锂离子电池正极材料LiFePO_4、Li_3V_2(PO_4)_3及xLiFePO_4·yLi_3V_2(PO_4)_3的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综合评述了锂离子电池及其正极材料研究现状的基础上,以锂离子电池正极材料LiFePO4、Li3V2(PO4)3及其复合体xLiFePO4·yLi3V2(PO4)3为研究对象,较为系统的研究了材料的合成工艺、电化学性能、物理特性及电极过程动力学。
     采用共沉淀法合成了FePO4·xH2O,并以FePO4·xH2O为原料通过碳热还原法制备出了LiFePO4/C正极材料。详细研究了制备过程pH对FePO4·xH20的纯度、表面形貌、颗粒大小、比表面积、振实密度的影响。结果表明,pH为1.5时制备出的FePO4·xH2O中存在Fe(PO4)2(OH)2杂质相,当pH分别为2、3、4、5时合成的FePO4·xH2O均为纯相;制备出的FePO4·xH2O和LiFePO4颗粒粒径均随着pH的升高而逐渐变小。以pH=2条件下合成的FeP04·xH2O为原料制备出的LiFePO4/C复合材料电化学性能最优,该样在0.1C倍率下首次放电比容量达到145mAh.g-1,50次循环后容量保持率高达98%;并且其振实密度高达1.11g·cm-3。
     首次采用草酸为还原剂,在常温机械活化条件下将FePO4·xH20中的三价铁还原为二价,并制备出无定形的LiFePO4,然后低温热处理制备出晶态的LiFePO4。用该方法制备LiFePO4简单可行,且制备出的材料电化学性能优良。XPS结果表明,在常温机械活化条件下,原料中的三价铁被还原为二价;在6000C,12h下合成的LiFePO4粒子分布均匀且一次粒子直径在150nm左右;TEM结果表明:LiFePO4颗粒表面被疏松的无定形碳膜包覆,碳膜的厚度在20nm左右。材料具有高比容量、优良的大倍率充放电性能和循环性能。在放电倍率分别在0.1C和10C下首次放电比容量分别为165 mAh·g-1和95mAh·g-1,50次循环后比容量分别为163mAh·g-1和85mAh·g-1,容量保持率分别为98.8%和89.5%。
     首次采用常温还原-低温热处理制备出了Li3V2(PO4)3正极材料。XPS测试结果表明五价钒在常温机械活化作用下,被草酸还原为三价,此方法简单可行,并且烧结温度低,适用于制备高性能Li3V2(PO4)3。当烧结温度为650℃,烧结时间为12h时,制备出的Li3V2(PO4)3性能最为优越,且具有一种疏松多孔的结构,比表面积高达25m2·g-1;单个粒子直径为200nm左右,且被厚度在10-20nm之间的纳米碳网所包覆。该样在0.1C倍率下首次放电容量高达131.57mAh·g-1,100次循环后放电容量为123.50mAh·g-1,容量保持率为95.23%。
     首次利用LiFePO4和Li3V2(PO4)3各自的优点,提出用常温还原-低温热处理法制备锂离子电池复合正极材料xLiFePO4·yLi3V2(PO4)3,XRD测试结果表明复合材料中主要存在橄榄石型的LiFePO4和单斜晶系的Li3V2(PO4)3。复合比例(x:y)为5:1时,在650℃下烧结12小时制备出的复合材料5LiFePO4·Li3V2(PO4)3具有最佳的电化学性能,1C放电容量高达154.13mAh·g-1,材料具有良好的倍率性能和循环性能,10C倍率下经100次循环后放电比容量仍高达112.8mAh·g-1,容量保持率为98.6%。复合材料的性能要明显优于相同条件下制备出的单一相的LiFePO4和Li3V2(PO4)3。此外,复合制备出的5LiFePO4·Li3V2(PO4)3较直接机械混合的5LiFePO4@Li3V2(PO4)3有明显的倍率性能优势。复合电极5LiFePO4·Li3V2(PO4)3的循环伏安测试表明,CV曲线上分别出现了Li3V2(PO4)3和LiFePO4的所有特征衍射峰,没有发现其他特征峰。在相同扫描速度下,复合电极5LiFePO4·Li3V2(PO4)3的四对氧化还原峰的电势间隔要明显小于单一的LiFePO4和Li3V2(P04)3,复合材料的脱嵌锂性能要明显优于单一的LiFePO4和Li3V2(PO4)3。HRTEM结果表明:复合材料5LiFePO4·Li3V2(PO4)3表面被5nm厚的碳网包覆,各个粒子间通过“碳桥”连接,且晶体表面存在着许多缺陷;通过对复合材料5LiFePO4.Li3V2(PO4)3的复合机理进行研究发现,复合材料xLiFePO4·yLi3V2(PO4)3中存在着部分Fe/V分别相互掺杂Li3V2(PO4)3/LiFePO4,并形成固溶体;掺杂后的Fe和V分别显示出了和LiFePO4、Li3V2(PO4)3中Fe和V一样的价态,分别为+2和+3价。
     利用线性极化法测定了LiFePO4、Li3V2(PO4)3、直接机械混合的5LiFePO4@Li3V2(PO4)3和5LiFePO4·Li3V2(P04)3电极在不同荷电态下的交换电流密度,研究发现随着电极荷电的增加,各个电极的交换电流密度均呈变大的趋势;这四个电极在荷电50%时,其交换电流密度分别为38.64、64.95、44.77和76.18mA.g-1,其中5LiFePO4·Li3V2(PO4)3的交换电流密度最高。用CV法测定了各个电极在对应的各个氧化还原峰位的锂离子扩散系数,研究发现在氧化峰处的扩散系数均要大于在还原峰处的扩散系数;复合材料中的锂离子扩散系数要明显大于单一正极材料相同峰位的锂离子扩散系数。复合正极材料5LiFePO4·Li3V2(P04)3的嵌锂过程动力学要优于单一的正极材料LiFePO4和Li3V2(PO4)3。
