聚阴离子型正极材料Li_3V_2(PO_4)_3和Na_2FePO_4F的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有高效、清洁和可循环使用等诸多优点,锂离子电池被认为是综合缓解能源危机与环境污染等问题的一种重要能量储存装置。特别是在最近几年,随着电动汽车以及混合电动汽车的高速发展,锂离子电池得到了更广泛的关注与更深入的研究。正极材料是锂离子电池重要的组成部分之一。以LiCoO2为代表的传统正极材料受成本高、资源紧缺和对环境有污染等缺点的制约已不能成为新一代锂离子电池正极材料的首选。近年来,一类具有聚阴离子型结构的正极材料开始崭露头脚,这类材料由于具有优秀的结构稳定性以及良好的循环稳定性成为人们近期研究的重点。
     本论文选取两种聚阴离子型正极材料Li3V2(PO4)3和Na2FePO4F为研究对象,以提高二者的电导率为突破口,致力于改善它们的电化学性能。首先,我们分别通过溶胶-凝胶法和碳热还原法制备了具有表面碳包覆的Li3V2(PO4)3材料。表面碳将Li3V2(PO4)3的电导率提高了4 ~ 5个数量级。利用透射电子显微镜以及拉曼散射技术确定了粒子表面碳层的存在,并证明了它的无定型本质。我们首次研究了Li3V2(PO4)3材料在不同温度时的电化学性能,结果表明碳包覆Li3V2(PO4)3材料无论是在室温还是在低温下都具有较高的容量以及较好的循环稳定性。然后,我们通过金属Cu粉与原料共混的方式制备了Li3V2(PO4)3/Cu复合正极材料。该材料相对于纯相Li3V2(PO4)3具有更高的电导率、更大的锂离子扩散系数、更高的比容量以及更好的循环性能。最后,我们使用固相法制备了钠基正极材料Na2FePO4F。通过对其进行表面碳包覆大大地降低了材料的颗粒尺寸,提高了材料的循环稳定性以及倍率性能。采用元素分析以及恒流充放电等手段深入分析了材料的充放电机理,并首次使用交流阻抗以及恒电位间歇滴定技术计算了材料的离子扩散系数。
Great efforts have been done on lithium-ion batteries since SONY introduced the first commercial lithium-ion battery in 1991. In the early stage, cathode materials for lithium-ion batteries mostly used transition metal oxides, such as LiCoO2, LiNiO2 and LiMn2O4. In 1997, Goodenough proposed polyanion LiFePO4 as a cathode material. Since then, considerable studies have been performed to varies transition metal polyanion materials, such as LiMnPO4, Li3V2(PO4)3, LiVPO4F, Li2FeSiO4 and so on. Among these materials, Li3V2(PO4)3 has shown great potential because of its high lithium ion mobility, large energy density and high specific capacity. However, the intrinsic low electronic conductivity of Li3V2(PO4)3 is also a big obstacle for its practical application. Therefore, the first part of this work is devoted to improve the electronic conductivity of Li3V2(PO4)3 for better electrochemical performances.
     Firstly, we successfully prepared Li3V2(PO4)3 using a PVA assisted sol-gel method. The decomposition process of the precursor was discussed via TG analysis, based on which we determined the proper synthesis temperature of Li3V2(PO4)3. We studied the structure properties of the material using varies techniques including XRD, FTIR, Raman, SEM and TEM. Then we studied the electrochemical properties of the material by charge-discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is shown that the material exhibited good cycling performance. In particular, Li3V2(PO4)3 showed much larger lithium ion diffusivities than those of LiFePO4, which was attributed to its special Nasicon type structure and unique phase transition behaviors.
     Then, we prepared Li3V2(PO4)3 using two kinds of solid-state reaction method, carbothermal reduction (CTR) and H2 reduction. Residual carbon was confirmed for the material prepared by CTR method. This residual carbon did not change the monoclinic structure of Li3V2(PO4)3. SEM and TEM analysis showed that the material prepared by CTR method had smaller particle size and higher electronic conductivity than that prepared by H2 reduction method. The surface carbon layer prevented the formation of SEI film and the resolution of vanadium into electrolyte. Based on these, the carbon coated material exhibited superior electrochemical performance to that of un-coated conterpart.
     Another attempt to improve the electronic conductivity of Li3V2(PO4)3 was to prepare Li3V2(PO4)3/Cu composite cathode material. XRD and XPS analysis showed that Cu did not change the monoclinic structure of Li3V2(PO4)3. The electronic conductivity of the material was indeed enhancing by Cu adding. The Li3V2(PO4)3/Cu composite cathode material showed improved electrochemical performance with respect to Li3V2(PO4)3.
     Like LiFePO4, Li3V2(PO4)3 is a typical lithium-based cathode material. Recent studies have shown that some sodium-based materials such as NaVPO4F, Na3V2(PO4)2F3 and Na2FePO4F are also potential cathode materials for lithium ion batteries. This makes it possible to select cathode materials in a much wider field, which will reduce the overlean on lithium resources. Among these sodium-based cathode materials, Na2FePO4F has attracted significant interests due to its good electrochemical performance. However, as other polyanion cathode materials, the poor electronic conductivity of Na2FePO4F also hinders its electrochemical performance. Besides this, there are also many other problems need to be resolved for this material, such as its poor rate performance and the understanding of its electrochemical reaction mechanism. The latter part of this paper was therefore focused on these problems.
