金属改性ZSM-5分子筛催化性能的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZSM-5分子筛是烯烃裂解和异构化反应等石油化工过程中重要的择形催化剂,对于提高石化行业经济效益具有举足轻重的作用。本论文主要是利用密度泛函理论的方法,采用原子簇模型系统地研究了银离子和镧离子改性的ZSM-5分子筛的微观结构及吸附、催化性能。主要结论如下:
     1、研究了小分子物质(CO和H2O)在Ag-ZSM-5分子筛上的吸附稳定性和红外振动频率。NBO电荷的计算结果表明,当CO分子在Ag-ZSM-5分子筛表面发生吸附时,电子主要是由CO分子向银离子转移从而形成σ-键的作用,同时银离子的d-电子对CO分子的π*轨道具有反馈作用。单个CO分子吸附和两个CO分子共吸附时的自由能变分别为-5.55kcal/mol和6.52kcal/mol,这表明在室温条件下Ag+(CO)2复合物是不稳定的。当一个CO分子吸附在银离子上时,C-O的伸缩振动频率为2211cm-1,与实验结果十分吻合。在Ag+(CO)2复合物体系中,计算所得的C-O对称和反对称振动频率分别为2231 cm-1和2205 cm-1。而在CO-Ag-ZSM-5-H2O复合物中C-O的伸缩振动频率偏移到2199cm-1,O-H的对称和反对称伸缩振动频率分别为3390cm-1和3869cm-1。H2O分子吸附时的自由能变为-6.58kcal/mol,这就表明CO-Ag-ZSM-5-H2O复合物在室温条件下比较稳定。
     2、运用密度泛函理论研究了镧离子改性的ZSM-5分子筛结构,酸性和稳定性以及1-丁烯加氢活化反应机理。通过计算表明,随着镧离子的引入酸性位酸性轻微降低。在修饰后分子筛体系中,温度达到650K时体系仍然十分稳定。通过对计算结果红外频率的分析发现,在La-ZSM-5分子筛体系中O-H的伸缩振动频率为3758cm-1,而在H-ZSM-5分子筛中O-H的伸缩振动频率为3646cm-1。详细考察了丁烯活化的碳正离子反应路径。活化势垒为42.93kcal/mol。在La-ZSM-5分子筛体系中丁烯活化反应机理与在H-ZSM-5分子筛体系中的不同不经过稳定的π吸附过程而直接发生氢质子的转移生成碳正离子。
ZSM-5 zeolite is a very important shape selective catalyst in petrochemical industry, such as:olefin cracking and isomerization. And it is very important to increase the profits of petrochemical industry. In this thesis, the structure, adsorption and catalytic performance of Ag-ZSM-5, La-ZSM-5 zeolites were investigated by using density functional theory (DFT) with cluster model. The main conclusions are summarized as follows:
     1、The Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an a-bond, and accompanies with the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes△G,-5.55kcal/mol and 6.52kcal/mol for one and two CO molecules, illustrated that the Ag+ (CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211cm-1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex are shifted to 2231 and 2205cm-1 when the second CO molecule is adsorbed. The calculated C-O stretch frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199cm-1, the symmetric and antisymmetric O-H stretching frequencies are 3390cm-1 and 3869cm-1 respectively. The Gibbs free energy change (△GH2O) is-6.58kcal/mol as the H2O molecule adsorbed on CO-Ag-ZSM-5 complex at 298K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.
     2、The structure, acidity and stability of lanthanum species of modified zeolites have been investigated by using the density functional theory. The mechanism of 1-butene activation has also been studied with the effect of the channel wall in the zeolites. The acidity of acidic site slightly decreases when the lanthanum ions are introduced. The lanthanum species are very stable in modified zeolites even at the temperature of 650K. The average frequency of the O-H stretching in lanthanum species is 3758 cm-1, and the frequency of the O-H stretching in H-ZSM-5 is 3646 cm-1. The reaction path of more stable carbenium formation is considered. The activation barrier is 42.93 kcal/mol. There is noπ-complex presented in the adsorption states and the reaction mechanism is different from the catalytic cracking reactions on H-ZSM-5 zeolites.
