降解多环芳烃高效菌及生物活性炭的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国钢铁生产过程中耗水量极大,特别是伴随着炼焦工艺所产生的大量焦化废水。焦化废水含有大量的对环境和人类健康有害的却难以降解的多环芳烃,若不处理而直接排入环境中,产生的危害是难以估量的。我国吨钢耗新水量和外排废水量与国际的先进技术相比仍存在着很大的差距,因此提高我国钢铁企业特别是炼焦行业的水资源综合利用率和外排水的再生利用率,将对我国水资源合理利用、经济的稳定而快速地发展和社会和谐发展具有举足轻重的现实意义。
     焦化废水中含有大量“三致”和难降解的组分——的多环芳烃,因此处理焦化废水的关键是低耗能和无二次污染的绿色环保技术。萘类和喹啉类是焦化废水中百分含量最高的多环芳烃类化合物,以此两类物质为对象研究微生物降解,对焦化废水的深度处理和再生循环利用具有着重要意义。
     生物活性炭(BAC)水处理技术作为一种绿色水处理技术在微污染废水和工业废水深度处理有着广泛地应用,但在焦化废水的深度处理的回用的应用研究却鲜见报道。本课题就是根据BAC工艺特性,研究萘和异喹啉多环芳烃类可微生物降解性、生物活性碳工艺在焦化废水深度处理工艺中的实用性、可行性和优越性,为后续的研究和焦化废水的循环回用提供理论依据。
     研究结果表明:(1)本实验成功从焦化厂土壤和曝气池活性污泥中通过富集、驯化和纯化等实验,成功地筛选出以萘和异喹啉分别为唯一碳源的菌株N-3和菌株K-4,对底物萘和异喹啉分别具有最高去除率和菌株生长量;并为后续的生物活性炭试验提供高效降解微生物。(2)根据高效降解菌株N-3的生理生化特性及16Sr DNA序列分析结果,鉴定菌株N-3为枯草芽孢杆菌Bacillus subtilis,其GenBank序列号是AEHM01000002.1。(3)根据高效降解菌株K-4的生理生化特性结果,初步确定菌株K-4为Pseudomonas。(4)采用单独投加高效降解菌混合液、GAC-3型活性炭和生物活性炭分别处理焦化废水二沉池出水。经过72h处理,生物活性炭对CODcr去除率分别比GAC-3型活性炭和高效微生物提高了17.80%和61.61%;色度去除率分别提高了2.2%和89.41%,满足中水回用标准。经过15次重复处理,生物活性炭对CODcr平均去除率分别比GAC-3型活性炭和高效微生物分别提高了11.90%和86.08%;色度平均去除率分别提高了26.6 %和79.02%。生物活性炭显示出其在深度处理回用焦化废水的优越性和可行性。(5)高效降解微生物与活性炭共同研制出的生物活性炭装置对模拟废水中的有机物具有较好去除率并稳定在60%左右。(6)生物活性炭上的高效降解微生物经循环泵入高效降解混合菌悬液和营养水,均匀、紧密地附着、生长在活性炭表面并形成具有降解性能的生物膜。生物活性炭上的生物量随着碳层高度的增加呈现下降的趋势;装置的试验最终出水中OD值呈现先上升后下降,并趋于稳定。生物活性炭吸附降解模拟废水中的有机物的动力学模型符合一级动力学模型,InC=-0.0318t+6.0143。
A enormous amount of water is consumed in our steel production process, especially the coking wastewater accompanied by coking production process. Coking wastewater contains lots of polycyclic aromatic hydrocarbons (PAHs) which is harmful for environment and human health. If the coking wastewater is directly discharged into emvironment, the generated hazard will be inestimable. There are still a large gap in our per ton steel fresh water consumption and efflux, comparing with the international advanced technology. Therefore, improving steel enterprises, especially coking industry, comprehensive utilization of water resources and recycling rate of outer drainage will have important practial significance on rational use of water resources, steady and rapid economic development and harmonious development of society.
     There are plenty of leading to mutagenesis, carcinogenesis and teratogenesis and refractory components, PAHs, in the coking wastewater, so the key to treating coking wastewater is low energy consumption and green technologies without secondary pollution. Naphthalenes and quinolines are the highest percentage of PAHs in the coking wastewater. It play important role in coking wastewater advanced treatment and regeneration recycling utilization.