     We successfully prepared carbon coated Na2FePO4F cathode material using a simple solid-state reaction method. Then we studied the structure properties of the material by XRD and Raman scattering. TEM showed that the material has a nano size and core-shell structure, with the core was Na2FePO4F and the shell was a surface carbon layer. The materials had a high electronic conductivity about 1.5×10-3 Scm-1. The electrochemical reaction mechanism was analyzed combining with different techniques including elemental analysis, CV and EIS. It is shown that the electrochemical mechanism of Na2FePO4F is evolved in the transformation from Na+ extraction to Li+/Na+ hybrid ion insertion and then to Li+ insertion. The material showed good rate performance, which exhibited a reversible capacity of 90 mAhg-1 at 1 C rate. Finaly, we studied the electrochemkical kinetics of Na2FePO4F using EIS and PITT. It is observed that the material showed large Li+ diffusion coefficients because of its unique“solid-solution-like”transition behavior and 3D diffusion parthways. This is very helpful for the material to obtain good high rate performance.
     On all accounts, this work gives us a comprehensive understanding on the preparation of Li3V2(PO4)3 and Na2FePO4F polyanion cathode materials, as well as their structural and electrochemical properties.
引文
[1]李国欣.新型化学电源导论[M].上海:上海复旦大学出版社, 1992.
    [2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367.
    [3]郭炳焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社, 2002.
    [4]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社, 2007.
    [5]黄祖飞. LiMnO2体系结构与性能的第一原理研究[D].长春:吉林大学, 2006.
    [6]庄大高.锂离子电池正极材料LiFePO4合成方法及电化学性能研究[D].杭州:浙江大学, 2006.
    [7] Scrosati B. Nanomaterials: Paper powers battery breakthrough [J]. Nature Nanotech., 2007, 2: 598-599.
    [8]刘大亮.锂离子电池负极材料Li3-xMxN的制备及表征[D].长春:吉林大学, 2009.
    [9] Wakihara M. Recent development in lithium batteries [J]. Mater. Sci. Eng. R, 2001, 33: 109-134.
    [10] Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 104: 4271-4301.
    [11] Mizushima K, Jones P C, Wiseman P J. LixCoO2 (0≤x≤1): A new cathode material for batteries of high energy density [J]. Mat. Res. Bull., 1980, 15: 783-789.
    [12] Zhai X J, Zhou Y G, Fu Y, Lithium ion battery cathode material LiCoO2 synthesized by microwave method [J]. J. Rare Earths, 2005, 23: 85-88.
    [13] Jones C D, Rossen E, Dahn J R. Structure and electrochemistry of LixCryCo1-yO2 [J]. Solid State Ionics, 1994, 68: 65-69.
    [14]张世超.锂离子电池关键材料的现状与发展[J].新材料产业, 2004, 2: 32-40.
    [15]刘景,温兆银,吴梅梅.锂离子电池正极材料的研究进展[J].无机材料学报, 2002, 17: 1-9.
    [16] Mclarcn V L, West A R, Tabuchi M. Study of the capacity fading mechanism for Fe-substituted LiCoO2 positive electrode [J]. J. Electrochem. Soc., 2004, 151: A672-A681.
    [17] Kim J, Noh M, Cho J. Controlled nanoparticle metal phosphates (metal = Al, Fe, Ce and Sr) coatings on LiCoO2 cathode materials [J]. J. Electrochem. Soc., 2005, 152: A1142-A1148.
    [18] Hong W, Chen M C. Modification of LiCoO2 by surface coating with MgO/TiO2/SiO2 for high-performance lithium ion battery [J]. Electrochem. Solid-State Lett., 2006, 9: A82-A85.
    [19] Miyashiro H, Yamanaka A, Tabuchi M. Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2 [J]. J. Electrochem. Soc., 2006, 153: A348-A353.
    [20] Kosova N, Devyatkina E, Slobodyuk A. Surface chemistry stud of LiCoO2 coated with alumina [J]. Solid State Ionics, 2008, 179: 1745-179.
    [21] Garcia S C, Rodriguez M A, Couceiro A C. Influence of the synthesis and doping on the morphologic, structural and electrochemical properties of LiCo1-xMxO2 (M = Ni, Al, Mg) oxides [J]. Bolttin de la Sociedad Espanola de Ceramica y Vidrio, 2004, 43: 780-786.
    [22] Zhou Y, Shen C, Li H. Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template [J]. Solid State Ionics, 2002, 146: 81-86.
    [23] Hirano A, Kanie K, Ichikawa T, Imanishi N, Takeda Y, Kanno R, Kamiyama T, Izumi F. Neutron diffraction study on layered rocksalt Li1-xNi1+xO2 at high temperature [J]. Solid State Ionics, 2002, 152: 207-216.
    [24] Ritchie A G, Giwa C O, Lee J C, Bowles P, Gilmour A, Allan J, Rice D A, Brady F. Future cathode materials for lithium batteries [J]. J. Power Sources, 1999, 80: 98-102.
    [25] Markovsky B, Rodkin A, Cohen Y S. The study of capacity fading process of Li-ion batteries: Major factors that play a role [J]. J. Power Sources, 2003, 119: 504-510.
    [26] Alcantara R, Jumas J C, Lavala P. X-ray diffraction, 57Fe Mossbauer and step potential electrochemical spectroscopy study of LiFeyCo1-yO2 compounds [J]. J. Power Sources, 1999, 81: 547-553.
    [27] Huang W W, Frech R. Vibrational spectroscopic and electrochemical studies of the low and high temperature phase of LiCo1-xMxO2 (M = Ni or Ti) [J]. Solid State Ionics, 1996, 86: 395-400.
    [28] Holzapfei M, Schreiner R, Ott A. Lithium-ion conductors of the system LiCo1-xFexO2: A first electrochemical investigation [J]. Electrochim. Acta, 2001, 46: 1063-1070.
