修复多环芳烃复合污染水体的高效菌群构建及降解特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以多环芳烃萘为唯一碳源和能源,从某焦化厂活性污泥中筛选出菌株ZJ1H和ZJ2H,经鉴定,确定其为蒂莫内马赛菌(Massilia timonae)和解甘露醇罗尔斯顿菌(Ralstonia mannitolilytica)。考察了初始底物浓度、投菌量、pH值、温度、盐浓度和转速等因素对菌株降解效率的影响,对降解条件进行了优化。结果表明,菌株ZJ1H的最佳降解条件为:初始底物浓度20mg/L、投菌量15%、温度30~35℃、初始pH7.0、盐浓度3%以内、转速120~200rpm;ZJ2H的最佳降解条件为:初始底物浓度40 mg/L、投菌量10%~25%、温度30~35℃、初始pH7.0、盐浓度3%以内、转速120~160rpm。菌株的广谱性实验显示菌株ZJ1H和ZJ2H具有较宽的降解谱。ZJ1H能以、芴、芘和萘这4种PAH为唯一碳源和能源生长,而不能有效利用蒽和菲。ZJ2H则可将除菲以外的蒽、、芴、芘、萘这5种PAH作为代谢基质。
     又以另一种常见多环芳烃为唯一碳源和能源,分离出一株的高效降解菌CT,通过形态学观察、生理生化试验和16S rDNA基因序列分析,初步推测菌株CT为嗜氨副球菌(Paracoccus aminovorans)。在投菌量为10%,初始浓度40 mg/L,培养液pH 7.0,温度35℃,振荡速率120 rpm的条件下,历时8 d,的降解效率可达85.2%。为确定降解基因的位置,采用碱裂解法对菌株进行质粒抽提,得到一个大于15kb的质粒。将该质粒转化E. coli DH10B感受态细胞,发现转化子获得了一定的降能力,8 d内可将30 mg/L的降解43%;而经SDS-高温消除质粒的突变菌株则丧失了利用的能力。结果表明,菌株CT的质粒携带了降解基因。
     以从天然污染环境分离、筛选得到的9株PAHs降解菌为基本菌种构建了高效修复PAHs复合污染体系的菌群,结果表明,无论对单一PAH还是混合PAHs,菌群D均表现出较高降解效率。通过摇瓶实验考察了PAHs初始质量浓度对菌群D降解效率的影响,结果表明,80 mg/L为菌群D的最佳底物浓度水平。当表面活性剂Tween-80的最佳投加量为150 mg/L时,菌群D对PAHs的生物降解效率可达92%。论文还考察了在外加碳源、氮源存在的条件下,菌群D对PAHs的降解效果。结果表明,葡萄糖和酵母粉分别为理想的碳源和氮源,在它们分别作用下,菌群D对PAHs的降解效率可达96.4%和100%。
     采用菌群D对PAHs复合污染水体进行了模拟修复,在外加碳源、氮源和表面活性剂作用下,菌群D和长江水中的土著微生物能很好的融合于同一环境,菌群D可有效地对水体中的PAHs进行生物修复。经过6 d的修复期,菌群D对、芘、芴的降解效率分别为86.4%、79.5%和84.8%,对蒽、菲、萘的降解效率则趋近于100%。
Two dominant naphthalene-degrading strains, named ZJ1H、ZJ2H, which can utilize naphthalene as sole carbon was isolated from activated sludge of a coking plant.They were identified respectively as Massilia timonae and Ralstonia mannitolilytica.The effect of initial concentration of naphthalene solutions, inoculating dosage, pH, temperature, salinity and shaking rates of rocking bed on degradation efficiencies were investigated. The degradation conditions were optimized. The results show that, the optimal conditions for degradation of naphthalene by strain ZJ1H are: initial concentration of naphthalene solutions, 20 mg/L; inoculating dosage, 15% (V/V); temperature, 30~35℃; pH, 7.0; salinity, less than 3%; shaking rates of rocking bed, 120~200rpm. The optimal conditions for degradation of naphthalene by strain ZJ2H are: initial concentration of naphthalene solutions, 40 mg/L; inoculating dosage, 10%~25% (V/V); temperature, 30~35℃; pH, 7.0; salinity, less than 3%; shaking rates of rocking bed, 120~160rpm. Broad-spectrum experiment indicated that the degradable PAHs as substrates for metabolism of strains ZJ1H and ZJ2H were diversiform. Strain ZJ1H could use chrysene, fluorene, pyrene and naphthalene as sole carbon and energy source for growth, respectively, but could’t effectively use anthracene and phenanthrene. Inconsistently, strain ZJ1H could treat anthracene, chrysene, fluorene, pyrene and naphthalene these 5 PAHs as metabolic substrate, but it could not utilize phenanthrene only.