     Biological activated carbon (BAC) as a kind of green water treatment technology has been widely used in micro-polluted water and industrial wastewater treatment, but rarely reported in coking wastewater advanced treatment and regeneration recycling utilization. This research is based on BAC technology characteristic, studying in naphthalene and isoquioline biodegradability, BAC’s practicality, feasibility and superiority in coking wastewater advanced treatment technology and providing theoretical basis for the follow-up research and coking wastewater recycling utilization.
     Research results show that: (1)The experiment successfully has separated high efficiency degradation strains (HES) respectively named N-3 and K-4 as naphthalene or isoquinoline the unique substrate from the coking plant and aeration tank activated sludge through enrichment, domestication and purification. The high efficiency degradation strains provide with microorganism in the following BAC experiments. (2)According to the HES N-3 physiology and biochemistry 16Sr DNA sequence analysis experiment result, the strain N-3 is identified as Bacillus subtilis, which GenBank sequence number is AEHM01000002.1. (3)Accoeding to the HES K-4 physiology and biochemistry experiment result, the strain K-4 is initially identified as Pseudomonas. (4)The HES, GAC-3 and BAC are respectively applied to ttreating sedimentation tank effluent of coking process. After treatment for 72h, the removal rate of COD by BAC was 17.80% higher than GAC-3 and 61.61% higher than HES; the removal rate of chromaticity by BAC was 2.2% higher than GAC-3 and 89.41% higher than HES. The treated water by BAC can reach the renewable water stanedard. After reduplicative treatments for 15 times, the average removal rate of COD by BAC was 11.90% higher than GAC-3 and 86.08% higher than HES; the average removal rate of chromaticity by BAC was 26.6% higher than GAC-3 and 79.02% higher than HES. The BAC showed the superiority and feasibility in coking wastewater advanced and regeneration recycling treatment. (5)The BAC device jointly researched and produced by HES and GAC-3 had a good removal rate of organic matter in simulated wastewater, steadily around at 60%. (6)The high efficiency degradation microbe on the BAC was circularly pumped though high mixed efficiency bacteria and nutritive water, uniformly and closely attached and grew on the carbon surface and formed the degrading biomembrane. The biomass on the BAC is lower along with higher carbon layer. The BAC device final effluent OD value increased at first then decreased, stabilized at last. The BAC adsorbed and biodegraded the organic matter in simulated wastewater kinetic model fit first level kinetic model,InC=-0.0318t+6.0143.
引文
[1]陈亮.多环芳烃的检测及降解处理研究[D].绵阳:西南科技大学,2009
    [2] Menzie C . A , Potoki B . B . Exposure to carcinogenic PAHs in the environment[J].Environ Sci Technol,1992,26(7):l278-1284