    [29] Han C J, Eom W S, Lee S M. Study of the electrochemical properties of Ga-doping LiNi0.8Co0.2O2 synthesized by a sol-gel method [J]. J. Power Sources, 2005, 144: 214-219.
    [30] Chowdary B V, Rao G V, Chow S Y. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2 [J]. Solid State Ionics, 2001, 140: 55-62.
    [31] Fey G T, Chen J G, Subramanian V. Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2 [J]. Solid State Ionics, 2002, 112: 384-394.
    [32] Park S H, Park K S, Cho M H. The effects of oxygen flow rate and anion doping on the performance of the LiNiO2 electrode for lithium secondary batteries [J]. Korean J. Chem.Eng., 2002, 19: 791-796.
    [33] Lee M H, Myung S T. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation [J]. Electrochim. Acta, 2004, 50: 939-948.
    [34] Liu W, Farrington G C, Chaput F. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the apechini process [J]. J. Electrochem. Soc., 1996, 143: 879-884.
    [35] Gummow R J, Kock A, Thacheray M M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics, 1994, 69: 59-67.
    [36] Thacheray M M. Spinel electrodes for lithium batteries [J]. J. Am. Ceram. Soc., 1999, 82: 3347-3354.
    [37] Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds [J]. J. Electrochem. Soc., 1996 143: 825-833.
    [38] Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J. Electrochem. Soc., 1997, 144: 2593-2600.
    [39] Tarascon J M, Coowar F, Amatuci G, Shokoohi F K, Guyomard D G. The system materials and electrochemical aspects [J]. J. Power Sources, 1995, 54: 103-108.
    [40] Arora P, White E R. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J. Electrochem. Soc., 1998, 145: 3647-3667.
    [41] Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cell [J]. J. Electrochem. Soc., 1996, 143: 2204-2211.
    [42] Shigemura H, Sakebe H, Kageyama H. Structure and electrochemical properties of LiFexMn2-xO4 (0≤x≤0.5) spinel as 5V electrode material for lithium batteries [J]. J. Electrochem. Soc., 2001, 148: A730-A736.
    [43] Sun Y K, Park G S, Lee Y S. Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling [J]. J. Electrochem. Soc., 2001, 148: A994-A998.
    [44] Lourdes H, Julian M, Luis S. Use of Li-M-Mn-O (M = Co, Cr, Ti) spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries [J]. Solid State Ionics, 1999, 118: 179-185.
    [45] Koltypin M, Pol V, Gedanken A, Aurbach D. The study of carbon-coated V2O5 nanoparticles as a potential cathodic material for Li rechargeable batteries [J]. J. Electrochem. Soc., 2007, 154: A605-A613.
    [46] Yamada H, Tagawa K, Komatsu M, Moriguchi I, Kudo T. High power battery electrodes using nanoporous V2O5/carbon composites [J]. J. Phys. Chem. C, 2007, 111: 8397-8402.
    [47] Haber J, Witko M, Tokarz R. Vanadium pentoxide I. Structures and properties [J]. Appl. Catal. A, 1997, 157: 3-22.
    [48] Cocciantelli J M, Doumerc J P, Pouchard M. Broussely M, Labat J. Crystal chemistry of electrochemically inserted LixV2O5 [J]. J. Power Sources, 1991, 34: 103-111.
    [49] Cocciantelli J M, Ménétrier M, Delmas C, Doumerc J P, Pouchard M, Broussely M, Labat J. On theδ→γirreversible transformation in Li/V2O5 secondary batteries [J]. Solid State Ionics, 1995, 78: 143-150.
    [50] Delmas C, Cognac A H, Cocciantelli J M, Ménétrier M, Doumerc J P. The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69: 257-264.
    [51] Rozier P, Savariault J M, Galy J. A new interpretation of the LixV2O5 electrochemical behaviour for 1 < x < 3 [J]. Solid State Ionics, 1997, 98: 133-144.
    [52] Giorgetti M, Passerini S, Smyrl W H. In situ x-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation [J]. J. Electrochem. Soc., 1999, 146: 2387-2392.
    [53] Park H K, Smyrl W H, Ward M D. V2O5 xerogel films as intercalation hosts for lithium insertion stoichiometry, site concentration, and specific energy [J]. J. Electrochem. Soc., 1995, 142: 1068-1073.
    [54] Tipton A L, Passerini S, Owens B B. Performance of lithium/V2O5 xerogel coin cells [J]. J. Electrochem. Soc., 1996, 143: 3473-3477.
    [55] Zhang F, Passerini S, Owens B B. Nanocomposites of V2O5 aerogel and RuO2 as cathode materials for lithium intercalation [J]. Electrochem. Solid-State Lett., 2001, 4: A221-A223.
    [56] Parent M J, Passerini S, Owens B B. Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes [J]. J. Electrochem. Soc., 1999, 146: 1346-1350.
    [57] Hwang H S, Oh S H, Kim H S, Cho W I, Cho B W, D.Y. Characterization of Ag-doped Vanadium Oxide (AgxV2O5) thin film for cathode of thin film battery [J]. Electochim. Acta, 2004, 50: 485-489.
    [58] Leger C, Bach S, Soudan P, Pereira J.P. Evaluation of the sol-gel mixed oxide Cr0.11V2O5.16 as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs. Li [J]. Solid State Ionics, 2005, 176: 1365-1369.
    [59] Choi J H, Park H K. CuxFeyV2O5 xerogel cathodes for lithium secondary batteries [J]. Electrochim. Acta, 2004, 50: 405-409.
    [60] Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc. 1997, 144: 1188-1194.
    [61] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium batterycathodes [J]. J. Electrochem. Soc., 2001, 148: A224-A229.
    [62] Yamada A, Koizumi H, Nishimura S I, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y. Room-temperature miscibility gap in LixFePO4 [J]. Nature Mater., 2006, 5: 357-360.