引文
[1]Barrer R M A. Hydrothermal Chemistry of Zeolites, ed. London, Academic Press,1982
    [2]Dyer A. An Introduction to Zeolite Molecular Sieves, ed. New York, Wiley,1988
    [3]Szostak R, Handbook of Molecular Sieves, ed. New York, Van Nostrand,1992
    [4]Zhao G L, Teng J W, Jin W Q, et al. Catalytic cracking C-4 olefins over P-modified HZSM-5 zeolite[J]. Chinese Journal of Catalysis,2004,25(1):3-4
    [5]Ji D, Wang B, Qian G, et al. A highly efficient catalytic C4 alkane cracking over zeolite ZSM-23[J]. Catalysis Communications,2005,6(4):297-300
    [6]"IUPAC manual of symbols and terminology", Manual of symbols and terminology, appendix 2,Part 1,Colloid and Surface Chemistry, Pure Applied Chemistry,1972,31:578
    [7]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(6397):710-712
    [8]Diaz J F, Balkus K J, Bedioui F, et al. Synthesis and characterization of cobalt-complex functionalized MCM-41[J]. Chemistry of Materials,1997,9(1):61-67
    [9]Olson D H, Kokotailo G T, Lawton S L, et al. Crystal-structure and structure-related properties of ZSM-5[J]. Journal of Physical Chemistry,1981,85(15):2238-2243
    [10]Kokotailo G T, Lawton S L, Olson D H, et al. Structure of synthetic zeolite ZSM-5[J]. Nature, 1978,272 (5652):437-438
    [11]Vankoningsveld H. High-temperature (350-K) orthorhombic framework structure of zeolite H-ZSM-5[J]. Acta Crystallographica Section B-Structural Science,1990,46(6):731-735
    [12]Zheng S R, Heydenrych H R, Jentys A, et al. Influence of surface modification on the acid site distribution of HZSM-5[J]. Journal of Physical Chemistry B,2002,106(37):9552-9558
    [13]Dedecek J, Wichterlova B. Role of hydrated Cu ion complexes and aluminum distribution in the framework on the Cu ion siting in ZSM-5[J]. Journal of Physical Chemistry B,1997,101(49): 10233-10240
    [14]Kachurovskaya N A. Computational study of benzene-to-phenol oxidation catalyzed by N2O on iron-exchanged ferrierite[J]. Journal of Physical Chemistry B,2004,108(19):5944-5950
    [15]Xamena F, Fisicaro P, Berlier G, et al. Thermal reduction of Cu2+-mordenite and Re-oxidation upon interaction with H2O, O-2, and NO[J]. Journal of Physical Chemistry B,2003,107(29): 7036-7044
    [16]Olson D H. The crystal-structure of dehydrated Nax[J]. Zeolites,1995,15(5):439-443
    [17]Takaishi T. Ordered distribution of Na ions in dehydrated NaX zeolite[J]. Zeolites,1996,17(4): 389-392
    [18]Ferrari A M, Neyman K M, Rosch N. CO interaction with alkali metal cations in zeolites:a density functional model cluster study[J]. Journal of Physical Chemistry B,1997,101(45): 9292-9298
    [19]Vayssilov G N, Staufer M, Belling T, et al. Density functional studies of alkali-exchanged zeolites. Cation location at six-rings of different aluminum content[J]. Journal of Physical Chemistry B, 1999,103(37):7920-7928
    [20]Nachtigallova D, Bludsky O, Arean C O, et al. The vibrational dynamics of carbon monoxide in a confined space-CO in zeolites[J]. Physical Chemistry Chemical Physics,2006,8(42):4849-4852
    [21]Rice M J, Chakraborty A K, Bell A T. A density functional theory study of the interactions with H-ZSM-5, Cu-ZSM-5, and Co-ZSM-5[J]. Journal of Physical Chemistry A,1998,102(38): 7498-7504
    [22]Yang G, Wang Y, Zhou D H, et al. Density functional theory calculations on various M/ZSM-5 zeolites:Interaction with probe molecule H2O and relative hydrothermal stability predicted by binding energies[J]. Journal of Molecular Catalysis a-Chemical,2005,237(1-2):36-44
    [23]Bhering D L, Ramirez-Solis A, Mota C J A. A density functional theory based approach to extraframework aluminum species in zeolites[J]. Journal of Physical Chemistry B,2003,107(18): 4342-4347
    [24]王伊蕾,邢双英,曹亮,等.TS-1分子筛Lewis酸性的理论研究[J].催化学报,2009,30(1):24-30
    [25]倪丹,周丹红,张佳.应用理论计算研究MCM-22分子筛相邻酸性位上乙烯和苯的吸附[J].催化学报,2008,29(4):366-372
    [26]孙晓岩,李建伟,李英霞,等.苯与丙烯在p分子筛上的吸附行为的蒙特卡罗研究[J].化学学报,2008,66(15):1810-1814
    [27]Kyrlidis A, Cook S J, Chakraborty A K, et al. Electronic structure calculations of ammonia adsorption in H-ZSM-5 zeolites[J]. J. Phys. Chem.,1994,99:1505-1515
    [28]Haase F, Sauer J. Interaction of methanol with bronsted acid sites of zeolite catalysts-an ab-initio study[J]. Journal of the American Chemical Society,1995,117(13) 3780-3789
    [29]Johnson L D, Vermeiren W, Herrenbout K. Catalytic production of light olefins rich in propylene [P]. US Patent,6 222 087,2001
    [30]Haradi M N. Fluidizer catalytic process for upgrading olefins [P]. US Patent,5 164 071,1992
    [31]Bolt H V, Glanz, S. Increase propylene yields cost-effectively [J]. Hydrocarbon processing,2002, 12:77-80
    [32]宋芙蓉.可提高丙烯收率的Propylur工艺[J].国外石油化工快报,2000,30(7):4
    [33]彭琳.开发出新的丙烯源[J].国外石油化工快报,2002,32(8):2-3
    [34]宋芙蓉.可提高丙烯收率的Superflex工艺[J].国外石油化工快报,1999,29(9):3
    [35]Guo X D, Huang S P, Teng J W, et al. Adsorption of isobutene on NanZSM-5 type zeolite with various Si/Al ratios:molecular simulation study [J]. Chin. J. Chem.,2005,23(12):1593-1599
    [36]郭向丹,黄世萍,滕加伟,等.水在NanZSM-5型分子筛中吸附的研究:分子模拟[J].物理化学学报,2006,22(3):270-274
    [37]Wang F. Experiment and modeling of pure and binary adsorption of n-butane and butene-1 on ZSM-5 zeolites with different Si/Al ratios[J].