    [3] Wilson S.C,Jonas K.C.Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons(PAHs):a review [J].Environ Pollut,1993,81:229-249
    [4]王连生,孔令仁,韩朔睽等编.致癌有机物[M].中国环境科学出版社.北京,1993:1-10
    [5]王春明.多环芳烃降解菌分离、降解特性及在稠油微生物采油中的应用研究[D].成都:四川大学,2007
    [6] Juhasz A,L Naidu R.Bioremediation of high molecular weigh polycyclie aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene [J].International Biodeterioration & Biodegradation,2000,45:57-88
    [7] D Mackay,W Y Shiu.Chem Eng.1977,22:399-403
    [8]余刚,牛军峰,黄俊等.持久性有机污染物—新的全球性环境问题[M].北京:科学出版社,2005
    [9]刘敏,许世远.长江口潮滩POPs环境生物地球化学过程与生态风险[M].北京:中国环境科学出版社,2005
    [10]苏丽敏,袁星.持久性有机污染物(POPs)及其生态毒性的研究现状与展望[J].重庆环境科学,2003,25(9):62-73
    [11] SW Kaickhoff,D S Brown,T AScott.Water Res.1979,13:241-246
    [12] G Grimmer.Environment carcinogens:polycyclic aromatic hydrocarbons occurrence;biochemistry,carcinogenicity[M].CRC Press Boca Raton.1983
    [13] J M Neff.Polycyclic aromatic hydrocarbons in aquatic environment [M].Applied Science Publishers U K,1979
    [14]赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科,1998,17(2):68-72
    [15] Pullman A,Pullman B.Electronic structure and carcinogenic activity of aromatic molecules;new developments.Advances in cancer research[J].1955,3:117-159
    [16] Jerina D.M.,Lehr R.E.In:Microsomes and Drug Oxidations[M].(Ullrich V,etal),Oxford:Pergamon Press,1977:709-720
    [17]戴乾圜.化学致癌剂及化学致癌机理的研究[J].中国科学,1979,(10):964-976
    [18]陈洪,戴乾圜.多环芳烃“双区”理论的定量研究[J].环境化学,1982,1(4):253-261
    [19]张蓉颖,庞代文,蔡汝秀.DNA与其靶向分子相互作用研究进展[J].高等学校化学学报,1999,20(8):1210-1217
    [20]许锦泉.多环芳烃结构致癌性关系的模糊数学模型[J].数学的实践与认识,2003,33(1):10-13
    [21] Varanas U.(Edt),1989。Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment.CRC Press inc,Boca Raton,FL USA
    [22]谢重阁.环境中的苯并(a)芘及其分析技术[M].北京:中国环境科学出版社, 1991, 19-20.
    [23]毛莉.多环芳烃污染水体的生物强化修复试验研究[D].镇江:江苏科技大学,2007
    [24]曹曼,欧阳福承.水体中多环芳烃的来源、迁移及转化[J].四川环境科学,1991,10(3):26-29
    [25] Simon R.W.Polycylic aromatic hydrocarbons in United Kingdom Environment: A preliminary source inventory and budget[J]. Environment Pollution,1995,88:9l-108
    [26] Walter U,Beyer M,Klein J.Degradation of pyrene by Rhodococcus sp.WW1[J].Applied Microbiol Biotechnol, 1991,34:671-676
    [27] Pritchard hp, Costa CF. EPA’S Alaska oil spill bioremediation report[J].Environ Sci Technol, 1991,25:372-379
    [28]魏妍.水中多环芳烃的微生物修复技术研究[D].武汉:华中师范大学,2010
    [29]张心平,岳晓含,黄今勇等.萘降解质粒pND6的分离和鉴定[J].应用与环境生物学报,2000,6(2):187-190.
    [30]蔡宝立,李永君,梁靖等.降解萘的假单胞菌ND24菌株的分离和萘污染土壤的生物修复[J].食品与生物技术学报,2005,24(6):6-9
    [31]温洪宇,廖银章,李旭东.菌株N21对萘的降解特性研究[J].应用于环境生物学报,2006,12(1):96-98
    [32]宋吴,邱森,章俭等.高活性萘降解细菌Hydrogenophaga Palleron II LHJ38的研究[J].化工环境,2006,26(2):87-90
    [33]张春杨,崔艳梅.萘降解菌NAP222的16SrRNA基因克隆和系统发育分析[J].安徽农业科学,2007,35(30):9472-9473
    [34]张春杨,彭振兴.萘降解菌NAP A的分离、降解性能和分子系统学研究[J].生态环境,2008,17(1):109-112