     首次以共沉淀法制备出的FeVO4·xH2O为原料制备出了LiFePO4-Li3V2(PO4)3复合材料。XRD结果表明合成的材料是橄榄石型的LiFePO4和单斜晶系的Li3V2(PO4)3两相并存。该材料表现出了优越的倍率性能和循环稳定性,在0.1C、1C和3C倍率下的放电容量分别高达142.5、138.4和123.4mAh·g-1,循环30次后放电容量为139.1、135.5和116mAh·g-1。电池的容量保持率高达97.6%、97.9%和94.0%。
In this paper, the development of lithium ion batteries and cathode materials were reviewed in detail. The aims of the present study were focus on the preparation processes, the electrochemcial performances, physic properties, and the kinetics behaviors of LiFePO4, Li3V2(PO4)3 and composite materials xLiFePO4·yLi3V2(PO4)3.
     FePO4·xH2O precursor was synthesized from co-precipitation under various pH value. LiFePO4/C cathode material was then synthesized by carbothermal reduction using FePO4·xH2O. The effect of the solution pH on the performance of FePO4·xH2O was characterized. The results showed that there were no impurities existed in the FePO4·xH2O synthesized on the condition that the solution pH was between 2 and 5. LiFePO4 made from FePO4·xH2O precursor synthesized under the condition that the solution pH was about 2 showed excellent electrochemical performance, it exhibited a discharge capacity of 145mAh·g-1 at 0.1C, the capacity retention is about 98% after 50 cycles, and the tap density reaches 1.11 g·cm-3.
     It was the first time that LiFePO4 was synthesized by heating an amorphous LiFePO4, which obtained through lithiation of FePO4·xH2O by using oxalic acid as a novel reducing agent at room temperature. The effects of reaction temperature and time on the crystal structure, morphology and electrochemical properties of products were investigated. The results show that the sample synthesized at 600℃for 12h has fine particle sizes between 100-200nm, and with homogenous sizes distribution, the particles are wraped by 20nm thickness carbon webs. The synthesized LiFePO4 composites showed excellent discharge capacity of 165 mAh·g-1 and 95 mAh·g-1 at 0.1C and IOC rate. The cell retains 98.8% and 89.5% of its initial discharge capacity after 50 cycles.
     It was the first time that Li3V2(PO4)3 was synthesized by a room temperature reduction-low temperature calcining. XPS results showed V5+was reduced to V3+by oxalic acide, under ball milling at room temperature. Li3V2(PO4)3 particles are about 200nm in diameter and have porous structure, and coated with nano-carbon webs, the thickness of the nano-carbon webs are about 10-20nm, the specific surface area is as large as 25m2·g-1. Li3V2(PO4)3 synthesized at 650℃for 12h showed best electrochemical performance, it exhibited a capacity of 131.57mAh·g-1 at 0.1C, the capacity retention is about 95.23% after 100 cycles.