    [38]Wang F, Wang W C, Huang S P, et al. Experiment and modeling of pure and binary adsorption of n-butane and butene-1 on ZSM-5 zeolites with different Si/Al ratios[J]. Chin. J. Chem. Eng., 2007,15(3):376-386
    [39]Guo X D, Hiang S P, Teng J W, et al. Investigation of water adsorbed on HZSM-5:experiment and molecular simulation[J]. 计算机与应用化学,2006,23(6):486-490
    [40]滕加伟,赵国良,谢在库,等.烯烃催化裂解增产丙烯催化剂[J].石油化工,2004,33(2):100-103
    [41]滕加伟,赵国良,谢在库,等.ZSM-5分子筛晶体尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25(8):602-606
    [42]孙桂大,闫富山,石油化工催化导论[M].北京:中国石化出版社,2000
    [43]Abbot J, Wojciechowski B W. The mechanism of catalytic cracking of normal-alkenes on ZSM-5 zeolite[J]. Canadian Journal of Chemical Engineering,1985,63(3):462-469
    [44]Abbot J., Wojciechowski B W. Kinetics of reactions of C-8 olefins on Hy zeolite[J]. Journal of Catalysis,1987,108(2):346-355
    [45]den Hollander M A, Wissink M, Makkee M, et'al. Gasoline conversion:reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J]. Applied Catalysis a-General,2002, 223(1-2):85-102
    [46]Adewuyi Y G, Klocke D J, Buchanan J S. Effects of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) Re-Usy catalyst[J]. Applied Catalysis a-General,1995,131(1):121-133
    [47]Kaeding W W, Chu C, Young L B, et al. Shape-selective reactions with zeolite catalysts.2. selective disproportionation of toluene to produce benzene and P-xylene[J]. Journal of Catalysis, 1981,69(2):392-398
    [48]Picciotti M. New ethylene routes are available, but economics inhibit their use[J]. Oil & Gas Journal,1997,95(26):71-74
    [49]Cumming K A, Wojciechowski B W. Hydrogen transfer, coke formation, and catalyst decay and their role in the chain mechanism of catalytic cracking[J]. Catalysis Reviews-Science and Engineering,1996,38(1):101-157
    [50]Wang L S, Xie M S, Tao L X. Conversion of light paraffins for preparing small olefins over ZSM-5 zeolites[J]. Catalysis Letters,1994,28(1):61-68
    [51]Tao L X, Wang L S, Xie M S, et al. New Method for Olefin Production from Light Alkanes[J]. Reaction Kinetics and Catalysis Letters,1994,53(1):205-209
    [52]Wakui K, Satoh K, Sawada G, et al. Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts[J]. Catalysis Letters,2002,84(3-4):259-264
    [53]Yoshimura Y, Kijima N, Hayakawa T, et al. Catalytic cracking of naphtha to light olefins[J]. Catalysis Surveys from Japan,2000,4(2):157-167
    [54]Young D C. Computational chemistry:a practical guide for applying techniques to real-world problems, John Wiley & Sons, Inc.,2001,49-59
    [55]Vanbeest B W H, Kramer G J, Vansanten R A. Force-fields for silicas and aluminophosphates based on abinitio calculations[J]. Physical Review Letters,1990,64(16):1955-1958
    [56]de Vos B E. Studies on zeolites:molecular mechanics, framework stability, and crystal growth[D]. Zuid Holland:Technische Universiteit Delft,1992
    [57]Mayo S L, Olafson B D, Goddard W A. Dreiding-a generic force-field for molecular simulations[J]. Journal of Physical Chemistry,1990,94(26):8897-8909
    [58]Rappe A K, Casewit C J, Colwell K S, et al. Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations[J]. Journal of the American Chemical Society, 1992,114(25):10024-10035
    [59]Yashonath S, Thomas J M, Nowak A K, et al. The siting, energetics and mobility of saturated-hydrocarbons inside zeolitic cages-methane in zeolite-Y[J]. Nature,1988,331(6157): 601-604
    [60]Demontis P, Yashonath S, Klein M L. Localization and mobility of benzene in sodium-Y zeolite by molecular-dynamics calculations [J]. Journal of Physical Chemistry,1989,93(13):5016-5019
    [61]Pickett S D, Nowak A K, Thomas J M, et al. Mobility of adsorbed species in zeolites-a molecular-dynamics simulation of xenon in silicalite[J], Journal of Physical Chemistry,1990, 94(4):1233-1236
    [62]Watanabe K, Austin N, Stapleton M R. Investigation of the air separation properties of zeolites type-a, type-X and type-Y by Monte-Carlo simulations [J]. Molecular Simulation,1995,15(4): 197-&
    [63]Calero S, Dubbeldam D, Krishna R, et al. Understanding the role of sodium during adsorption:a force field for alkanes in sodium-exchanged faujasites[J]. Journal of the American Chemical Society,2004,126(36):11377-11386
    [64]Born M, Oppenheimer R. Quantum theory of molecules[J]. Annalen Der Physik,1927,84(20): 0457-0484
    [65]Born M, Huang K. Dynamical theory of crystal lattices[M]. Oxford University Press, New York, 1954
    [66]Hartree D. Calculations of atomic structure[M]. Wiley,1957
    [67]Ira N,赖文.量子化学(宁世光,余敬曾,刘尚长译).北京:人民教育出版社,1980
    [68]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140(4A):1133-&
