylation of aromatics:new catalysts and new processes.Catalysis Today,2002.73:p.3-22.
    12.Sun,L.,Guo,X.,Liu,M.,Wang,X.,Ethylation ofcoking benzene over nanoscale HZSM5 zeolites:Effects of hydrothermal treatment,calcination and La2O3 modification.Applied Catalysis A:General,2009.355:p.184-191.
    13.Christensen,C.H.,Johannsen,K.,Schmidt,I.,Christensen,C.H.,Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals:Improving Activity and Selectivity with a New Family of Porous Materials.Journal of the American Chemical Society,2003.125:p.13370-13371.
    14.Han,M.,Lin,S.,Roduner,E.,Study on the alkylation of benzene with propylene over H Beta zeolite.Applied Catalysis A:General,2003.243:p.175-184.
    15.Fu,J.,Ding,C.,Study on alkylation of benzene with propylene over MCM-22 zeolite catalyst by in situ IR.Catalysis Communications,2005.6:p.770-776.
    16.Flockhart,B.D.,Liew,K.Y.,Pink,R.C.,Journal of Catalysis,1981.72:p.314.
    17.Cejka,J.,Krejci,A.,Zilkova,N.,Kotrla,J.,Ernst,S.,Weber,A.,Activity and selectivity of zeolites MCM-22and MCM-58 in the aikylation of toluene with propylene.Microporous and Mesoporous Materials,2002.53:p.121-133.
    18.Cusumano,J.A.,Chem.Tech,1991.22:p.482.
    19.Krithiga,T.,Vinu,A.,Ariga,K.,Arabindoo,B.,Palanichamy,M.,Murugesan,V.,Selective formation 2,6-diisopropyl naphthalene over mesoporous Al-MCM-48 catalysts.Journal of Molecular Catalysis A:Chemistry,2005.237:p.238-245.
    20.Venuto,P.B.,Organic catalysis over zeolites:A perspective on reaction paths within micropores.Microporous Materials,1994.2:p.297.
    21.Corma,A.,Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions.Chemical Review, 1995. 95: p. 559-614.
    
    22. R.A.Sheldon, H.V.B., Fine Chemicals through Heterogeneous Catalysis. 2001, Weinheim. 151-172.
    
    23. Holderich.W, Hesse.M,Naumann.F, Angewandte Chemie, 1988: p. 27226.
    
    24. Reddy, P.R.,Subrahmanyam, Vapor-phase synthesis of acetophenone in benzene acylation over CeHZSM5(30) zeolite. Catalysis Letter, 1999. 61: p. 207-211.
    
    25. P. Ram Reddy, M.S., S.J. Kulkarni, Vapour phase acylation of furan and pyrrole over zeolites. Catalysis Letter, 1998. 54: p. 95-100.
    
    26. Gauthier, C.,Chiche, B., Journal of Molecular Catalysis, 1989. 50: p. 219.
    
    27. Nash, M.J., Shough, A.M., Fickel, D.W., Doren, D.J.,Lobo, R.F., High-Temperature Dehydrogenation of Br(?)nsted Acid Sites in Zeolites. Journal of the American Chemical Society, 2008. 130: p. 2460-2462.
    
    28. Jaimol, T., Pandey, A.K.,Singh, A.P., Selective acetylation of toluene to 4-methylacetophenone over zeolite catalysts. Journal of Molecular Catalysis A :Chemistry, 2001.170: p. 117-126.
    
    29. A.P.Singh, A.K.P., Acetylation of benzene to acetophenone over zeolite catalysts. Journal of Molecular Catalysis A:Chemistry, 1997.123: p. 141-147.
    
    30. Umamaheswari, V., Palanichamy, M.,Murugesan, V., Isopropylation of m-cresol over mesoporous Al-MCM-41 molecular sieves. Journal of Catalysis, 2002. 210: p. 367-374.
    
    31. Udayakumar, S., Pandurangan, A.,Sinha, P.K., Vapour phase reaction of ethylbenzene with isopropyl acetate over mesoporous Al-MCM-41 molecular sieves. Journal of Molecular Catalysis A:Chemistry, 2004. 216: p. 121.
    
    32. Sudha, S., Priya, S.V., Mabel, J.H., Palanichamy, M.,Murugesan, V, Activation of ethyl acetate over metal substituted MCM-41: application to alkylation and acylation. Journal of Porous Materials, 2009. 16(2): p. 215-226.
    