     At the same time, a predominant chrysene-degrading strain named CT was isolated too. The strain was initially identified as Paracoccus aminovorans by the results of morphological observation, physio-biochemical test and 16S rDNA gene sequence analysis. Under the conditions of initial concentration of chrysene 40 mg/L, inoculation amount 10% (V/V), pH 7.0 and temperature 35℃, the degradation efficiency of chrysene by the strain CT reached 85.2% within 8 days. Alkaline lysis was applied to extract plasmids from strain CT to confirm the location of degradation gene. A plasmid, greater than 15kb, was detected.The transformants obtained the ability to degrade chrysene when the plasmid of strain CT was transformed to competent cell of Escherichia coli DH10B, it can remove 43% of chrysene in the solutions with concentration of 30mg/L within 8 days. But the mutation lost the ability to degrade chrysene when its plasmid was eliminated by SDS and high temperature.This indicated that the plasmid of strain CT carried chrysene-degrading genes.
     Furthermore, we constructed a high-effective microbial consortium with 9 PAHs-degrading strains that separated and screened from polluted environment, result display that the degradation efficiency of microbial consortium D of both only one PAH and multiple PAHs were high.
     Experiments for effect of initial concentration of PAH solutions on degradation efficiencies stated clearly 80mg/L was the optimal concentration level. And experiment indicated the optimum addition quantity of surface active agent Tween-80 was 150mg/L. Experiment also showed that glucose and yeast powder were the ideal external carbon source and nitrogen source. If they existence, the degradation rate could reach 96.4% and 100%, respectively.
     Simulation bioremediation experiment proved that microorganism in microbial consortium D could easily incorporated into pannonibacter phragmitetus of the Yangtze River. They help each other to carry out bioremediation. The removal rate of chrysene, pyrene, fluorene reached 86.4%、79.5% and 84.8%, respectively, and the degradation rate of anthracene, phenanthrene and naphthalene were tend to 100% within 6 d.
引文
[1] Baird C. Environmental Chemistry[M]. New York: W.H. Freeman and Company, 1995, 276-278.
    [2] Stegeman J, Lech J. Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure [J]. Environmental health perspectives, 1991, 90:101-109.
    [3] Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons [J]. Biodegradation, 1992, 3(2-3):351-368.
    [4]蔡立哲,马丽,袁东星,等.九龙江口红树林区底栖动物体内的多环芳烃[J].海洋学报, 2005, 27(5):112-118.
    [5] Baumard P, Budzinski H, Garrigues P, et al. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations [J]. Marine Environmental Research, 1999, 47(1):17-47.
    [6] Chen B, Hu Y P, Jin T Y. Hepatic toxicity and its genetic susceptibility of polycyclic aromatic hydrocarbons[J]. Journal of Environmental and Occupational Medicin, 2005, 22 (2):154-155, 183.
    [7]安社娟,陈家堃,陈学敏.多环芳烃致癌的分子毒理学研究进展[J].国外医学:卫生学分册, 2005, 32(1):10-13.