    [69]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review B,1964,136(3B): B864-&
    [70]Goddard W A, Harding L B. The description of chemical bonding from ab initio calculations, annual review of physical chemistry[J]. Annual review of physical chemistry,1978,29: 363-396|ⅶ+602
    [71]Morokuma K, Froese R D, Dapprich S, et al. The ONIOM (our own integrated N-layered molecular orbital and molecular mechanics) method, and its applications to calculations of large molecular systems[J]. Abstracts of Papers of the American Chemical Society,1998,215(2): 263-PHYS
    [72]Morokuma K, Dapprich S, Komaromi I, et al. New implementation of the ONIOM method and its applications to various chemical reactions and structures[J]. Abstracts of Papers of the American Chemical Society,1997,214(1):74-COMP
    [73]Svensson M, Humbel S, Froese R D J, et al. ONIOM:A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)(3))(2)+H-2 oxidative addition[J]. Journal of Physical Chemistry,1996,100(50): 19357-19363
    [74]Monard G, Merz K M. Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems[J]. Accounts of Chemical Research,1999,32(10):904-911
    [75]Gao J L, Freindorf M. Hybrid ab initio QM/MM simulation of N-methylacetamide in aqueous solution[J]. Journal of Physical Chemistry A,1997,101(17):3182-3188
    [76]Nitta T, Furukawa S. Simulation performance of a non-equilibrium molecular dynamics method using density difference as driving force[J]. Molecular Simulation,2000,25(3-4):197-208
    [77]Zhang Y, Furukawa S, Nitta T. Computer simulation studies on gas permeation of propane and propylene across ZSM-5 membranes by a non-equilibrium molecular dynamics technique[J]. Separation and Purification Technology,2003,32(1-3):215-221
    [78]Simon J M, Decrette A, Bellat J B, et al. Kinetics of adsorption of n-butane on an aggregate of silicalite by transient non-equilibrium molecular dynamics[J]. Molecular Simulation,2004,30(9): 621-629
    [1]Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02[CP]. Wallingford CT: Gaussian, Inc.,2004
    [2]Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics[J]. Chemical Reviews,1991,91(5):651-667
    [3]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review B,1964,136(3B): 864-&
    [4]Parr R G, Yang W. Density-functional theory of atoms and molecules[M]. Oxford:Oxford Univ. Press,1989.1
    [5]Murphy D R. Sixth-order term of the gradient expansion of the kinetic-energy density functional[J]. Physical Review A (General Physics),1981,24(4):1682-1688
    [6]Yang W T. Gradient correction in Thomas-Fermi theory[J]. Physical Review A,1986,34(6): 4575-4585
    [7]Neurock M. Perspectives on the first principles elucidation and the design of active sites[J]. Journal of Catalysis,2003,216(1-2):73-88
    [8]Vansanten R A, Neurock M. Concepts in theoretical heterogeneous catalytic reactivity[J]. Catalysis Reviews-Science and Engineering,1995,37(4) 557-698
    [9]HeadGordon M. Quantum chemistry and molecular processes[J] Journal of Physical Chemistry, 1996,100(31):13213-13225
    [10]Whitten J L, Yang H. Theory of chemisorption and reactions on metal surfaces[J]. Surface Science Reports,1996,24(3-4):59-124
    [11]Sauer J, Ugliengo P, Garrone E, et al. Theoretical-study of Van-Der-Waals complexes at surface sites in comparison with the experiment[J] Chemical Reviews,1994,94(7):2095-2160
    [12]Sauer J. Molecular-models in abinitio studies of solids and surfaces-from ionic-crystals and semiconductors to catalysts[J]. Chemical Reviews,1989,89(1):199-255
    [13]Hafner J. Atomic-scale computational materials science[J]. Acta Materialia,2000,48(1):71-92
    [14]Rattanasumrit A, Ruangpornvisuti V. Theoretical study of conversion reactions of ketone to hydroxyalkylene in cluster models of zeolite H-ZSM-5[J]. Journal of Molecular Catalysis a-Chemical,2005,239(1-2):68-75
    [15]Hay P J, Redondo A, Guo Y J. Theoretical studies of pentene cracking on zeolites:C-C beta-scission processes[J]. Catalysis Today,1999,50(3-4):517-523
    [16]Chatterjee A, Ebina T, Iwasaki T, et al. Chlorofluorocarbons adsorption structures and energetic over faujasite type zeolites-a first principle study[J]. Journal of Molecular Structure-Theochem, 2003,630:233-242
    [17]Aleksandrov H A, Vayssilov G N, Rosch N. Theoretical investigation of Zn-containing species in pores of ZSM-5 zeolites. in:Cejka, J., Zilkova, N. and Nachtigall, P., editors. Molecular Sieves: from Basic Research to Industrial Applications, Part A and B, Amsterdam:Elsevier Science Bv; 2005
    [18]Alvaradoswaisgood A E, Barr M K, Hay P J, et al. Abinitio quantum chemical calculations of aluminum substitution in zeolite ZSM-5 [J]. Journal of Physical Chemistry,1991,95(24): 10031-10036