    33. Li, Y., Xue, B.,He, X., Synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate over parent MCM-22 and hydrothermally treated MCM-22. Journal of Molecular Catalysis A:Chemical, 2009. 301: p. 106-113.
    
    34. Shanmugapriya, K., Palanichamy, M., Arabindoo, B.,Murugesan, V, A novel route to produce thymol by vapor phase reaction of m-cresol with isopropyl acetate over Al-MCM-41 molecular sieves. Journal of Catalysis, 2004. 224: p. 347-357.
    
    35. Olha.G.Ed, Friedel-Crafts and Related Reaction. 1994, NewYork: John.Weily&Sons.
    
    36. Aditya Bhan, Y.V.J., W. Nicholas Delgass, and Kendall T. Thomson, DFT Investigation of Alkoxide Formation from Olefins in H-ZSM5. Journal of Physical Chemitry B, 2003.107(38): p. 10476-10478.
    
    37. Jiang, Y., Hunger, M.,Wang, a.W., On the Reactivity of Surface Methoxy Species in Acidic Zeolites. Journal of the American Chemical Society, 2006.128: p. 11679-11692.
    
    38. Rozanska, X., Th. Demuth, F. Hutschka, J. Hafner,Santen, R.A.V., A Periodic Structure Density Functional Theory Study of Propylene Chemisorption in Acidic Chabazite: Effect of Zeolite Structure Relaxation. Journal of Physical Chemistry B, 2002.106: p. 3248-3254.
    
    39. A.Corma, Applied Catalysis, 1989. 49: p. 109.
    
    40. Bosacek, V., Gunnewegh, E.A.,vanBekkum, H., Catalysis Letters, 1996. 41: p. 225.
    
    41. Matteo, L., Bonati, M., W, R., Joyner,Stockenhuber, M., A temperature programmed desorption study of the interaction of acetic anhydride with zeolite beta (BEA). Catalysis Today, 2003. 81: p. 653-658.
    
    42. Bonati, M.L.M., Joyner, R.W., Paine, GS.,Stockenhuber, M. in Studies in Surface Science and Catalysis. 2004.
    
    43. Bonati, M.L.M., Joyner, R.W.,Stockenhuber, M., On the mechanism of aromatic acylation over zeolites. Microporous and Mesoporous Materials, 2007. 104: p. 217-224.
    