    [63] Delmas C, Maccario M, Croguennec L, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J]. Nature Mater., 2008, 7: 665-671.
    [64] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4 [J]. J. Power Sources, 2001, 97: 498-502.
    [65] Ravet N. Improved iron based cathode material [C]. Honolulu: Electrochemical Society Fall Meeting, 1999.
    [66] Tajimi S, Ikeda Y, Kazuyoshi U, Toda K, Sato M. Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction [J]. Solid Stated Ionics, 2004, 175: 287-290.
    [67] Dominko R, Bele M, Goupil J M, Gaberscek M, Hazel D, Arcon I, Jamnik J. Wired porous cathode materials: A novel concept for synthesis of LiFePO4 [J]. Chem. Mater., 2007, 19: 2960-2969.
    [68] Ojczyk W, Marzec J, Swierczek K, Zajac W, Molenda M, Dziembaj R, Molenda J. Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries [J]. J. Power Sources, 2007, 173: 700-706.
    [69] Wang K, Cai R, Yuan T, Yu X, Ran R, Shao Z P. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source [J]. Electrochim. Acta, 2009, 54: 2861-2868.
    [70] Liu J, Wang J W, Yan X D, Zhang X F, Yang G L, Jalbout A F, Wang R S. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications [J]. Electrochim. Acta, 2009, 54: 5656-5669.
    [71] Yan X D, Yang G L, Liu J, Xie H M, Pan X M, Wang R S. An effective and simple way to synthesize LiFePO4/C composite [J]. Electrochim. Acta, 2009, 54: 5770-5774.
    [72] Wu S H, Chen M S, Chien C J. Preparation and characterization of Ti4+ doped LiFePO4 cathode materials for lithium-ion batteries [J]. J. Power Sources, 2009, 189: 440-444.
    [73] Shenouda A Y, Liu H K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode [J]. J. Alloys Compd., 2009, 477: 498-503.
    [74] Shi S Q, Liu L J. Ouyang C Y. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations [J]. Phys. Rev. B, 2003, 68: 195108.
    [75] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 an room temperature at high rates [J]. Electrochem. Solid-State Lett., 2001, 4: A170-A172.
    [76] Chung S Y, Blucking J T. Electronically conductive phosphor olivines as lithium storage electrodes [J]. Nature Mater., 2002, 1: 123-128.
    [77] Thuckeray M. An unexpected conductor [J]. Nature Mater., 2002, 2: 81-82.
    [78] Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K. Enhanement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature [J]. Solid State Ionics, 2000, 135: 137-142.
    [79] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedra Li3V2(PO4)3 [J]. Solid Stated Ionics, 2007, 177: 3445-3454.
    [80] Yin S C, Grondey H, Strobel P, Anne M, Nazar L F. Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3 [J]. J. Am. Chem. Soc., 2003, 125: 10402-10411.
    [81] Masquelier C, Wurm C, Rodriguez-Carvajal J, Gaubicher J, Nazar L F. A powder neutron diffraction investigation of the two rhombohedral NASICON analogues:γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3 [J]. Chem. Mater., 2000, 12: 525-532.
    [82] Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 [J]. J. Power Sources, 2003, 119: 278-284.
    [83] Saidi M Y, Barker J. Huang H, Adamson G. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries [J]. J.Power Sources, 2003, 119: 266-272.
    [84] Huang H. Yin S C, Kerr T, Taylor N, Nazar L F. Nanostructured composites: A high capacity fast rate Li3V2(PO4)3/Carbon cathode for rechargeable batteries [J]. Adv. Mater., 2002, 14: 1525-1528.
    [85]肖政伟.以不同原材料制备锂离子电池复合正极材料Li3V2(PO4)3的研究[D].长沙:中南大学, 2008.
    [86] Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-size LiFePO4 cathode materials prepared by a citric acid-based sol-gel route [J]. J. Mater. Chem., 2004, 14: 2690-2695.
    [87] Yang J, Xu J J. Nonaqueous sol-gel synthesis of high-performance LiFePO4 [J]. Electrochem. Solid-State Lett., 2004, 7: A515-A518.
    [88] Tang A P, Wang X Y, Liu Z M. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries [J]. Mater. Lett., 2008, 62: 1646-1648.
    [89] Fu P, Zhao Y M, An X N, Dong Y Z, Hou X M. Structure and electrochemical properties of nanocarbon coated Li3V2(PO4)3 prepared by sol-gel method [J]. Electrochim. Acta, 2007, 52: 5281-5285.
    [90] Li Y Z, Zhou Z, Gao X P, Yan J. A promising sol-gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries [J]. Electrochim. Acta, 2007, 52: 4922-4926.
    [91] Chen Q Q, Wang J M, Tang Z, He W C, Shao H B, Zhang J Q. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by sol-gel method [J]. Electrochim. Acta, 2007, 52: 5251-5257
    [92] Ren M M, Zhou Z, Gao X P, Peng W X, Wei J P. Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries [J]. J. Phys. Chem. C, 2008, 112: 5689-5693.
    [93]武俊萍.锂离子电池正极材料Li3V2(PO4)3的合成及性能研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [94] Li Y Z, Liu X, Yan J. Study on synthesis routes and their influences on chemical and electrochemical performances of Li3V2(PO4)3/carobn [J]. Electrochim. Acta, 2007, 53: 474-479.
    [95] Zhong S K, Wang J, Liu L T, Liu J Q, Li Y W. Investigations on the synthesis and electrochemical performance of Li3V2(PO4)3/C by different methods [J]. Ionics, 2010, 16: 117-121.