    [19]Sinclair P E, Catlow C R A. Generation of carbenes during methanol conversion over bronsted acidic aluminosilicates. A computational study[J]. Journal of Physical Chemistry B,1997,101(3): 295-298
    [20]Blaszkowski S R, Nascimento M A C, vanSanten R A. Activation of C-H and C-C bonds by an acidic zeolite:a density functional study[J]. Journal of Physical Chemistry,1996,100(9): 3463-3472
    [21]Heyden A, Peters B, Bell A T, et al. Comprehensive DFT study of nitrous oxide decomposition over Fe-ZSM-5[J]. Journal of Physical Chemistry B,2005,109(5):1857-1873
    [22]Rice M J, Chakraborty A K, Bell A T. Site availability and competitive siting of divalent metal cations in ZSM-5[J]. Journal of Catalysis,2000,194(2):278-285
    [23]Rice M J, Chakraborty A K, Bell A T. Theoretical studies of the coordination and stability of divalent cations in ZSM-5[J]. Journal of Physical Chemistry B,2000,104(43):9987-9992
    [24]Sierraalta A, Bermudez A, Rosa-Brussin M. Density functional study of the interaction of Cu+ ion-exchanged zeolites with H2O and SO2 molecules[J]. Journal of Molecular Catalysis a-Chemical,2005,228(1-2):203-210
    [25]Liu X, Meng C G, Liu C H. Ab initio calculation on structure of nano-sized silica cluster[J]. Abstracts of Papers of the American Chemical Society,2004,228:118-COLL
    [1]Xamena F, Fisicaro P, Berlier G, et al. Thermal reduction of Cu2+-mordenite and Re-oxidation upon interaction with H2O, O-2, and NO[J]. Journal of Physical Chemistry B,2003,107(29): 7036-7044
    [2]Kachurovskaya N A. Computational study of benzene-to-phenol oxidation catalyzed by N2O on iron-exchanged ferrierite[J]. Journal of Physical Chemistry B,2004,108(19):5944-5950
    [3]Calsavara V, Baesso M L, Fernandes-Machado N R C. Transformation of ethanol into hydrocarbons on ZSM-5 zeolites modified with iron in different ways[J]. Fuel,2008,87(8-9): 1628-1636
    [4]Ono Y, Osako K, Kim G J, et al. Ag-ZSM-5 as a catalyst for aromatization of alkanes, alkenes, and methanol[J]. Zeolites and Related Microporous Materials:State of the Art,1994,84: 1773-1780
    [5]Inoue Y, Nakashiro K, Ono Y. Selective conversion of methanol into aromatic-hydrocarbons over silver-exchanged ZSM-5 zeolites[J]. Microporous Materials,1995,4(5):379-383
    [6]Matsuoka M, Matsuda E, Tsuji K, et al. The photocatalytic decomposition of nitric oxide on Ag+/ZSM-5 catalyst prepared by ion-exchange[J]. Journal of Molecular Catalysis a-Chemical, 1996,107(1-3):399-403
    [7]Matsuoka M, Matsuda E, Tsuji K, et al. The photocatalytic decomposition of nitric-oxide on the silver(I) ion-exchanged ZSM-5 catalyst[J]. Chemistry Letters,1995, (5):375-376
    [8]Sato S, Yoshihiro Y, Yahiro H, et al. Cu-ZSM-5 zeolite as highly-active catalyst for removal of nitrogen monoxide from emission of diesel-engines[J]. Applied Catalysis,1991,70(1):L1-L5
    [9]Hadjiivanov K I, Vayssilov G N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule[J]. Advances in Catalysis,2002,47:307-511
    [10]Zeinalipour-Yazdi C D, Cooksy A L, Efstathiou A M. CO adsorption on transition metal clusters: trends from density functional theory[J]. Surface Science,2008,602(10):1858-1862
    [11]Ferrari A M, Neyman K M, Rosch N. CO interaction with alkali metal cations in zeolites:a density functional model cluster study[J]. Journal of Physical Chemistry B,1997,101(45): 9292-9298
    [12]Vayssilov G N, Staufer M, Belling T, et al. Density functional studies of alkali-exchanged zeolites. cation location at six-rings of different aluminum content[J]. Journal of Physical Chemistry B, 1999,103(37):7920-7928
    [13]Nachtigallova D, Bludsky O, Arean C O, et al. The vibrational dynamics of carbon monoxide in a confined space-CO in zeolites[J]. Physical Chemistry Chemical Physics,2006,8(42):4849-4852
    [14]Hadjiivanov K I, Kantcheva M M, Klissurski D G. IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts:sigma and pi components of the Cu+-CO bond J]. Journal of the Chemical Society-Faraday Transactions,1996,92(22):4595-4600
    [15]Hadjiivanov K, Klissurski D, Ramis G, et al. Fourier transform IR study of NOx adsorption on a CuZSM-5 DeNO(x) catalyst[J]. Applied Catalysis B-Environmental,1996,7(3-4):251-267
    [16]Pieplu T, Poignant F, Vallet A, et al. Oxidation state of copper during the reduction of No-x with propane on H-Cu-ZSM-5 in excess oxygen[J]. Catalysis and Automotive Pollution Control Iii, 1995,96:619-629
    [17]Lamberti C, Bordiga S, Salvalaggio M, et al. XAFS, IR, and UV-vis study of the Cu-I environment in Cu-I-ZSM-5[J]. Journal of Physical Chemistry B,1997,101(3):344-360