    [8] Wang Y N, Lv J C, Zeng B H, Bin X N. Expression of DNA repair gene ERCC1 and its relationship with PAH-DNA adducts in lung cancer tissues [J]. Chinese Journal of Pathophysiology, 2004, 20 (7):1153-1156.
    [9] Samanta S, Chakraborti A, Jain R. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol [J]. Applied Microbiology and Biotechnology, 1999, 53(1):98-107.
    [10]周亮,梅凡民,傅成诚,等.环境中多环芳烃生物降解与修复研究进展[J].煤矿现代化,2009,89:62-63.
    [11] Keith L, Telliard W. Priority Pollutants: I. A Perspective View [J]. Environmental Science and Technology, 1979, 13(4):416-423.
    [12]谭文捷,李宗良,丁爱中,等.土壤和地下水中多环芳烃生物降解研究进展[J].生态环境,2007,16(4): 1310-1317.
    [13]许锦泉.多环芳烃结构致癌性关系的模糊数学模型[J].数学的实践与认识,2003,33(1): 10-13.
    [14] Wagrowski D M., Hites R A. Polycyclic aromatic hydrocarbon accumulation in urban, suburban and rural vegetation [J]. Environmental Science and Technology, 1996, 31 (1): 279-282.
    [15] Rajagopalan R, Vohura K G, Rao A M. Studies on oxidation of benzo [a] pyrene by sunlight andozone[J]. Science of the Total Enviroment,1983,27(1): 33-42.
    [16]Huang X D, Zeiler L F, Dixon D G, Greenberg B M. Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (Canola) and Cucumbis sativus (Cucumber) in simulated solar radiation [J]. Ecotoxicology and Environmental Safety, 1996, 35(2): 190-197.
    [17] Calder J A, Lader J H. Microbial Metabotism of Potycyctic Aromatic Hydrocarbons [J]. Applied and Environmental Microbiology, 1976, 32(1): 95-101.
    [18] Shen Q, Wang K Y, Zhang W, et al. Characterization and sources of PAHs in an urban river system in Beijing, China [J]. Environmental Geochemistry and Health, 2009, 31(4): 453-462.
    [19]刘维立,朱先磊,卢妍妍.大气中多环芳烃的来源及采样方式的研究[J].城市环境与城市生态, 2008, 12 (5): 58-60.
    [20]马涛.红树种养池塘中多环芳烃的降解与吸附研究[D].中山大学硕士学位论文, 2010.
    [21]董瑞斌,许东风.多环芳烃在环境中的行为[J].环境与开发, 1999, 14(2):10-11.
    [22] Ray S, Khillare P S, Agarwal T, et al. Assessment of PAHs in soil around the International Airport in Delhi, India[J]. Journal of Hazardous Materials, 2008, 156(1-3): 9-16.
    [23] Zhang Y X, Su T. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China [J]. Environmental Pollution, 2008, 156(3): 657-663.
    [24]韩菲.多环芳烃来源与分布及迁移规律研究概述[J].气象与环境学报, 2007, 23(4): 57-61.
    [25] Karl H, Leinemann M. Determination of polycyclic aromatic hydrocarbons in smoked fishery products from different smoking kilns [J]. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 1996, 202(6): 458-464.
    [26]戴树桂.环境化学[M].北京:高等教育出版社, 2002, 318-321.
    [27]丁克强,骆永明.多环芳烃污染土壤的生物修复[J].土壤. 2001, 33(4):169-177.
    [28]陈春云,岳珂,陈振明等.微生物降解多环芳烃的研究进展[J].微生物学杂志, 2007, 27(6):100-103
    [29] Pritchard H P, Costa C F. EPA’s Alaska Oil Spill Bioremediation Report [J]. Environmental Science and Technology, 1991, 25(3):372-379.
    [30] Heitkamp M A, Cerniglia C E. Effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems [J]. Environmental toxicology and chemistry, 1987, 6(7):535-546.
