通钢LF精炼工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LF炉是以电弧加热、氩气搅拌和渣精炼为核心的钢包精炼炉生产技术,可以冶炼高质量的钢种,LF炉精炼技术近年来在我国发展很快。目前对LF炉的有关研究主要集中在两方面,即:LF炉钢包底吹氩数模的研究;精炼渣及精炼工艺优化的研究。
     根据通钢LF炉存在的问题,对LF炉工艺优化做了以下两方面的研究:根据通钢LF炉实际工艺参数,计算了不同吹氩流量;通过实验室的研究,以工业废渣为基料配制出了适应工艺的精炼渣基渣,并进行了现场试验。为通钢LF炉吹氩和精炼提出了优化工艺。主要结论如下:
     (1)流量和混匀时间呈双曲线变化的趋势,即随着流量的增加,混匀时间减少的程度降低;
     (2)精炼渣的熔点低,熔化速度快,脱硫效果好,同时使用精炼渣可以减少石灰的用量,缩短LF炉的冶炼周期;
     (3)加入铝渣后不仅使精炼渣的起弧埋弧效果得到了很大的改善,同时可以充分降低渣中(FeO)的含量,出钢过程中的一次脱硫率明显提高;
     (4)吹氩流量在110l/min左右渣面没有明显的裸露现象。这说明最大吹氩流量在110l/min是合适的;
     (5)该精炼渣的最佳碱度在2.0-2.5之间,最佳光学碱度在0.79-0.80之间,最佳渣指数MI值在0.27-0.45左右。
Ladle Furnace(LF) is a ladle refining furnace production technology mainly based on heating, argon-blowing stirring and slag refining. This technology can make high-quality steel. So LF refining technology has developed rapidly in China in recent years. Currently, the study of LF is focused on two aspects:the research on the mathematical model of Argon-blowing at lable bottom; the study of refining slag and the optimization of refining process.
     According to some problems in a LF in Tonghuasteel, two aspects of the study about the optimization of LF technology were done as following:according to the actual process parameters about the LF furnace, the different argon flow were calculated; through laboratory research, the suitable refining slag, based on industrial waste residue, was prepared and tested.
     Main conclusions are as following:
     (1) Flow and mixing time has the trend of hyperbolic change, that is level of the mixing time reducing become lower with the gas rate increasing.
     (2) The refining slag has low melting point, melts rapidly, and has good ability of desulfurization. At the same time the amount of lime and the LF refining time can be reduced by using the refining slag.
     (3) By adding Aluminium bearing slag, the effects of started arc and submerged arc has been greatly improved, and the desulfurizing rate during tapping can be markedly improved by fully reducing the content of (FeO).
     (4) The phenomenon of the molten slag entrapment doesn't occur when argon flow is at 110l/min, which shows that the biggest argon blowing rate is appropriate at 110l/min.
     (5) The best alkalinity of the refining slag is between 2.0 to 2.5, and the best optical alkalinity is between 0.79 to 0.80, and the value of the best slag index MI is around 0.27 to 0.45.
引文
1.蒋国昌.纯净钢及二次精炼[M],上海:上海科学技术出版社,1996.
    2.徐国兴.我国钢包精炼炉的现状及发展趋势[J],上海金属,2000,22(6):11-14
    3.刘川汉.我国钢包炉(LF)的发展现状[J],特殊钢,1998,22(2):31-33.
    4.朱苗勇,萧泽强.钢的精炼过程数学物理模拟[M],北京:冶金工业出版社,1998.
    5.朱苗勇,肖泽强.吹氩精炼钢包内三维流动和混合现象的研究[J],金属学报,1995,31(8):346-352.
    6.俆增啓.炉外精炼[M],北京:冶金工业出版社,1988.
    7.汪周勋.100tLF炉—VD钢包炉设计特点的研讨[J],炼钢,1999,15(1):36-41.
    8.虞明全.钢包精炼轴承钢二十年[J],钢铁研究,2001,2(2):6-12.
    9. Mitsutaka H, Susumu K, Shiro B. Sulphide capacities of CaO-Al2O3-MgO, CaO-Al2O3-SiO2 slags [J], ISIJ International,1993,33(1):36-42.
    10.林功文.钢包炉(LF)精炼用渣的功能和配制[J],特殊钢,2001,22(6):28-29.