    [96] Fu P, Zhao Y M, Dong Y Z, An X N, Shen G P. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine [J]. J. Power Sources, 2006, 162: 651-657.
    [97] Rui X H, Li C, Chen C H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources [J]. Electrochim. Acta, 2009 54: 3374-3380.
    [98]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理, 2004, 33: 428-442.
    [99]任慢慢,李宇展,周震,高学平,阎杰,微波合成正极材料Li3V2(PO4)3 [J].电池. 2006, 36: 13-14.
    [100] Padhi A K, Nanjiundaswamy K S, Masquelier C. Mapping of transition metal redox energies with NASICON structure by lithium intercalation [J]. J. Electrochem. Soc., 1997, 144: 2581-2586.
    [101] Wang J W, Liu J, Yang G L, Zhang X F, Yan X D, Pan X M, Wang R S. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source [J]. Electrochimi. Acta, 2009, 54: 6451-6454.
    [102] Zhong S K, Yin Z L, Wang Z X. Synthesis and characterization of novel cathode material Li3V2(PO4)3 by carbon thermal reduction method [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: s708-s710.
    [103] Barker J, Gover R K B, Burns P, Bryan A. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate Li3V2(PO4)3 [J]. J. Electrochem. Soc., 2007, 154: A307-A313.
    [104] Ren M M, Zhou Z, Li Y Z, Gao X P, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. J. Power Sources, 2006, 162: 1357-1362.
    [105] Chen Y H, Zhao Y M, An X N, Liu J M, Dong Y Z, Chen L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J]. Elctrochim. Acta, 2009, 54: 5844-5850.
    [106] Zhou S K, Liu L T, Jiang J Q, Li Y W, Wang j, Liu J Q, Li Y H. Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries [J]. J. Rare Earth., 2009, 27: 134-137.
    [107] Liu S Q, Li S C, Huang K L, Zhang G. Kinetic study on Li2.8(V0.9Ge0.1)(PO4)3 by EIS measurement [J]. J. Alloys Compd., 2006, 450: 499-504.
    [108] Meins J M, Bohnke O, Courbion G. Ionic conductivity of crystalline and amorphous Na3Al2(PO4)2F3 [J]. Solid State Ionics, 1998, 111: 67-75.
    [109] Meins J M, Crosnier M P, Hemon A, Courbion G. Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies [J]. J. Solid State Chem., 1999, 148: 260-277.
    [110] Gover R K B, Bryan A, Bums P, Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphates, Na3V2(PO4)2F3 [J]. Solid State Ionics, 2006, 177: 1495-1500.
    [111] Barker J, Gover R K B, Burns P, Bryan J. Hybrid-ion: A lithium-ion cell based on a sodium insertion material [J]. Electrochemi. Solid-State Lett., 2006, 9: A190-A192.
    [112] Barker J, Gover R K B, Burns P, Bryan J. Li4/3Ti5/3O4‖Na3V2(PO4)2F3: An example of a hybrid-ion cell using a non-graphitic anode [J]. J. Electrochem. Soc., 2007, 154: A882-A887.
    [113] Ellis B L, Makahnouk W R M, Makimura Y, Toghill K, Nazar L F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J]. Nature Mater., 2007, 6: 749-753.
    [114] Sanz F, Paroda C, Calero C R. Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate [J]. J. Mater. Chem., 2001, 11: 208-211.
    [115] Kabulov Y K, Simanov M. A. Crystal structure of basic iron phosphate (Na2Fe[PO4]OH) [J]. Dokl. Akad. Nauk SSSR, 1974, 215: 850-853.
    [116] Ramzan M, Lebegue S, Ahuja R. Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries [J]. Appl. Phys. Lett., 2009, 94: 151904.
    [117] Ramzan M, Lebegue S, Larsson P, Ahuja R. Structural, magnetic, and energeticproperties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations [J]. J. Appl. Phys., 2009, 106: 043510.
    [118] Ellis B L, Michael-Makahnouk W R, Rowan W N, NazarLF. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni) [J]. Chem. Mater., 2010, 22: 1059-1070.
    [119] Recham N, Chotard J N, Dupont L, Djellab K, Armand M, Tarascon J M. Ionothermal synthesis of sodium-based fluorophosphate cathode materials [J]. J. Electrochem. Soc., 2009, 156: A993-A999.
    [1] Koksbang R, Barke J, Shi H. Cathode materials for lithium rocking chair batteries [J]. Solid State Ionics, 1996, 84: 1-21.
    [2] Reimers J N, Dahn J R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2 [J]. J. Electrochem. Soc., 1992, 139: 2091-2097.
    [3] Arora P, White E R. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J. Electrochem. Soc., 1998, 145: 3647-3667.
    [4] Morgan D, Ceder G, Saidi M Y, Barker J, Swoyer J, Huang H, Adamson G. Experimental and computational study of the structure and electrochemical properties of LixM2(PO4)3 compounds with the monoclinic and rhombohedral structure [J]. Chem. Mater., 2002, 14: 4684-4693.
    [5] Masquelier C, Padhi A K, Nanjundaswamy K S, Goodenough J B. New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X = P, As) [J]. J. Solid State Chem., 1998, 135: 228-234.
    [6] Yin S C, Grondey H, Strobel P, Anne M, Nazar L F. Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3 [J]. J. Am. Chem. Soc., 2003, 125: 10402-10411.
    [7] Zhong S K, Liu L T, Wang J, Yang J W. High-rate characteristic of F-substitution Li3V2(PO4)3 cathode materials for Li-ion batteries [J]. Solid State Commun., 2009, 149: 1679-1683.
    [8] Ren M M, Zhou Z, Li Y Z, Gao X P, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. J. Power Sources, 2006, 162: 1357-1362.