    [31] Wang X, Yu X, Bartha R. Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil[J]. Environmental Science and Technology, 1990, 24(7):1086-1089.
    [32] Treccani V, Walker N, Wiltshire G. The metabolism of naphthalene by soil bacteria [J]. Journal of General Microbiology, 1954, 11(3):341-348.
    [33]曹晓星,田蕴,胡忠,等. PAHs降解基因及降解酶研究进展[J].生态学杂志, 2007,26(6):917-924.
    [34]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学, 2000, 19(3):24- 29.
    [35]刘莉,陈玉成,于萍萍,等.多环芳烃微生物降解的研究进展[J].安徽农业科学, 2006, 34(23):6289-629.
    [36]宋玉芳,孙铁珩,许华夏.表面活性剂TW-80对土壤中多环芳烃生物降解的影响[J].应用生态学报, 1999, 10(2):230-232.
    [37] Zhang Y, Maier W J, Miller R M. Effect of Rhamnolipids on the dissolution, bioavailability, and biodegradation of Phenanthrene [J]. Environmental Science and Technology, 1997, 31(8):2211-2217.
    [38] Torrens J L, Herman D C, Miller-Maier R M. Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various solis under saturated flow conditions [J]. Environmental Science and Technology, 1998, 32(6):776-781.
    [39] Breedveld G D, Magnus S. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site [J]. Biodegradation, 2001, 11(6):391-399.
    [40]董春娟,吕炳南,陈志强,等.处理生物难降解物质的有效方式——共代谢[J].化工环保, 2003, 23(2):82-85.
    [41]刘和,陈英旭.环境生物修复中高效基因工程菌的构建策略[J].浙江大学学报(农业与生命科学版), 2002, 28(2):208-212.
    [42] Launen L A, Dutta J, Turpeinen R, et al. Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor [J]. Biodegradation, 2008, 19 (3) 347-363.
    [43] McNally D, Mihelcic J, Lueking D. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions [J]. Chemosphere, 1999, 38(6):1313-1321.
    [44] Sho M, Hamel C, Greer C. Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65 [J]. FEMS microbiology ecology, 2004, 48(2):209-220.
    [45] Grant A. Stanley, Britz M L, Sudarat B C, et al. Detoxification of soils containing high molecular weight polycyclic aromatic hydrocarbons by gram-negative bacteria and bacterial-fungal co-cultures [M]. New York: Marcel Dekker Inc. Basel, 2000, 409-432.
    [46] Trzesicka-Mlynarz D, Ward O. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil [J]. Canadian journal of microbiology, 1995, 41(6):470-476.
    [47] Saito A, Iwabuchi T, Harayama S. A Novel Phenanthrene Dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia coli [J]. Journal of Bacteriology, 2000, 182(8):2134-2141.
    [48] Menn F M, Applegate B M, Sayler G S. NAH Plasmid-Mediated Catabolism of Anthracene andPhenanthrene to Naphthoic Acids [J]. Applied and Environmental Microbiology, 1993, 59(6): 1938-1942.
    [49]Kiyohara H, Torigoe S, Kaida N, et al. Cloning and Characterization of a Chromosomal Gene Cluster, pah, that Encodes the Upper Pathway for Phenanthrene and Naphthalene Utilization by Pseudomonas putida OUS82[J]. Journal of Bacteriology, 1994, 176(8):2439-2443.
    [50]杨琦,刘海珠,尚海涛,等.反硝化菌对萘的吸附实验研究[J].油气田地面工程, 2006, 25(3): 29.
    [51]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001, 353-398.
    [52] Lindquist D, Murrilll D, Burran W P, et al. Characteristics of Massilia Timonae and Massilia Timonae-Like Isolates from Human Patients, with An Emended Description of the Species [J]. Journal of Clinical Microbiology, 2003, 41(1):192-196.