    [35]王春明,李大平,王春莲.微杆菌3-28对萘、菲、葸、芘的降解[J].应用与环境生物学报,2009,15(3):361-366
    [36]文怡辰,曹娟,高国庆等.萘降解菌N1923的分离鉴定和蔡双加氧酶基因的检测[J].环境科学学报,2008,2l(5):27-31
    [37]蔡宝立,王淑芳,黄今勇等.黄杆菌ND3菌株的分离和降解萘的研究[J].环境化学,1998,17(5):434-438
    [38]方世纯,郝瑞霞,鲁志强.枯草芽孢杆菌(Bacillus subtilis)降解萘的动力学研究[J].高校地质学报,2007,13(4):682-687
    [39]殷波,顾继东.环境污染物萘、葸、菲、芘的好氧微生物降解[J].热带海洋学报, 2005,24(4):14-21
    [40]三艳,辛嘉,英宋吴.生物降解萘的研究进展[J].中国生物工程杂志,2009,29(9):19-24
    [41] Boldrin B,Tiehm A,Fritzsche C.Degradation of phenanthrene,fluorene,fluoran- thene,and pyrene by a Mycobacterium sp.[J].Appl.Environ.Microbiol.,1993,59:1927-1930
    [42]陶雪琴,卢桂宁,党志等.菲降解菌株GY2B的分离鉴定及其降解特性[J].中国环境科学,2006,26(4):478-481
    [43]李丽,钟鸣,周启星等.枯草芽孢杆菌对多环芳烃的降解能力研究[J].河南农业科学,2007,4:62-71
    [44]聂麦茜,张志杰,王晓昌等.两株假单胞茵对葸菲芘的降解作用[J].环境科学学报,2002,22(5):630-633
    [45]徐虹,章军,刘陈立等.PAHs降解菌的分离、鉴定及降解能力测定[J].海洋环境科学,2004,23(3):61-64
    [46]杨金水,许良华等.菲降解菌的分离鉴定及其降解性研究[J].海洋科学,2007,31(12):24-27
    [47]陈建海,李慧蓉.黄孢原毛平革菌对多环芳烃菲的生物降解[J].江苏石油化工学院学报,2000,12(3):30-32
    [48]杨晓磊,陆贻通,曹林奎.多环芳烃荧葸降解菌的筛选鉴定及降解特性研究[J].科技通报,2007,23(1):46-51
    [49]王新,李培军,巩宗强等.一株动胶杆菌的固定化及其降解土壤中菲、芘的研究[J].中国环境科学,2000,20(6):515-518
    [50]陈芳艳,唐玉斌,毛莉.一株茄镰孢菌对菲的降解特性研究[J].江苏科技大学学报,2008,22(3):72-76
    [51] Saito A,Iwabuchi T,Harayama S.Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp.KP7 [J].Chemosphere,1999,38(6):1331-1337
    [52] Seo J S,Keum Y S,Hu Y,eta1.Degradation of phenanthrene by Burkholderia sp.C3:initial 1,2-and 3,4- dioxygenation and meta and ortho-cleavage of naphthalene-1,2-diol[J].Biodegradation,2007,18(1):123-131
    [53] Walter U , Beyer M, Klein J, eta1 . Degradation of pyrene by Rhodococcus sp.UWl[J].Appl Microbiol Biotechnol,1991,34:671-676
    [54] Zaira Lo’pez,Joaquim Vila,Magdalena Grifoll.Metabolism of fluoranthene by mycobacterial strains isolated by their ability to grow in fluoranthene or pyrene[J]. IndMicrobiol Biotechnol,2005,32:455-464
    [55] Heitkamp M A,Freeman J P,Miller D W,eta1.Pyrene degradation by a Mycobacterium sp.:identification of ring oxidation and ring fission products[J].Appl Environ Mierobiol,1988,54(10):2556-2565
    [56]李全霞,范丙全等.降解芘的分枝杆菌M11的分离鉴定和降解特性[J].环境科学,2008,29(3):763-768
    [57] Boldrin B,Tiehm A ,Fritzsche C.Degradation of phenanthrene,fluorene, fluoranthene,and pyrene by a Mycobacterium sp.[J].Appl.Environ.Microbiol 1993,59:1927-1930
    [58]吴蔓莉,聂麦茜,王晓昌.Mn2+在黄杆菌FCN2菌株降解芘过程中的作用研究[J].环境科学,2008,29(7):1982-1985
    [59]王蕾,聂麦茜等.一株芽胞杆菌和一株黄杆菌代谢芘的摄取方式解析[J].环境科学学报,2009,29(5):924-929
    [60]张宏波,林爱军,刘爽.芘高效降解菌的分离鉴定及其降解特性研究[J].环境科学,2010,31(1):243-248
    [61]侯树宇,张清敏,余海晨等.多环芳烃芘高效降解菌的筛选及其降解性能的研究[J].南开大学学报,2006,39(2):71-74
    [62]苏丹,李培军,王鑫等.混合菌固定化及其对土壤中芘和苯并芘的降解[J].辽宁工程技术大学学报,2007,26(3):461-463
    [63] Bezalel L,Hadar Y,eter P F U,etal.Initial Oxidation Products in the Metabolism of Pyrene,Anthracene,Fluorene,and Dibenzothiophene by the White Rot Fungus Pleurotus ostreatus[J].Applied and Environmental Microbiology,1996,62(7):2554-2559.