    [9] Li Y Z, Zhou Z, Ren M M, Gao X P, Yan J. Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method [J]. Electrochim. Acta, 2006, 51: 6489-6502.
    [10] Tang A P, Wang X Y, Yang S Y. A novel method to synthesize Li3V2(PO4)3/C composite and its electrochemical Li intercalation performances [J]. Mater. Lett., 2008, 62: 3676-3678.
    [11] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T. Rheological phasereaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries [J]. Electrochim. Acta., 2008, 53: 2232-2237.
    [12] Zhou X C, Liu Y M, Guo Y L. Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction [J]. Electrochim. Acta, 2009, 54: 2253-2258.
    [13] Gilman J W, VanderHart D L, Kashiwagi T. Fire and polymers II: materials and test for hazard prevention [C]. Washington: American Chemical Society, 1994.
    [14] Yuan N J, Ha H W, Jeong K H, Park H Y, Kim K. Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly (vinyl alcohol)-containing precursor[J]. J. Power Sources, 2006,160: 1361-1368.
    [15] Luo J Y, Xia Y Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability [J]. Adv. Funct. Mater., 2007, 17: 3877-3884.
    [16]刘素琴,唐联兴,黄可龙,李世彩.溶胶-凝胶方法制备Li3V2(PO4)3及其性能研究[J].无机材料化学学报, 2006, 22: 1067-1071.
    [17] Sayeed A, Bhattacharyya S, Subramanyam S V. D. C. conductivity measurements on amorphous conducting carbon [J]. Mater. Sci. Eng. C, 1995, 3: 231-233.
    [18] Yin S C, Strobel P S, Grondey H, Nazar L F. Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperatureγ-phase of Li3V2(PO4)3 [J]. Chem. Mater., 2004, 16: 1456-1465.
    [19] Morgan D, Ceder G, Saidi M Y, Barke M Y, Swoyer J, Huang H, Adamson G. Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3 compounds [J]. J. Power Sources, 2003, 119: 755-759.
    [20] Masquelier C, Wurm C, Rodriguez-Carvajal J, Gaubicher J, Nazar L F. A powder neutron diffraction investigation of the two rhombohedral NASICON analogues:γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3 [J]. Chem. Mater., 2000, 12: 525-532.
    [21] Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3[J]. J. Power Sources, 2003, 119: 278-284.
    [22] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3 [J]. Solid State Ionics, 2007, 177: 3445-3454.
    [23] Julie C M, Zaghib K, Mauger A, Massot M, Salah A A, Selmane M, Gendron F. Characterization of the carbon coating onto LiFePO4 particles used in lithium-batteries [J]. J. Appl. Phys., 2006, 100: 06351.
    [24] Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R. Surface studies of carbon films from pyrolyzed photoresist [J]. Thin Solid Films, 2001, 396: 36-43.
    [25] Wada N, Gaczi P J, Solin S A.“Diamond-like”3-fold coordinated amorphous carbon [J]. J. Non-Cryst. Solids, 1980, 35: 543-548.
    [26] Fey G T, Lu T K, Wu F Y, Li W H. Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries [J]. J. Solid State Electrochem., 2008, 12: 825-833.
    [27] Horvath B, Strutz J, Geyer L J, Horvath E G. Preparation, properties, and ESCA characterization of vanadium surface compounds on silicagel [J]. Z. Anorg. Allg. Chem., 1981, 483: 181-192.
    [28] Saidi M Y, Barker J. Huang H, Swoer J L, Adamson G. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries [J]. J. Power Sources, 2003, 119: 266-272.
    [29] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications [M]. New York: Wiley, 1980, 213.
    [30] Kawai H, Nagata M, Kageyama H. Tukamoto H, West A R. 5 V lithium cathodes based on spines solid solutions Li2Co1+xMa3-xO8: -1≤x≤1 [J]. Electrochim. Acta, 1999, 45: 315-327.
    [31] Ho C, Raistrick I D, Huggins R A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films [J]. J. Electrochem. Soc., 1980, 127: 343-349.
    [32] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications [M]. New York: Wiley, 1980, 328.
    [33] Liu H, Cao Q, Fu L J, Li C, Wu Y P, Wu H Q. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2006, 8: 1553-1557.
    [34] Prosini P P, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148: 45-51.
    [35] Gao F, Tang Z Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J]. Electrochim. Acta, 2008, 53: 5071-5075.
    [36]文衍宣,周震涛.橄榄石型正极材料LiMPO4研究进展[J].电源技术, 2004, 48: 47-50.
    [1] Yin S C, Grondey H, Strobel P, Anne M, Nazar L F. Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3 [J]. J. Am. Chem. Soc., 2003, 125: 10402-10411.
    [2] Wang L, Li Z C, Xu H J, Zhang K L. Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries [J]. J. Phys. Chem. C, 2008, 112: 308-312.
    [3] Cahill L S, Chapman R P, Britten J F, Goward G R. 7Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3 [J]. J. Phys. Chem. B, 2006, 110: 7171-7177.
    [4] Huang H, Yin S C, Kerr T, Taylor N, Nazar L F. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/Carbon cathode for rechargeable batteries [J]. Adv. Mater., 2002, 14: 1525-1528.
    [5]王冠.锂离子电池正极材料LiFePO4制备及其性能研究[D].上海:复旦大学, 2006.
    [6]刘素琴,唐联兴,黄可龙,李世彩.溶胶-凝胶方法制备Li3V2(PO4)3及其性能研究[J].无机材料化学学报, 2006, 22: 1067-1071.
    [7] Barker J, Saidi M Y, Swoyer J L. A carbothermal reduction method for the preparation of electroactive materials for lithium ion applications [J]. J. Electrochem. Soc., 2003, 150: A684-A688.