    11. Andersson M A, Jonsson P G, Hallberg M. Optimisation of ladle slag composition by application of sulphide capacity model [J], Ironmaking and Steelmaking,2000,27(4): 286-292.
    12. Ting T, Hiroshi G. Sulphur distribution between liquid iron and CaO-MgO-Al2O3-SiO2 slags for ladle refining [J], Transactions ISIJ,1986,26:717-723.
    13. Jonsson P G, Jonsson N, Sichen D. Viscosities of LF slags and their impact on ladle refining [J], ISIJ International,1997,37(5,):484-491.
    14.李桂荣,王宏明.添加剂对CaO基钢包渣系性能影响的脱磷研究[J],江苏大学学报(自然科学版),2002,23(2):74-77.
    15.翁宁,王忠东.利用光学碱度计算含CaF2脱硫剂脱硫能力的研究[J],1999,15(1):25-28.
    16. Sosinsky D J. The composition and temperature dependence of the sulphide capacity of metallurgical slags[J], Metal. Trans.1986,17B:331-337.
    17. Fruehan I. Study on the foaming of CaO-SiO2-FeO slags [J], Met. Trans,1989B,20(4): 509-521.
    18.牛四通.精炼渣系的发泡性能[J],北京科技大学学报,1997,19(2):138-142.
    19.乐可襄,董元篪,王世俊.精炼渣发泡性能的实验研究[J],炼钢,1997,2(2):22-25.
    20. Sung W C, Suito H. Assessment of aluminum-oxygen equilibrium in liquid iron and activities in CaO-Al2O3-SiO2 slags [J]. ISIJ International,1994,34(2):177-185.
    21.张鉴.冶金熔体的计算热力学[M],北京:冶金工业出版社,1998.
    22.李阳,姜周华.CaO-Al2O3基精炼渣对钢液脱氧的影响[J],钢铁研究学报,2002,14(5):12-15.
    22.虞积森,计洪新.钢中加稀土元素的变性,脱硫双重作用的效果(摘译)[J],太钢译文,2001,(1):23-24.
    23.吴迪.改性渣的开发与应用[J],本钢技术,2006,(6):5-9.
    24.张鉴.炉外精炼理论与实践[M],北京:冶金工业出版社,1993.
    25.吴铿,梁志刚.包钢LF精炼过程脱硫工业实验研究[J],钢铁,2001,36(8):16-19.
    26. Krejny T L, Emling W H, Chambers W P, et al. LTV DHCC synthetic slag practices [A], Steelmaking Conference Proceeding [C], Manila.1997,63-68.
    27. Goto H, Miyazawa K, Tanaka. Effect of oxygen content on size distribution.of oxides in Steel [J]. ISIJ International,1995,36(3):286-291.
    28. E. T. Turkdogan. Slags and fluxes for ferrous ladle metallurgy [J], Ironmaking and Steelmaking,1985,12(2):64-78.
    29.舍克里.冶金中的流体流动现象[M],北京:冶金工业出版社,1985.
    30.何庆林.喷吹钢包过程数学物理模拟[D],(学位论文),沈阳:东北工学院,1984.
    31.曲英,杨健,徐保美.熔渣下金属熔池流动现象的数学模拟[J],金属学报,1990,26(3):157-163.
    32.李宝宽,赫冀成.计算流体力学在炼钢中的应用和发展[J],力学进展,1999,29(1):77-86.
    33.贺多友,等.传输理论和计算[M],北京:冶金工业出版社,1999.
    34. Ilegbusi 0 J, Szekely J.. The Modeling of gas-bubble driven circulation systems [J], ISIJ International,1990,30(9):731-793.
    35. Zhu M Y, Sawada I, Hsiao T C, et al. Numerical simulation of three-dimensional fluid flow and mixing process in gas-stirred ladles [J], ISIJ, International,1996,36(5):503-511.
    36. Hsiao T C, Lehner T, Kjellberg B. Fluid flow in ladles-experimental results [J], Scand.J.of Metallurgy,1980,9(3):105-110.
    37. Madariaga I, Gutierrez I. Role of the particle matrix interface on the nucleation of acicular ferrite in a medium carbon micro-alloyed steel [J], Acta Mater,1999,47(3):951.