    [64]扈玉婷,任风华,周培瑾.一株分离自新疆天池寡营养环境的糖丝菌(Saacharothrix sp.PYX一6)降解芘的特性[J].科学通报,2003,48(16):1796-1800
    [65]苏丹,李培军,王鑫.3株细菌对土壤中芘和苯并芘的降解及其动力学[J].环境科学,2007,28(4):913-917
    [66]周乐,盛下放.芘降解菌株的筛选及降解条件的研究[J].农业环境科学学报2006,25(6):1504-1507
    [67] Linda Gordon,Alan D.W.Dobson.Fluoranthene degradation in Pseudomonas alcaligenes PA-10[J].Biodegradation,2001,12:393-400
    [68] Ye D,Siddiqi MA,Maccubbin AE,Kumar S&Sikka HC.Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ.Sci. Technol.,1996,30:136-142
    [69] Sepic E,Bricelj M&Leskovesk H.Degradation of fluoranthene by Pasteurella sp.IFA and Mycobacterium sp . PYR-I : isolation and identification of metabolites.J.Appl.Microbiol.,1998,85:746-754
    [70]杨晓磊,陆贻通,曹林奎.多环芳烃荧葸降解菌的筛选鉴定及降解特性研究[J].科技通报,2007,23(1):46-51
    [71] Cerniglia C.E.Biodegradation of polycyclic aromatic hydrocarbons [J].Biodegradation,1992,3:35 l-368
    [72] Harayama S.,Kok M.,Neidle E.L-Functional and evolutionary relationships among diverse oxygenases[J].Annual Review of Microbiology,1992,46:565-601
    [73] Pinyakong O,Habe H,Supaka N,Pinpanichkarn P.,Juntongjin K., Yoshida T.,Furihata K.,Nojiri H.,Yamane H.,Omori T.Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp.strain P2[J].FEMS Microbiology Letter,2000, 191:115-12l
    [74]崔玉霞,金洪钧.微生物降解多环芳烃有机污染物分子遗传学研究进展[J].环境污染治理技术与设备,2001,(2):16-23
    [75]骆苑蓉.多环芳烃降解菌的降解特性与降解途径研究[D].厦门:厦门大学,2008
    [76]王业耀,袁彦肖,田仁生.焦化废水处理技术研究进展[J].工业水处理,2002,(22):1-4
    [77]郑文华,尹君贤,张一红.焦化废水零排放处理[J].中国冶金,2006,(16):4-7
    [78]国家环境保护局.钢铁工业废水治理[M].中国环境科学出版社.1992,77
    [79]姜卫娜,王亚娥,李杰.生物活性炭技术在污水处理中的应用及发展[J].山西建筑,2008,34(31):8-10
    [80]徐根良.活性污泥法处理低浓度煤气化—焦化含酚废水[J].环境污染与防治,1990,4(12):17-20
    [81] Berndt.c.L,RolIms.R.M.新的污水处理方法[J].国外环境科学技术,1985,4(32)
    [82]张秋波.酚水及煤气化废水的湿式氧化处理[J].环境科学学报,1987,3(7)
    [83] Senetar,J.J.Characterization and Treatment of Coal Gasification Condensate Waters[J].DiSS.Abstr.Int.B,1987,7(47)
    [84] Sanz J,Lombrana JI,De luis AM.Microwave and Fenton’s reagent oxidation of wastewater[J].Environ Chem Lett,2003,(1):45-50
    [85]许海燕,刘亚菲,唐文伟,等.超声、电解与Fenton试剂处理焦化废水的试验研究[J].工业水处理,2004,24(2):43-45
    [86] Kowalska M,Bodzek M,Bohdziewicz J.Biodegradation of phenols and cyanides using membranes with immobilized microorganisms[J].Process Biochemistry,1998,33(2):189-197
    [87]卢建杭,王红斌,刘维屏.焦化废水中有机物的混凝去除机理探讨[J].工业水处理,2000,20(6):20-22.