    [53] De Baere T, Steyaert S, Wauters G, et al. Classification of Ralstonia Pickettii Biovar 3/‘Thomasii’Strains (Pickett 1994) and of New Isolates Related to Nosocomial Recurrent Meningitis as Ralstonia Mannitolytica sp. Nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2):547-558.
    [54]闫亚娟,李宗伟,刘建玲,等.低能N+注入油脂降解菌株的诱变选育及降解条件的初步研究[J].核技术, 2008, 31(12):915-919.
    [55]阮志勇.石油降解菌株的筛选、鉴定及其石油降解特性的初步研究[D].中国农业科学院硕士学位论文, 2007, 81-82.
    [56]唐玉斌,孙常宇,陈芳艳,等.一株高效降解菌的分离鉴定及其降解特性[J].微生物学通报, 2009, 36(4):593-597.
    [57]刘怡辰,曹娟,高国庆,等.萘降解菌N19-3的分离、鉴定和萘双加氧酶基因的检测[J].环境科学研究, 2008, 21(5):27-31.
    [58]温洪宇,廖银章,李旭东.菌株N-1对萘的降解特性研究[J].应用与环境生物学报, 2006, 12(1):96-98.
    [59]宋昊,邱森,章俭,等.高活性萘降解细菌Hydrogenophaga Palleronii LHJ38的研究[J].化工环保, 2006, 26(2):87-90.
    [60] Pathak H., Kantharia D., Malpani A., et al. Naphthalene Degradation by Pseudomonas sp. HOB1: In vitro Studies and Assessment of Naphthalene Degradation Efficiency in Simulated Microcosms [J]. Journal of Hazardous Materials, 2009, 166(2-3):1466-1473.
    [61] Li A T, Zhang J D, Xu J H, et al. Isolation of Rhodococcus sp. Strain ECU0066, A New Sulfide Monooxygenase-Producing Strain for Asymmetric Sulfoxidation[J]. Appllied Environmental Microbiology, 2009, 75(2): 551-556.
    [62]王新新,党宏月,王春艳,等.一株深海嗜低温萘降解细菌Nah-1的分离及降解基因研究[J].海洋科学, 2008, 32(1):30-34.
    [63] Pepi M, Lobianco A, Renzi M, et al. Two Naphthalene Degrading Bacteria Belonging to the Genera Paenibacillus and Pseudomonas Isolated from A Highly Polluted Lagoon Perform Different Sensitivities to the Organic and Heavy Metal Contaminants[J]. Extremophiles, 2009, 13(5): 839-848.
    [64] Zafar M, Kumar S. Optimization of Napthalene Biodegradation by A Genetic Algorithm Based Response Surface Methodology[J]. Brazilian Journal of Chemical Engineering, 2010, 27 (1): 89-99.
    [65] Luan T G, Yu K S, Zhong Y, et al. Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments [J]. Chemosphere, 2006, 65(11):2289-2296.
    [66]毛健,骆永明,藤应,等.一株高分子量多环芳烃降解菌的筛选、鉴定及降解特性研究[J].微生物学通报, 2008, 35(7): 1011-1015.
    [67] Willison J C. Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source[J]. FEMS Microbiology letters, 2004, 241(2): 143-150.
    [68] Valentin L, Lu-Chau T A, Lopez C, et al. Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55 [J]. Process Biochemistry, 2007, 42(4):641-648.
    [69] Hadibarata T, Tachibana S, Itoh K. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium[J]. Journal of Hazardous Materials, 2009, 164(2-3):911-917.
    [70] Urakami T, Araki H, Oyanagi H, et al. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., Which utilize N,N-Dimethylformamide[J]. International Journal of Systematic Bacteriology, 1990, 40(3): 287-291.
    [71]毛健,骆永明,膝应,等.一株副球菌对污染土壤中多环芳烃的降解研究[J].土壤, 2009, 41(3):448-453.