    44. Siffert, S., Gaillard, L.,Su, B.L., Alkylation of benzene by propene on a series of Beta zeolites: toward a better understanding of the mechanisms. Journal of Molecular Catalysis A:Chemistry, 2000.153: p. 267-279.
    45. Kresnawahjuesa, O., Gorte, R.J.,White, D., Characterization of acylating intermediates formed on H-ZSM5. Journal of Molecular Catalysis A:Chemistry, 2004. 208: p. 175-185.
    46. N.N. Binitha, S.S., Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials, 2006. 93: p. 82-89.
    47. C.S.Triantafillidis, A.G.V., Lori Nalbandian, Nichalaos P.Evmirdis, Effect of the degree and type of the dealumination method on the structure, compositional and characteristics of H-ZSM5 zeolites. Microporous and Mesoporous Materials, 2001. 47: p. 369-388.
    48. S.Barman, S.K.M., Narayan,C.Pradhan, Alkylation of toluene with isopropyl alcohol catalyzed by Ce-exchanged NaX zeolite. Chemical Engineering Journal, 2005. 114: p. 39-45.
    49. Vinu, A., Nandhini, K.U., Murugesan, V., B(o|¨)hlmann, W., Umamaheswari, V., P(o|¨)ppl, A.,Hartmann, M., Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol. Applied Catalysis A:General, 2004. 265: p. 1-10.
    50. Ghiaci, M., Abbaspur, A., Kia, R., Belver, C., Trujillano, R., Rives, V.,Vicente, M.A., Vapor-phase alkylation of toluene by benzyl alcohol on H_3PO_4-modified MCM-41 mesoporous silicas. Catalysis Communications, 2007. 8: p. 49-56.
    51. Ghiaci, M., Abbaspur, A., Arshadi, M.,Aghabarari, B., Internal versus external surface active sites in ZSM5 zeolite: Part 2: Toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H_3PO_4/ZSM5. Applied Catalysis A:General, 2007. 316(1-2): p. 32-46.
    52. Breen, J.P., Burch, R., Kulkarni, M., McLaughlin, D., Collier, P.J.,Golunski, S.E., Improved selectivity in the toluene alkylation reaction through understanding and optimising the process variables. Applied Catalysis A:General, 2007.316: p. 53-60.
    53. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C.,Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992.359: p. 710-712.
    54. Beck, J.S., VartUli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B.,Schlenker, J.L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 1992.114: p. 10834-10843.
    55. Jacobsen, C.J.H., Madsen, C., Houzvicka, J., Schmidt, I.,Carlsson, A., Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, 2000.122(29): p. 7116-7117.
    56. Sander van Donk, A.H.J., Johannes H. Bitter, Krijn P. de Jong, Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Review:Science and Engineering, 2003. 45(2): p. 297-319.
    57. Müller, M., Harvey, G.,Prins, R., Comparison of the dealumination of zeolites beta, mordenite, ZSM5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiC14 by 1H, 29Si and 27A1 MAS NMR. Microporous and Mesoporous Materials, 2000. 34: p. 135-147.
    58. Gola, A., Rebours, B., Milazzo, E., Lynch, J., Benazzi, E., Lacombe, S., Delevoye, L.,Fernandez, C., Effect of leaching agent in the dealumination of stabilized Y zeolites. Microporous and Mesoporous Materials, 2000. 40: p. 73-83.
    59. Hartmann, M., Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport. Angewandte Chemie International Edition, 2004. 43: p. 5880-5882.
    60. Srivastava, R., Choi, M.,Ryoo, R., Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 2006: p. 4489-4491.
    61. 徐如人,庞文琴,于吉红,霍启升,陈接胜,分子筛与多孔材料化学. Vol.7.2004, 北京:科学出版社.438.
    62. Jacobsen, C.J.H., Madsen, C., Janssens, T.V.W., Jakobsen, H.J.,Skibsted, J., Zeolites by confined space synthesis - characterization of the acid sites in nanosized ZSM5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000. 39: p. 393-401.
    63. Bokhoven, J.A.v., Tromp, M., Koningsberger, D.C., Miller, J.T., Pieterse, J.A.Z., Lercher, J.A., Williams, B.A.,Kung, H.H., An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite: The Dominant Role of Adsorption. Journal of Catalysis, 2001. 202: p. 129.