    [88]吴朝阳,CTAB用于焦化工业污水处理水再生处理的研究[D].武汉:武汉科技大学,2010
    [89]徐革联,熊楚安,邵景景等.利用生物与吸附性物质联合处理焦化废水的研究[J].煤炭加工和综合利用,2000,4:27-29
    [90]王真.焦化废水处理技术研究进展[J].广东化工,2008,35(11):50-52
    [91]周霞萍,周琴,张英.焦化废水脱氟脱色的膜分离机制[J].华东理工大学学报,2001,27(4):427-430
    [92]吴红伟,王占兰,张志杰.氧化塘深度处理焦化废水的初步研究[J].环境污染与防治,1998,20(4):1-4
    [93]解宏端,马溪平.生物强化技术提高焦化废水处理效果的研究[J].中国给水排水,2007,23(15):90-93
    [94]徐云,聂麦茜,陈剑宁.生物强化技术在活性污泥处理焦化废水中的实验研究[J].环境技术,2004,22(1):23-24
    [95]向晓平.一组优势菌对焦化废水中吲哚、吡啶的降解条件的实验研究[J].微生物学杂志,2004,24(3):36-39
    [96] Parkhurst.J,Pomona.P.Activated Carbon Pilot Plant[J].WPCF,1976,37(1):39-43
    [97]兰淑澄.生物活性炭技术及在污水处理中的应用[J].给水排水,2002,28(12):1-5
    [98]沈顺雨.生物活性炭作用机理及其在废水处理中的应用[J].城市环漪与绒市生态,1992,5(4):18-20
    [99]马放,时双喜,杨基先,等.固定化生物活性炭的形成及功能研究[J].哈尔滨建筑大学学报,2000,33(1):46-50
    [100] Mark A.Carlson,kefin M Hefernan,eta1.Comparing two GAC for Adsorption end Biostabilizatian[J].AWWA,1994,86(3)
    [101] Walker,G.M.,Weatherley,L.R.A simplified predictive model for biologically activated carbon fixed beds[J].Process Biochemistry,1997,32:327-335
    [102] Jonge,R..J.de,Breure,A.M.,Andel,J.G van.Bioregeneration of powdered activated carbon (PAC) loaded with aromatic compounds[J].Water Research,1996,30:875-882
    [103] Olmstead,K.P,Weber,W.J.Interactions between microorganisms and activated carbon in water and waste treatment operations[J].Chemical Engineering Communications 1991,108:113-125.
    [104] Schultz,J.R.,Keinath,T.M.,Powdered activated carbon treatment process mechanisms [J].Journal of Water Pollution Control Federation.1984,56:143-151
    [105] Kim,D.,Miyahara,T.,Noike,T.Effect of C/N ratio on the bioregeneration of biological activated carbon[J]. Water Science and Technology,1997,36:239-249
    [106] Miller,G.W.,Rice,R.G.;European water treatment practice-the promise of biological activated carbon[J].Civil Eng.1978,48(2):81
    [107] N.Klimenko,M.Winther-Nielsen,S.Smolin eta1.Role of the physico-chemieal factorsin the purification process of water from surface-active by biosorption[J].Water Research,2002,36:5132-5140.