    [18]Hadjiivanov K I. IR study of CO and NOx sorption on Ag-ZSM-5[J]. Microporous and Mesoporous Materials,1998,24(1-3):41-49
    [19]Nachtigallova D, Nachtigall P, Bludsky O. Calculations of the site specific stretching frequencies of CO adsorbed on Li+/ZSM-5[J]. Physical Chemistry Chemical Physics,2004,6(24):5580-5587
    [20]Bludsky O, Silhan M, Nachtigall P, et al. Theoretical investigation of CO interaction with copper sites in zeolites:periodic DFT and hybrid quantum mechanical/interatomic potential function study[J]. Journal of Physical Chemistry B,2005,109(19):9631-9638
    [21]Sillar K, Burk P. Adsorption of carbon monoxide on Li-ZSM-5:theoretical study of complexation of Li+ cation with two CO molecules[J]. Physical Chemistry Chemical Physics,2007,9(7): 824-827
    [22]Otero Arean C, Rodriguez Delgado M, Lopez Bauca C, et al. Carbon monoxide adsorption on low-silica zeolites:from single to dual and to multiple cation sites[J]. Phys Chem Chem Phys, 2007,9(33):4657-4661
    [23]Silhan M, Nachtigallova D, Nachtigall P. Characterization of Ag+ sites in ZSM-5:a combined quantum mechanics/interatomic potential function study[J]. Physical Chemistry Chemical Physics,2001,3(21):4791-4795
    [24]Davidova M, Nachtigallova D, Bulanek R,et al. Characterization of the Cu+ sites in high-silica zeolites interacting with the CO molecule:combined computational and experimental study[J]. Journal of Physical Chemistry B,2003,107(10):2327-2332
    [25]Ding B J, Huang S P, Wang W C. Methane activation over Ag-exchanged ZSM-5 zeolites:a theoretical study[J]. Applied Surface Science,2008,254(16):4944-4948
    [26]vanKoningsveld H, vanBekkum H, Jansen J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta Crystallographica Section B,1987,43(2):127-132
    [27]Hass K C, Schneider W F. Reliability of small cluster models for Cu-exchanged zeolites[J]. Journal of Physical Chemistry,1996,100(22):9292-9301
    [28]Lonsinger S R, Chakraborty A K, Theodorou D N, et al. The effects of local structural relaxation on aluminum siting within H-ZSM-5[J]. Catalysis Letters,1991,11(2):209-217
    [29]Derouane E G, Fripiat J G. Non-empirical quantum chemical study of the siting and pairing of aluminum in the MFI framework[J]. Zeolites,1985,5(3):165-172
    [30]Bordiga S, Palomino G T, Arduino D, et al. Well defined carbonyl complexes in Ag+-and Cu+-exchanged ZSM-5 zeolite:a comparison with homogeneous counterparts[J]. Journal of Molecular Catalysis a-Chemical,1999,146(1-2):97-106
    [31]Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density [J]. Physical Review B,1988,37(2):785-789
    [32]Becke A D. Density-functional exchange-energy approximation with correct asymptotic-behavior[J]. Physical Review A,1988,38(6):3098-3100
    [33]Frisch M J, Trucks G W, Schlegel H B, et al, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford CT,2004
    [34]Rejmak P, Sierka M, Sauer J. Theoretical studies of Cu(I) sites in faujasite and their interaction with carbon monoxide[J]. Physical Chemistry Chemical Physics,2007,9:5446-5456
    [35]Frenking G, Frohlich N. The nature of the bonding in transition-metal compounds[J]. Chemical Reviews,2000,100(2):717-774
    [36]Lupinetti A J, Strauss S H, Frenking G. Nonclassical metal carbonyls[J]. Progress in Inorganic Chemistry,2001,49:1-112
    [37]Ivanov S V, Ivanova S M, Miller S M, et al. Fluorination of B10H102-with an N-fluoro reagent. a new way to transform B-H bonds into B-F bonds[J]. Inorganic Chemistry,1996,35(24):6914-&
    [38]Kukulska-Zajac E, Datka J. The IR studies of the interaction of organic molecules with Ag+ ions in zeolites[J]. Microporous and Mesoporous Materials,2008,109(1-3):49-57
    [39]Hadjiivanov K, Knozinger H. Low-temperature CO adsorption on Ag+/SiO2 and Ag-ZSM-5:an FTIR study[J]. Journal of Physical Chemistry B,1998,102(52):10936-10940
    [40]Meyer F, Chen Y M, Armentrout P B. Sequential bond-energies of Cu(Co)(X)(+) and Ag(Co)(X)(+) (X=1-4)[J]. Journal of the American Chemical Society,1995,117(14):4071-4081
    [41]Halkier A, Jorgensen P, Gauss J, et al. CCSDT calculations of molecular equilibrium geometries[J]. Chemical Physics Letters,1997,274(1-3):235-241
    [1]Zhao G L, Teng J W, Jin W Q, et al. Catalytic cracking C-4 olefins over P-modified HZSM-5 zeolite[J]. Chinese Journal of Catalysis,2004,25(1):3-4
    [2]Ji D, Wang B, Qian G, et al. A highly efficient catalytic C4 alkane cracking over zeolite ZSM-23[J]. Catalysis Communications,2005,6(4):297-300
    [3]Chang C D, Silvestri A J. Conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts [J]. Journal of Catalysis,1977,47(2):249-259