    64. Beers, A.E.W., bo, J.A.v., K.M. de Lathouder, F. Kapteijn,Moulijn, J.A., Optimization of zeolite Beta by steaming and acid leaching for the acylation of anisole with octanoic acid: a structure - activity relation. Journal of Catalysis, 2003. 218: p. 239-248.
    65. Barrer.R.M, M.M.B., Molecular Sieve Sorbents from Clinoptilolite. Canadian Journal of Chemistry, 1964. 42(6): p. 1481-1487.
    66. Yu Fan, X.B., Xiuying Lin, Gang Shi, Haiyan Liu, Acidity Adjustment of HZSM5 Zeolites by Dealumination and Realumination with Steaming and Citric Acid Treatments. Journal of Physical Chemistry B, 2006. 110: p. 15411-15416.
    67. Madsen, C.,Jacobsen, C.J.H., Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis. Chemical Communications, 1999: p. 673-674.
    68. Boisen, A., I, S., A, C., S, D., M, B.,CJH, J., TEM stereo-imaging of mesoporous zeolite single crystals. Chemical Communications, 2003. 8: p. 958-959.
    69. Tao, Y., Kanoh, H.,Kaneko, K., ZSM5 Monolith of Uniform Mesoporous Channels. Journal of the American Chemical Society, 2003.125(20): p. 6044-6045.
    70. Tao, Y., Kanoh, H.,Kaneko, K., Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating. Journal of Physical Chemistry B, 2003.107: p. 10974-10976.
    71. Tao, Y., Kanoh, H.,Kaneko, K., Synthesis of Mesoporous ZeoliteAby Resorcinol-Formaldehyde Aerogel Templating. Langmuir, 2005. 21: p. 504-507.
    72. Xiao, F.S., Wang, L., Yin, C., Lin, K., Di, Y., Li, J., Xu, R., Su, D.S., Schlgl, R., Yokoi, T., Tatsumi, T., Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers. Angewandte Chemie International Edition, 2006. 45: p. 3090-3093.
    73. Nan, Y., Xiong, G., He, M., Sheng, S., Yang, W.,Bao, X., A Novel Method To Synthesize Amorphous Silica-Alumina Materials with Mesoporous Distribution without Using Templates and Pore-Regulating Agents. Chemistry of Materials, 2002. 14(1): p. 122-129.
    74. Bj(?)rgen, M., Olsbye, U.,Kolboe, S., Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion. Journal of Catalysis, 2003. 215(1): p. 30-44.
    75. Guisnet, M.,Magnoux, P., Organic chemistry of coke formation. Applied Catalysis A:General, 2001. 212(1-2): p. 83-96.
    76. Rigoreau, J., Laforge, S., Gnep, N.S.,Guisnet, M., Alkylation of toluene with propene over H-MCM-22 zeolite. Location of the main and secondary reactions. Journal of Catalysis, 2005. 236: p. 45-54.
    77. Guisneta, M., Costa, L.,Ribeiro, F.R., Prevention of zeolite deactivation by coking. Journal of Molecular Catalysis A:Chemistry, 2009. 305: p. 69-83.
    78. Garce's, J.M., Olken, M.M., Lee, G.J., Meima, G.R., Jacobs, P.A.,Martens, J.A., Shape Selective Chemistries with Modified Mordenite Zeolites. Topics in Catalysis, 2009. 52: p. 1175-1181.
    79. Michel Guisneta, L.C., Fernando Ramoa Ribeiro, Prevention of zeolite deactivation by coking. Journal of Molecular Catalysis A:Chemistry, 2009.305: p. 69-83.
    80. Vukics, K., Fodor, T., Fischer, J., Fellegvari, I.,Levai, S., Improved Industrial Synthesis of Antidepressant Sertraline.Organic Process Research & Development,2002.6:p.82-85.
    81.Japan Chemical Week,2004.45:p.2286.
    82.Shaikh,R.A.,Chandrasekar,G.,Biswas,K.,Choi,J.-S.,Son,W.-J.,Jeong,S.-Y.,Ahn,W.-S.,Tetralin oxidation over chromium-containing molecular sieve catalysts.Catalysis Today,2008.132:p.52-57.
    83.< http://www.chemyq.com/xz/xzl/7477xvpkb.htm>.
    84.Bruce,D.B.,Sorrie,A.J.S.,Thomson,R.H.,Journal of the Chemical Society,1953:p.2403-2408.
    85.Prakash,G.K.S.,Yan,P.,T(o|¨)r(o|¨)k,B.l.,Olah,G.A.,Superacidic trifluoromethanesulfonic acid-induced cycli-acyalkylation of aromatics.Catalysis Letter,2003.87(3-4):p.109-112.