    [108] PeroRi A.E.,Rodman C.A.Factors Involoved with Biological Regeneration of Activated Carbon[M]. Water-1974,AICE Symp. 1978,144
    [109] Schultz,J.R.,Keinath,T.M.Powdered activated carbon treatment process mechanisms[J].Journal of Water Pollution Control Federation,1984,56:143-151
    [110] Jonge,R.J.de,Breure,A.M.,Andel,J.G Vail.Bioregeneration of powdered activated carbon (PAC)loaded with aromatic compounds[J].Water Research,1996,30:875-882
    [111] Li,A.Y.L.,DiGiano,F.A..Availability of sorbed substrate for microbial degradation on granular activated carbon[J].Journal of Water Pollution Control Federation,1983,554:392-399
    [112]李建,肖宏.生物活性炭技术在饮用水处理系统中的发展和应用[J].环境保护,2007,24:94
    [113]王双,徐楠.基于生物活性炭技术的微污染源水处理的实验研究[J].科技信息,2008,(36):33-34
    [114] Goeddertz,J.G.,Mastsumoto,M.R.,Weber, A.S,Offline bio-regeneration of granular, Activated Carbon[J].Journal of Environmental Engineering,1988,114,1063-1076
    [115]安东,李伟光,宋佳秀,等.臭氧生物活性炭对三卤甲烷生成势去除效能[J].哈尔滨工业大学学报,2005,37(11):1489-1491
    [116]卫立现,张君枝,郭召海,等.预臭氧对砂滤过滤性能的影响[J].环境科学学报,2007,27(12):1957-1961
    [117]兰淑澄,陈淑桂,齐吉山.宝钢厂区生活污水处理与回用的实践[A].2008年全国水污染治理节能技术交流展示会论文集,2008:84-90
    [118]陆德滨.生物活性炭方法处理洗浴污水探析[J].北方环境,2002(3):70-71
    [119] Schroder.H.Fr.Characterization and monitoring of persistent toxic organics in the aquatic environment [J].Wat.Sci.Tech.,1998,38(7):151-158
    [120] Walker G.M,Weateherley L.R.Biological activated carbon treatment of industrial wastewater in stirred tank reactors[J].Chemical Engineering Journal,1999,75(3):201-206
    [121]耿士锁.织布厂印染废水处理工艺和运行经验[J].贵州环保科技,2001,7(4):8-12
    [122]秦永生,孙长虹,武江津.生物活性炭工艺用于废水深度处理的设计[J].中国给水排水,2003,19(9):88-91
    [123]郑广宏,乔俊莲,顾国维,等.水解/接触氧化/活性炭工艺处理印染废水[J].中国给水排水,2003,19(9):71-72
    [124] M X Loukidou,A I Zouboulis.Comparison of two biological treatment prosesses using attached-growth biomass sanitary landfill leachate treatment[J].Environmental Pollution,2001,(111):273-281
    [125] P A C Bonne.E F Beerendonk.J P Vander Hock.Retention of herbicides and pesticides in Relation to aging of RO membranes [J].Elservier Desalination,2001,(132):189-193
    [126]郭胜,生物活性炭深度处理焦化废水的实验研究[D].武汉:武汉科技大学,2010
    [127]侯红娟.宝钢化工公司焦化废水COD成分解析及生物降解性评价[D].上海:上海交通大学,2007
    [128]王邵文,钱雷,秦华,等.焦化废水无害化处理与回用技术[M].北京:冶金工业出版社,2006
    [129]李香兰.固定化光合细菌处理焦化废水中难降解有机物成分的鉴定[J].光谱实验室,2003,3(20):427-428
    [130]国家环境保护总局编.水和废水监测方法(第四版)[M].北京:中国环境科学出版社,2002,560-562
    [131]周敏,焦化废水难降解有机物高效菌的筛选及降解特性研究[D].武汉:武汉科技大学,2010
    [132] Fang Miaomiao, Zhang Xiuxia, Wang Xin, et al. Screening of strain Q5 and its degradation ability for quinoline from oil contaminated soil[J] . ACTA Petrole Sinica(Petroleum Processing Section),2007, 23(5):111-116
    [133] Vazquez G,Cancela MA,Riverol C.Application of danckwerts method in a bubble column : effect of surfactants on mass transfer coefficient and interfacial area [J].Chemical Engineering Journal,2000,78:13-19
    [134]沈萍.微生物学(第二版)[M].北京:高等教育出版社,2006:21-24
    [135] R.E.布钦南,N.E.吉本斯.伯杰细菌鉴定手册(第9版)[M].北京:科学出版社,1984:659-662
    [136]赵晓瑜,李继刚.实用分子学技术[M].北京:化学工业出版社,2006:3-4
    [137]于鑫,张晓健,王占生.饮用水生物处理中生物量的脂磷法测定[J].城市给排水,2002,(28):1-5.
    [138] Jianlong Wang.. Biodegradation of Phthlic acid esters by immobilized microbial cells [J].Environmental International.1997,23:775-782

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700