    38. Goldschmit M B, Coppola A H. Numerical modeling of gas stirred ladles [J], Ironmaking and Steelmaking,2001,28(4):337-34.
    39. Jonsson L, Grip C E, Johansson A, et al. Three-phase(steel, slag, gas) modeling of the CAS-OB process [A], Steelmaking Conference Proceedings [C], Tokoy,1997,69-81.
    40. Okumura K, Masamichi S. Gas disperson phenomena and mixing characteristics under gas injection through slot nozzle submerged in water [J], ISIJ International,2001,41(3): 234-238.
    41. Oikawa K, Ishida K, Nishizawa T. Effect of titanium on the formation and distribution of MnS inclusions in steel during solidification [J], ISIJ International.1997,37 (4):332.
    42. Toshio I, Noriko K, Bose T, et al. Mathematical modeling of flow and inclusion Motion in Vessel with Natural Convection[J], ISIJ International,2001,41(10):1174-1180.
    43.蒋武锋,郭华,魏小珍,等.CaO-SiO2-Al2O3-MgO四元渣系脱硫[J],河北理工学院学报,2000,(3):5-10.
    44.王展宏.钢包炉(LF)精炼渣的作用及特性分析[J],钢铁研究,1996,3(3):11-16.
    45.马建平,刘国平.LF炉用精炼渣性能研究[J],马钢技术,2000,(4):3-5.
    46.王书桓.12CaO·7Al2O3型精炼合成渣物性与脱硫试验[J],河北理工学院学报,2001,23(3):22-26.
    47.徐国华.高效预熔精炼渣的冶金效果试验[J],炼钢,2002,4(1):55-60.
    48.战东平,姜周华,王文忠,等.CaO-Al2O3-CaF2-MgO-SiO2五元预熔渣系钢水深脱硫实验研究[J],炼钢,2002,18(6):33-36.
    49.徐国华.100t钢包炉用固体合成精炼渣[J],特殊钢,2001,22(4):37-38.
    50.李金锡,张鉴.CaO-MgO-CaF2-Al2O3-SiO2五元渣系粘度的计算模型[J],北京科技大学学报,2000,4(4):316-319.
    51.郭上型,万真雅.钢包炉(LF) CaO-SiO2-MgO-Al2O3渣系的脱硫试验[J],特殊钢,1996,17:No.3):46-49.
    52.郭航,马重芳,陶文铨,等.SIMPLE算法的一个新的改进方案[J],西安通大学学报,2002,17(1):20-25.
    53.徐国华.高效预熔精炼渣的冶金效果试验[J],炼钢,2002,18(1):55-60.
    54.李桂荣,王宏明.添加剂对CaO基钢包渣系性能影响的脱磷研究[J],江苏大学学报(自然科学版),2002,23(2):74-77.
    55.李金锡,张鉴.CaO-MgO-CaF2-Al2O3-SiO2五元渣系粘度的计算模型[J],北京科技大学学报,2000,4(4):316-319.
    56.马建平,刘国平.LF炉用精炼渣性能研究[J],马钢技术,2000,(4):3-5.
    57.龚志翔,孔晓尽,费有虎.SKF炉用基础渣优化试验研究[J],马钢科研,1999,(2):1-6.
    58. Krejny T L, Emling W H, Chambers W P,et al. LTV DHCC synthetic slag practices [A], Steelmaking Conference Proceeding[C],1997,63-68.
    59. Bruce 0, Barker J, Ohio A. Synthetic slag addition utilizing recycled materials [A], Steelmaking Conference Proceedings [C], Rodney Cox,1994,167-174.
    60. Turkdogan E T. Slags and fluxes for ferrous ladle metallurgy [J], Ironmaking and Steelmaking,1985,12(2):64-78.
    61.俆增啓.炉外精炼[M],北京:冶金工业出版社,1998.
    62.曲英.炼钢学原理[M],北京:冶金工业出版社,1983.
    63.梁连科.关于炉渣的光学碱度问题[J],辽宁冶金,1995(5):24-27.
    64.黄希牯.钢铁冶金原理[M],北京:冶金工业出版社,2002.
    65.翁宁,王忠东.利用光学碱度计算含CaF2脱硫剂脱硫能力的研究[J],炼钢,1999,15(1):25-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700