    [72] Qiao L, Wang J L. Microbial degradation of pyridine by Paracoccus sp. isolated from contaminated soil [J]. Journal of hazardous Materials, 2010, 176(1-3):220-5.
    [73]熊瑞林,陈吕军,刘江江.脱氮副球菌W12降解吡啶的影响因素及其赋存质粒特性[J].环境科学学报,2009, 29(2):252-258.
    [74] Li R, Zheng J W, Wang R, et al. Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater[J]. International Biodeterioration and Biodegradation, 2010, 64(1):51-57
    [75]许玫英,岑英华,邓穗儿,等.一株茶碱降解菌的分离和鉴定[J].微生物学报, 2002, 42(5):526-533.
    [76] Jia K Z, Cui Z L, He J, Guo P, Li S P. Isolation and characterization of a denitrifying monocrotophos-degrading Paracoccus sp. M-1[J]. FEMS Microbiology Letters, 2006, 263(2):155-162.
    [77] Kim S G, Bae H S, Lee S T. A novel denitrifying bacterial isolate that degrades trimethylamine bothaerobically and anaerobically via two different pathways [J]. Archives of Microbiology, 2001, 176(4):271-277.
    [78] Dhote M, Juwarkar A, Kumar A, Kanade G S, Chakrabarti T. Biodegradation of chrysene by the bacterial strains isolated from oily sludge [J]. World journal of microbiology & biotechnology, 2009, 26(2):329-335.
    [79]娄恺,班睿,赵学时.细菌质粒的消除[J].微生物学通报, 2002, 29(5):99-102.
    [80]唐玉斌,毛莉,吕锡武,等.一株蒽降解菌的分离,鉴定及其降解特性研究[J].环境科学与技术, 2007, 30(9):11-13.
    [81]陈芳艳,唐玉斌,毛莉,梁林林.一株茄镰孢菌对菲的降解特性研究[J].江苏科技大学学报, 2008, 22(3):72-76.
    [82]唐玉斌,王晓朝,陈芳艳,马姗姗,杨旭.一株芴降解菌的分离鉴定及其对多环芳烃的降解广谱性研究[J].环境工程学报. 2011, 5(2):467-471.
    [83]唐玉斌,王晓朝,陈芳艳,等.芴降解优势菌的筛选鉴定及降解特性研究[J].中国环境科学, 2010, 30(8):1086-1090.
    [84]唐玉斌,马姗姗,王晓朝,陈芳艳.一株芘的高效降解菌的选育及其降解性能研究[J].环境工程学报. 2011, 5(1): 48-54
    [85]周德平.菲降解细菌的分离鉴定、降解特性研究及儿茶酚2,3-双加氧酶基因的克隆与表达[D].杭州:浙江大学,2003:47-48
    [86]Boseh R, Moore E R B, Gareia-Valdes E, PiePer D H. Nah W, A novel indueible salieylate hydroxylate in volved in mineralization of naphthalene by Pseudomonas stutzeri AN10[J]. Journal of Bacteriology, 1999, 181(8):2315-2322
    [87]孙铁珩.污染土壤中多环芳烃生物降解的调控研究[J].应用生态学报, 1998, 9(6):640-644.
    [88] Gotschalk G. Bacterial Metabolism [M]. NewYork: Spinger-Verlag, 1979.
    [89]刘旭光,邵世光.一株苯酚高效降解菌2N-17的分离鉴定及其降解特性[J].湖北农业科学, 2009, 48(4):830-833.
    [90]张杰,刘永生.多环芳烃降解菌筛选及其降解特性[J].应用生态学报, 2003, 14(10):1783-1786.
    [91] Kawai F, Hanada K, Yoshiki T, et al. Bacterial Degradation of Water-insoluble Polymer : Polypropylene Glycol : Micronbial Degradation of Synthetic Polymers(II)[J]. Journal of Fermentation Technology, 1977, 55(2):89-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700