    [8] Sayeed A, Bhattacharyya S, Subramanyam S V. D. C. conductivity measurements on amorphous conducting carbon [J]. Mater. Sci. Eng. C, 1995, 3: 231-233.
    [9] Yin S C, Strobel P S, Grondey H, Nazar L F. Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperatureγ-phase of Li3V2(PO4)3 [J]. Chem. Mater., 2004, 16: 1456-1465.
    [10] Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc., 2002, 149: A1184-A1189.
    [11] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3 [J]. Solid State Ionics, 2007, 177: 3445-3454.
    [12] Julie C M, Zaghib K, Mauger A, Massot M, Salah A A, Selmane M, Gendron F.Characterization of the carbon coating onto LiFePO4 particles used in lithium-batteries [J]. J. Appl. Phys., 2006, 100: 06351.
    [13] Fu P, Zhao Y M, Dong Y Z, An X N, Shen G P. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine [J]. J. Power Sources, 2006, 162: 651-657.
    [14] Arico A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Mater., 2005, 4: 366-377.
    [15] Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J]. Solid State Ionics, 1996, 83: 167-173.
    [16] Wang L F, Ou C C, Striebel K A, Chen J S. Study of Mn dissolution from LiMn2O4 spinel electrodes using rotating ring-disk collection experiments [J]. J. Electrochem. Soc., 2003, 150: A905-A911.
    [17] Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 [J]. J. Power Sources, 2003, 119: 278-284.
    [18] Wurm C, Morcrette M, Rousse G, Dupont L, Masquelier C. Lithium insertion/extraction into/from LiMX2O7 compositions (M = Fe, V) prepared via a solution method [J]. Chem. Mater., 2002, 14: 2701-2710.
    [19]冯详明,张晶晶,李荣富,李中军. LiFePO4锂离子电池的低温性能[J].电池, 2009, 39: 36-37.
    [20] Liao X Z, Ma Z F, Gong Q, He Y S, Pei L, Zeng L J. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J]. Electrochem. Commun., 2008, 10: 691-694.
    [21] Wang K, Cai R, Yuan T, Yu X, Ran R, Shao Z P. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source [J]. Electrochim. Acta, 2009, 54: 2861-2868.
    [22] Das S R, Majumder S B, Katiyar R S. Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films [J]. J. Power Sources, 2005, 139: 261-268.
    [23] Liu H, Cao Q, Fu L J, Li C, Wu Y P, Wu H Q. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2006, 8: 1553-1557.
    [24] Jin B, Jin E M, Park K H, Gu H B. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery [J]. Electrochem. Commun., 2008, 10: 1537-1540.
    [1] Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J]. Electrochem. Commun., 2009, 11: 84-86.
    [2] Wang L N, Li Z C, Xu H J, Zhang K L. Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries [J]. J. Phys. Chem. C, 2008, 112: 308-312.
    [3] Liu D L, Du F, Pan W C, Chen G, Wang C Z, Wei Y J. Electrochemical characterizations of Li2.6Co0.4N/Graphite anodes for lithium ion batteries [J]. Mater. Lett., 2009, 63: 504-506.
    [4] Boyano I, Bengoechea M, Meatza I D, Miguel O, Cantero I, Ochoteco E, Rodriguez J, Cantu M L, Romero P G. Improvement in Ppy/V2O5 hybrid as a cathode material for Li ion batteries using PSA as an organic additive [J]. J. Power Sources, 2007, 166: 471-477.
    [5] Feng C Q, Chew S Y, Guo Z P, Wang J Z, Liu H K. An investigation of polypyrrole-LiV3O8 composite cathode materials for lithium-ion batteries [J]. J. Power Sources, 2007, 174: 1095-1099.
    [6] Kuwabata S, Masui S, Yoneyama H. Charge-discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries [J]. Electrochim. Acta, 1999, 44: 4593-4600.
    [7] Wang G P, Zhang Q T, Yu Z L, Qu M Z. The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes [J]. Solid State Ionics, 2008, 179: 263-268.
    [8] Muraliganth T, Murugan A V, Manthiram A. Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries [J]. J. Mater. Chem., 2008, 18: 5661-5668.
    [9] Li X L, Kang F Y, Shen W C. Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2 cathode for rechargeable lithium batteries [J]. Carbon, 2006, 44: 1298-1352.
    [10] Sakamoto J S, Dunn B. Vanadium oxide-carbon nanotube composite electrodesfor use in secondary lithium batteries [J]. J. Electrochem. Soc., 2002, 149: A26-A30.
    [11] Zhou W J, He B L, Li H L. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries [J]. Mater. Res. Bull., 2008, 43: 2285-2294.
    [12] Wu X M, Chen S, He Z Q, Ma M Y, Xiao Z B, Liu J B. Solution-derived lithium manganese oxide thin films with silver additive and their characterization [J]. Mater. Chem. Phys., 2007, 101: 217-220.
    [13] Jin B, Jin E M, Park K H, Gu H B. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery [J]. Electrochem. Commun., 2008, 10: 1537-1540.
    [14] Croce F, Epifanio A D, Hassoun J, Deptula A, Olczac T, Scrosati B. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J]. Electrochem. Solid-State Lett., 2002, 5: A47-A50.
    [15] Guo R, Shi P F, Cheng X Q, Ma Y L, Tan Z. Effect of Ag additive on the performance of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery [J]. J. Power Sources, 2009, 189: 2-8.
    [16] Chen Z J, Gao S K, Li R H, Wei M D, Wei K M, Zhou H S. Lithium insertion in ultra-nanobelts of Ag2V4O11/Ag [J]. Electrochim. Acta, 2008, 53: 8134-8137.