    1.Zhang,C.,Liu,Q.,Xu,Z.,et al.Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment.Microporous and Mesoporous Materials,2003,62:157-163.
    2.万克树,刘茜,张存满.热处理ZSM-5制备微孔-介孔双孔分子筛.无机材料学报,2003,18(5):1097-1101.
    3.Sun,L.,Guo,X.,Liu,M.,et al.Ethylation of coking benzene over nanoscale HZSM-5 zeolites:Effects of hydrothermal treatment,calcination and La_2O_3 modification.Appl.Catal.A:Gen.,2009,355:184-191.
    4.Padro,C.L.,Apesteguia,C.R.Gas-phase synthesis of hydroxyacetophenones by acylation of phenol with acetic acid.Journal of Catalysis,2004,226(2):308-320.
    1.Olson,C.E.,Bader,A.R.,α-Tetralone[1(2H)-Naphthalenone,3,4-dihydro-].Org.Synth.,1963.4:p.898.
    2.Truce,W.E.,Olson,C.E.,The Aluminum Chloride-Catalyzed Condensation Of Gamma-Butyrolactone With Benzene.Journal Of The American Chemical Society,1952.74(18):p.4721-4721.
    3.Corma,A.,Garcia,H.,Lewis acids:From conventional homogeneous to green homogeneous and heterogeneous catalysis.Chemical Review,2003.103(11):p.4307-4365.
    4.Zhao,X.S.,Max G.Q.Lu,Song,C.,Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene.Journal of Molecular Catalysis A:Chemical,2003.191:p.67-74.
    5.Hu,X.,Chuah,G.K.,Jaenicke,S.,Room temperature synthesis of diphenylmethane over MCM-41 supported AlCl_3 and other Lewis acids.Applied Catalysis A:General,2001.217:p.1-9.
    6.Hu,X.,Foo,M.L.,Chuah,G.K.,Jaenicke,S.,Pore Size Engineering on MCM-41:Selectivity Tuning of Heterogenized AlCl_3 for the Synthesis of Linear Alkyl Benzenes.Journal of Catalysis,2000.195:p.412-415.
    7.Rao,P.M.,Wolfson,A.,Landau,M.V.,Herskowitz,M.,Efficient immobilization of 12-tungstophosphoric acid catalyst at the surface of silica support grafted with alumina.Catalysis Communications,2004(5):p.327-331.
    8.Brunel,D.,Blanc,A.C.,Galarneau,A.,Fajula,F.,New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals.Catalysis Today,2002.73:p.139-152.
    9.Kozhevnikov,I.V.,Kloetstra,K.R.,Sinnema,A.,Zandbergen,H.W.,Study of Catalysts comprising heteropoly acid H_3PW_(12)O_(40) supported on MCM-41 moleular sieve and amorphous silica.Journal of Molecular Catalysis A:Chemical,1996.114:p.287-298.
    10.王新平,叶兴凯,吴越,杂多酸在活性炭表面含氧基团上的化学键合作用.物理化学学报(ACTA PHYSICO-CHIM ICA SINICA),1995.12(11):p.1105-1109.
    11.Mao,J.,Nakajo,T.,Okuhara,T.,Alkylation-acylation of aromatics with gamma-butyrolactone catalyzed by heteropolyacids supported on silica.Chemistry Letters,2002.11:p.1104-1105.
    12.Mao,J.,Kamiya,Y.,Okuhara,T.,Alkylation of 1,3,5-Trimethylbenzene with γ-Butyrolactone over Heteropolyacid Catalysts.Applied Catalysis A:General,2003.225(2):p.337-344.
    1. Sartori, S.,Maggi, R., Use of Solid Catalysts in Friedel-Crafts Acylation Reactions. Chemical Reviews, 2006. 106: p. 1077-1104.
    2. Bejblova, M., Prochazkova, D.,Cejka, J., Acylation reactions over zeolites and mesoporous catalysts. ChemSUSChem, 2009.2: p. 486-499.
    3. 袁冰,乔卫红,李宗石,沸石分子筛在 Friedel-Crafts 酰基化反应中的应用. 化学进展,2005.17(4):p. 686-692.
    4. Moyano, A., Pericas, M.A.,Valenti, E., A Theoretical-Study On The Mechanism of The Thermal And The Acid-Catalyzed Decarboxylation Of 2-Oxetanones (Beta-Lactones). Journal of Organic Chemistry, 1989.54(3): p. 573-582.
    5. Triantafillidis, C.S., V, A.G, Nalbandian, L.,Evmirdis, N.P., Effect of the degree and type of the dealumination method on the structure, compositional and characteristics of HZSM5 zeolites. Microporous and Mesoporous Materials, 2001.47: p. 369-388.
    6. Sun, L., Guo, X., Liu, M.,Wang, X., Ethylation of coking benzene over nanoscale HZSM5 zeolites: Effects of hydrothermal treatment, calcination and La_2O_3 modification. Applied Catalysis A: General, 2009.355: p. 184-199.
    7. Campbell, S.M., Bibby, D.M., Coddington, J.M.,Howe, R.F., Dealumination of HZSM5 Zeolites: II. Methanol to Gasoline Conversion. Journal of Catalysis, 1996.161: p. 350-358.