    [4]Derouane E G, Nagy J B, Dejaifve P, et al. Elucidation of mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite[J]. Journal of Catalysis,1978, 53(1):40-55
    [5]Chang C D, Chu C T W, Socha R F. Methanol conversion to olefins over ZSM-5.1. effect of temperature and zeolite SiO2/Al2O3[J]. Journal of Catalysis,1984,86(2):289-296
    [6]Tabak S A, Krambeck F J, Garwood W E. Conversion of propylene and butylene over ZSM-5 catalyst[J].Aiche Journal,1986,32(9):1526-1531
    [7]Garwood W E. Conversion of C2-C10 to higher olefins over synthetic zeolite ZSM-5 [J]. Acs Symposium Series,1983,218:383-396
    [8]Guerzoni F N, Abbot J. Cracking of an industrial feedstock over combinations of H-ZSM-5 and Hy-the influence of H-ZSM-5 pretreatment[J]. Applied Catalysis a-General,1994,120(1):55-69
    [9]Buchanan J S, Olson D H, Schramm S E. Gasoline selective ZSM-5 FCC additives:effects of crystal size, SiO2/Al2O3, steaming, and other treatments on ZSM-5 diffusivity and selectivity in cracking of hexene/octene feed[J]. Applied Catalysis a-General,2001,220(1-2):223-234
    [10]Tynjala P, Pakkanen T T. Shape selectivity of ZSM-5 zeolite modified with chemical vapor deposition of silicon and germanium alkoxides[J]. Journal of Molecular Catalysis a-Chemical, 1997,122(2-3):159-168
    [11]Fang L Y, Liu S B, Wang I. Enhanced para-selectivity by selective coking during toluene disproportionation over H-ZSM-5 zeolite[J]. Journal of Catalysis,1999,185(1):33-42
    [12]Lu J Y, Zhao Z, Xu C M, et al. FeHZSM-5 molecular sieves-highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene[J]. Catalysis Communications,2006, 7(4):199-203
    [13]Cheetham A K, Eddy M M, Thomas J M. The direct observation of cation hydrolysis in lanthanum zeolite-Y by neutron-diffraction[J]. Journal of the Chemical Society-Chemical Communications,1984, (20):1337-1338
    [14]Weihe M, Hunger M, Breuninger M, et al. Influence of the nature of residual alkali cations on the catalytic activity of zeolites X, Y, and EMT in their bronsted acid forms[J]. Journal of Catalysis, 2001,198(2):256-265
    [15]Scherzer J. Octane-Enhancing, Zeolitic FCC catalysts-scientific and technical aspects[J]. Catalysis Reviews-Science and Engineering,1989,31(3):215-354
    [16]Hartford R W, Kojima M, Oconnor C T. Lanthanum ion-exchange on H-ZSM-5 [J]. Industrial & Engineering Chemistry Research,1989,28(12):1748-1752
    [17]Tynjala P, Pakkanen T T. Acidic properties of ZSM-5 zeolite modified with Ba2+, Al3+ and La3+ ion-exchange[J]. Journal of Molecular Catalysis a-Chemical,1996,110(2):153-161
    [18]Ivanov A V, Graham G W, Shelef M. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO2/Al2O3 ratios:a combined FTIR and gravimetric study[J]. Applied Catalysis B-Environmental,1999,21(4):243-258
    [19]Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts[J]. Catalysis Letters,2002,81(1-2):UNSP 1011-1372X/1002/0700-0083/1010
    [20]Hay P J, Redondo A, Guo Y J. Theoretical studies of pentene cracking on zeolites:C-C beta-scission processes[J]. Catalysis Today,1999,50(3-4):517-523
    [21]Rigby A M, Kramer G J, vanSanten R A. Mechanisms of hydrocarbon conversion in zeolites:a quantum mechanical study[J]. Journal of Catalysis,1997,170(1):1-10
    [22]Guo Y H, Pu M, Wu J Y, et al. Theoretical study of the cracking mechanisms of linear alpha-olefins catalyzed by zeolites[J]. Applied Surface Science,2007,254:604-609
    [23]Vankoningsveld H. High-temperature (350-K) orthorhombic framework structure of zeolite H-ZSM-5[J]. Acta Crystallographica Section B-Structural Science,1990,46:731-735
    [24]Olson D H, Khosrovani N, Peters A W, et al. Crystal structure of dehydrated CsZSM-5 (5.8A1): evidence for nonrandom aluminum distribution [J]. Journal of Physical Chemistry B,2000, 104(20):4844-4848
    [25]Marynen P, Maes A, Cremers A. Charge reduction of zeolite-Y through exchange with lanthanum ions-intracrystalline oxide and hydroxide formation[J]. Zeolites,1984,4(3):287-290
    [26]Kim J G, Kompany T, Ryoo R, et al. Xe-129 NMR-study of Y3+-exchanged, La3+-exchanged, and Ce3+-exchanged X-zeolites[J]. Zeolites,1994,14(6):427-432
    [27]Park H S, Seff K. Crystal structures of fully La3+-exchanged zeolite X:an intrazeolitic La2O3 continuum, hexagonal planar and trigonally monocapped trigonal prismatic coordination[J]. Journal of Physical Chemistry B,2000,104(10):2224-2236
    [28]Yang G, Wang Y, Zhou D H, et al. On configuration of exchanged La3+ on ZSM-5:a theoretical approach to the improvement in hydrothermal stability of La-modified ZSM-5 zeolite[J]. Journal of Chemical Physics,2003,119(18):9765-9770
    [29]Smith J V, Bennett J M, Flanigen E M. Dehydrated lanthanum-exchanged type Y zeolite[J]. Nature,1967,215(5098):241-&