    [17] Son J T, Park K S, Kim H G, Chung H T. Surface-modification of LiMn2O4 with a silver-metal coating [J]. J. Power Sources, 2004, 126: 182-185.
    [18] Son J T, Kim H G, Park Y J. New preparation method and electrochemical property of LiMn2O4 electrode [J]. Electrochim. Acta, 2004, 50: 453-459.
    [19] Mi C H, Cao Y X, Zhang X G, Zhao X B, Li H L. Synthesis and characterization of LiFePO4 (Ag + C) composite cathodes with nano-carbon webs [J]. Powder Technol., 2008, 181: 301-306.
    [20] Park K S, Son J T, Chung H T, Kim S J, Lee C H, Kang K T, Kim H G. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Commun., 2004, 129: 311-314.
    [21] Huang S H, Wen Z Y, Yang X L, Gu Z H, Xu X H. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives [J]. J. Power Sources, 2005,148: 72-77.
    [22] Wen Z Y, Huang S H, Yang X L, Lin B. High rate electrode materials for lithium ion batteries [J]. Solid State Ionics, 2008, 179: 1800-1805.
    [23] Zhu X J, Liu Y X, Geng L M, Chen L B, Liu H X, Cao M H. Synthesis and characteristics of Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J]. Solid State Ionics, 2008, 179: 1679-1682.
    [24] Zheng J C, Li X H, Wang Z X, Guo H J, Hu Q Y, Peng W J. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method [J]. J. Power Sources, 2009, 189: 476-479.
    [25] Nanda J, Sapra S, Sarma D D. Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies [J]. Chem. Mater., 2000, 12: 1018-1024.
    [26] Horvath B, Strutz J, Geyer L J, Horvath E G. Preparation, properties, and ESCA characterization of vanadium surface compounds on silicagel [J]. Z. Anorg. Allg. Chem., 1981, 483: 181-192.
    [27] Powell C J, Erickson N E, Jach T. Summary abstract: accurate determination of the energies of auger electrons and photoelectrons from nickel, copper, and gold [J]. J. Vac. Sci. Technol., 1982, 20: 625.
    [28] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3 [J]. Solid State Ionics, 2007, 177: 3445-3454.
    [29] Yin S C, Strobel P S, Grondey H, Nazar L F. Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperatureγ-phase of Li3V2(PO4)3 [J]. Chem. Mater., 2004, 16: 1456-1465.
    [30] Tang A P, Wang X Y, Yang S Y, Cao J Q. Synthesis and electrochemical properties of monoclinic Li3V2(PO4)3/C composite cathode material prepared from a sucrose-containing precursor [J]. J. App. Electrochem., 2008, 38: 1453-1457.
    [31] Liu H, Cao Q, Fu L J, Li C, Wu Y P, Wu H Q. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2006, 8: 1553-1557.
    [32] Liu H, Li C, Zhang H P, Fu L J, Wu Y P, Wu H Q. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique [J]. J. Power Sources, 2006,159: 717-720.
    [33] Wagner C. Investigations on silver sulfide [J].J.Chem. Phys.,1953,21: 1819-1827.
    [34] Montoro L A, Rosolen J M. The role of structural and electronic alterations on the lithium diffusion in LixCo0.5Ni0.5O2 [J]. Electrochim. Acta, 2004, 49: 3243-3249.
    [1] Ellis B L, Makahnouk W R M, Makimura Y, Toghill K, Nazar L F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J]. Nature Mater., 2007, 6: 749-753.
    [2] Barker J. Saidi M Y, Swoyer J L. A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J]. Electrochemi. Solid-State Lett., 2003, 6: A1-A4.
    [3] Barker J, Gover R K B, Burns P, Bryan J. Hybrid-ion: A lithium-ion cell based on a sodium insertion material [J]. Electrochem. Solid-State Lett., 2006, 9: A190-A192.
    [4] Ramzan M, Lebegue S, Larsson P, Ahuja R. Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations [J]. J. Appl. Phys., 2009, 106: 043510.
    [5] Ramzan M, Lebegue S, Ahuja R. Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries [J]. Appl. Phys. Lett., 2009, 94: 151904.
    [6] Langford J I, Wilson A J C. Scherer after sixty years: A survey and some new results in determination of crystallite size [J]. J. Appl. Cryst., 1978, 11: 102-113.
    [7] Ellis B L, Michael-Makahnouk W R, Rowan W N, Ryan D H, Nazar L F. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni) [J]. Chem. Mater., 2010, 22: 1059-1070.
    [8] Julie C M, Zaghib K, Mauger A, Massot M, Salah A A, Selmane M, Gendron F. Characterization of the carbon coating onto LiFePO4 particles used in lithium-batteries [J]. J. Appl. Phys., 2006, 100: 06351.
    [9] Wei Y J, Nikolowski K, Zhan S Y, Chen G, Wang C Z. Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2009, 11: 2008-2011.
    [10] Allen G C, Curtis M T, Hooper A J, Tucker P M. X-ray photoelectron spectroscopy of iron-oxygen systems [J]. J. Chem. Soc. Dolton Trans, 1974, 14: 1525-1530.
    [11] Gao F, Tang Z Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ionbatteries [J]. Electrochim. Acta, 2008, 53: 5071-5075.
    [12]曲涛,田彦文,翟玉春.采用PITT与EIS技术测定锂离子电池正极材料LiFePO4中锂离子扩散系数[J].中国有色金属学报. 2007, 17: 1255-1259.
    [13]王忠丽.铁基磷酸盐正极材料的研究[D].北京:北京工业大学, 2009.
    [14] Gao F, Tang Z Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J]. Electrochim. Acta, 2008, 53: 5071-5075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700