    8. Dong, X.F., Song, Y.B.,Lin, W.M., A new way to enhance the coke-resistance of Mo/HZSM5 catalyst for methane dehydroaromatization. Catalysis Communication, 2007.8: p. 539-542.
    9. Ghiaci, M., Abbaspur, A., Kia, R., Belver, C., Trujillano, R., Rives, V.,Vicente, M.A., Vapor-phase alkylation of toluene by benzyl alcohol on H_3PO_4-modified MCM-41 mesoporous silicas. Catalysis Communications, 2007. 8: p. 49-56.
    10. Donk, S.v., A.H.J., Bitter, J.H., P., K.,de Jong, Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Review:Science and Engineering, 2003. 45(2): p. 297-319.
    11. Raichaudhuri, A., Chin, W.S.,Mok, C.Y., Decarbonylation And Decarboxylation of Gamma-Butyrolactone And Gamma-Thiobutyrolactone - A Uhf-Pm3 Study. Journal of Chemical Research-S, 1994.10: p. 378-379.
    12. Sudha, S., Priya, S.V., Mabel, J.H., Palanichamy, M.,Murugesan, V., Activation of ethyl acetate over metal substituted MCM-41 :application to alkylation and acylation. Journal of Porous Materials, 2009.16: p. 215-226.
    13. Udayakumar, S., Pandurangan, A.,Sinha, P.K., Vapour phase reaction of ethylbenzene with isopropyl acetate over mesoporous Al-MCM-41 molecular sieves. Journal of Molecular Catalysis A:Chemistry, 2004.216: p. 121.
    14. Kerr, C.A.,Rae, I.D., Some Friedel-Crafts Reactions of γ-Butyrolactone. Aust.J.Chem, 1978.31: p. 341-346.
    15. Kwon, S.K.,Park, Y.N., Synthesis of 4-phenyltetralone derivatives and reaction mechanism. Archives of Pharmacal Research, 2000.23(4): p. 329-331.
    16. Han, M., Lin, S.,Roduner, E., Study on the alkylation of benzene with propylene over Hβ zeolite. Applied Catalysis A: General, 2003.243: p. 175-184.
    17. Fu, J.,Ding, C., Study on alkylation of benzene with propylene over MCM-22 zeolite catalyst by in situ IR. Catalysis Communication, 2005.6: p. 770-776.
    18. Zhang, G., Liu, Q., Xu, Z.,Wan., K., Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM5 zeolites by heat treatment. Microporous and Mesoporous Materials, 2003.62: p. 157-163.
    19. Krithiga, T., Vinu, A., Ariga, K., Arabindoo, B., Palanichamy, M.,Murugesan, V, Selective formation 2,6-diisopropyl naphthalene over mesoporous Al-MCM-48 catalysts. Journal of Molecular Catalysis A:Chemistry, 2005.237: p. 238-245.
    20. Nash, M.J., Shough, A.M., Fickel, D.W., Doren, D.J.,Lobo, R.F., High-Temperature Dehydrogenation of Brφnsted Acid Sites in Zeolites. Journal of the American Chemical Society, 2008.130: p. 2460-2462.
    1.Sun,L.,Guo,X.,Liu,M.,Wang,X.,Ethylation of coking benzene over nanoscale HZSM5 zeolites:Effects of hydrothermal treatment,calcination and La_2O_3modification.Applied Catalysis A:General,2009.355:p.184-191.
    2.Campbell,S.M.,Bibby,D.M.,Coddington,J.M.,Howe,R.F.,Dealumination of HZSM5 Zeolites:Ⅱ.Methanol to Gasoline Conversion.Journal of Catalysis,1996.161:p.350-358.
    3.Dong,X.F.,Song,Y.B.,Lin,W.M.,A new way to enhance the coke-resistance of Mo/HZSM5 catalyst for methane dehydroaromatization.Catalysis Communication,2007.8:p.539-542.
    4.Sudha,S.,Priya,S.V.,Mabel,J.H.,Palanichamy,M.,Murugesan,V.,Activation of ethyl acetate over metal substituted MCM-41:application to alkylation and acylation.Journal of Porous Materials,2009.16:p.215-226.
    5.Zhang,C.,Liu,Q.,Xu,Z.,Wan.,K.,Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM5 zeolites by heat treatment.Microporous and Mesoporous Materials,2003.62:p.157-163.
    6.万克树,刘茜,张存满,热处理制备微孔-介孔双孔分子筛.无机材料学报,2003.18(5):p.1097-1101.
    7.Triantafillidis,C.S.,V.,A.G.,Nalbandian,L.,Evmirdis,N.P.,Effect of the degree and type of the dealumination method on the structure,compositional and characteristics of HZSM5 zeolites.Microporous and Mesoporous Materials,2001.47:p.369-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700