    [30]Nery J G, Mascarenhas Y P, Bonagamba T J, et al. Location of cerium and lanthanum cations in CeNaY and LaNaY after calcination[J]. Zeolites,1997,18(1):44-49
    [31]Nery J G, Giotto M V, Mascarenhas Y P, et al. Rietveld refinement and solid state NMR study of Nd-, Sm-, Gd-, and Dy-containing Y zeolites[J]. Microporous and Mesoporous Materials,2000, 41(1-3):281-293
    [32]Derouane E G, Fripiat J G, Non-empirical quantum chemical study of the siting and pairing of aluminum in the MFI framework[J]. Zeolites,1985,5(3):165-172
    [33]Vankoningsveld H, Vanbekkum H, Jansen J C. On the location and disorder of the tetrapropylammonium (Tpa) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta Crystallographica Section B-Structural Science,1987,43:127-132
    [34]Lonsinger S R, Chakraborty A K, Theodorou D N, et al. The effects of local structural relaxation on aluminum siting within H-ZSM-5[J]. Catalysis Letters,1991,11(2):209-217
    [35]Becke A D. Density-functional exchange-energy approximation with correct asymptotic-behavior[J]. Physical Review A,1988,38(6):3098-3100
    [36]Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density [J]. Physical Review B,1988,37(2):785-789
    [37]Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02[CP]. Wallingford CT: Gaussian, Inc.,2004
    [38]Omalley P J, Dwyer J. Abinitio molecular-orbital calculations on the acidic characteristics of isomorphously substituted zeolites[J]. Chemical Physics Letters,1988,143(1):97-100
    [39]Langenaeker W, Coussement N, Deproft F, et al. Quantum-chemical study of the influence of isomorphous substitution on the catalytic activity of zeolites-an evaluation of reactivity indexes[J]. Journal of Physical Chemistry,1994,98(11):3010-3014
    [40]Wang X N, Zhao Z, Xu C M, et al. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins[J]. Journal of Rare Earths, 2007,25(3):321-328
    [41]Kotrla J, Kubelkova L, Lee C C, et al. Calorimetric and FTIR studies of acetonitrile on H-Fe ZSM-5 and H-Al ZSM-5[J]. Journal of Physical Chemistry B.1998,102(8):1437-1443
    [42]Kazansky V B, Frash M V, vanSanten R A. Quantum-chemical study of the nonclassical carbonium ion-like transition states in isobutane cracking on zeolites[J].11th International Congress on Catalysis-40th Anniversary, Pts a and B,1996,101:1233-1242
    [43]Kondo J N, Domen K. IR observation of adsorption and reactions of olefins on H-form zeolites[J]. Journal of Molecular Catalysis a-Chemical,2003,199(1-2):27-38
    [44]Tuma C, Sauer J, Protonated isobutene in zeolites:tert-butyl cation or alkoxide?[J]. Angewandte Chemie-International Edition,2005,44(30):4769-4771
    [45]Teraishi K. Computational study on the product selectivity of FCC zeolitic catalyst[J]. Journal of Molecular Catalysis a-Chemical,1998,132(1):73-85
    [46]Tuma C, Sauer J. Treating dispersion effects in extended systems by hybrid MP2:DFT calculations-protonation of isobutene in zeolite ferrierite[J]. Physical Chemistry Chemical Physics,2006,8(34):3955-3965
    [47]Kazansky V B, Senchenya I N, Frash M, et al. A quantum-chemical study of adsorbed nonclassical carbonium-ions as active intermediates in catalytic transformations of paraffins.1. Protolytic Cracking of Ethane on High-Silica Zeolites[J]. Catalysis Letters,1994,27(3-4): 345-354
    [48]Viruela-Martin P, Zicovich-Wilson C M, Corma A. Ab initio molecular orbital calculations of the protonation of propylene and isobutene by acidic hydroxyl groups of isomorphously substituted zeolites[J]. The Journal of Physical Chemistry,1993,97(51):13713-13719
    [49]Gonzalez C, Schlegel H B. An improved algorithm for reaction-path following[J]. Journal of Chemical Physics,1989,90(4):2154-2161
    [50]Gonzalez C, Schlegel H B. Reaction-path following in mass-weighted internal coordinates [J]. Journal of Physical Chemistry,1990,94(14):5523-5527
    [51]Pereira M S, Nascimento M A C. Theoretical study of the dehydrogenation reaction of ethane catalyzed by zeolites containing non-framework gallium species:The 3-step mechanism x the 1-step concerted mechanism[J]. Chemical Physics Letters,2005,406(4-6):446-451
    [52]Pidko E A, Kazansky V B, Hensen E J M, et al. A comprehensive density functional theory study of ethane dehydrogenation over reduced extra-framework gallium species in ZSM-5 zeolite[J]. Journal of Catalysis,2006,240(1):73-84
    [53]Pidko E A, Hensen E J M, van Santen R A. Dehydrogenation of light alkanes over isolated gallyl ions in Ga/ZSM-5 zeolites[J]. Journal of Physical Chemistry C,2007,111(35):13068-13075

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700