     In order to use the merits of LiFePO4 and Li3V2(PO4)3, composite materias xLiFePO4·yLi3V2(PO4)3 were synthesized through room temperature reduction-low temperature calcining. XRD results showed an olivine type LiFePO4 and a monoclinic component Li3V2(PO4)3 coexisted in the composite.5LiFePO4-Li3V2(PO4)3 synthesized at 650℃for 12h showed good electrochemical performance, it exibited 154.13mAh·g-1 at 1C rate. A capacity of 112.8mAh·g-1 can be obtained at IOC rate after 100 cycles, the capacity retention was 98.6%. The electrochemical performances of the composite material 5LiFePO4·Li3V2(PO4)3 are better than single phase LiFeP4 and Li3V2(PO4)3. Besides, the performances of the synthesized 5LiFePO4·Li3V2(PO4)3 are better than that of 5LiFePO4@Li3V2(PO4)3 obtained just mechanical mixed LiFePO4 and Li3V2(PO4)3 together. CV results of 5LiFePO4·Li3V2(PO4)3 electrodes showed that the oxidation and reduction peaks appeared in the way of the superimposition of the peaks of LiFePO4 and Li3V2(PO4)3. No other peaks can be found. In the same scanning velocity, the voltage intervel of the four pairs peaks of 5LiFePO4-Li3V2(PO4)3 are obviously smaller than that of single phase LiFePO4 and Li3V2(PO4)3, the lithium deintercalation/ intercalation kinetics behaviors of 5LiFePO4·Li3V2(PO4)3 are better than that single phase LiFePO4 and Li3V2(PO4)3. The coalescence machanism for the composite cathode material 5LiFePO4-Li3V2(PO4)3 were studied, the results showed some LiFePO4 and Li3V2(PO4)3 in the composite material were doped by V and Fe, respectively, and formed a solid solution. The valence of Fe and V after doping in Li3V2(PO4)3 and LiFePO4 was+2 and+3, respectively.
     The kinetics behaviors of LiFePO4, Li3V2(PO4)3 and 5LiFePO4-Li3V2(PO4)3 electrodes were studied by means of linear sweep voltammetry and cyclic voltammetry. It is found that the exchange current density was increased with the charge state increasing. The exchange current density is 38.64,64.95,44.77 and 76.18mA·g-1 for LiFePO4, Li3V2(PO4)3, mechanical mixied 5LiFePO4@Li3V2(PO4)3 and 5LiFePO4·Li3V2(PO4)3, respectively. The lithium diffusion coefficient around the oxidation peaks are larger than that of reduction peaks. And the lithium diffusion coefficients in the composite material 5LiFePO4·Li3V2(PO4)3 are larger than that in single phase LiFePO4 and Li3V2(PO4)3, indicated the lithium ion diffusion rate in 5LiFePO4·Li3V2(PO4)3 are faster than single LiFePO4 and Li3V2(PO4)3.
     Composite material LiFePO4-Li3V2(PO4)3 was synthesized using FeVO4·xH2O obtained by co-precipitation. XRD results showed that olivine type LiFePO4 and monoclinic Li3V2(PO4)3 coexisted in the composites. The composites synthesized at 700℃for 12h exibited good rate performance and stable cycle performance, and its discharge capacity is about 142.5 at 0.1C,138.4 at 1C and 123.4mAh·g-1 at 3C with satisfactory capacity retention.
引文
[1]郭炳焜,李新海,杨松青.化学电源——电池原理及制造技术.长沙:中南工业大学出版社,2000.1-10
    [2]戴永年,杨斌,姚耀春等.锂离子电池发展状况.中国储能电池与动力电池及其关键材料学术研讨会.长沙,2005
    [3]黄可龙,江志裕,马紫峰.锂离子电池原理与关键技术.北京:化学工业出版社,2007.1-15
    [4]Nagaura T, Tazawa K. Prog. Batteries Sol.Cell,1990(9):20
    [5]Wakihara M. Recent developments in lithium ion batteries. Mater Sci Engin R, 2001,33(4):109-134
    [6]Thackeray M M. Structural considerations of layered and spinel lithiated oxides for lithium ion battery. J Electrochem Soc,1995,142(8):2558-2563
    [7]Yamada A, Hosoya M, Chung S C, et al. Olivine-type cathodes achievements and problems. J Power Sources,2003,119:232-238
    [8]Yashinori K, Katsunori Y, Atsuhiro F, et al. Electrochemical characteristics of graphite, coke, and graphite/coke hybrid carbon as negative electrode materials for lithium secondary batteries. J Power Source,2001,11(2):74-77
    [9]Shi H, Barker J. Structure and lithium intercalation properties of synthetic and natural graphite. J Electrochem Soc,1996,143(11):3466-3472
    [10]张军,金忠,杨清河,等.介稳定相炭微球嵌锂特性.电源技术,2001,25(6):398-400
    [11]唐致远,庄新国,翟玉梅,等.锂离子电池酚醛树脂裂解碳负极材料的研究电化学,2000,6(2):218-221
    [12]蒋小兵,赵新兵,曹高劭,等.新型锂离子电池负极材料COFe3Sb12.材料研究学报,2001,15(4):469-472
    [13]Zheng T. High capacity carbon prepared form phenolic resin for anode of lithium-ion batteries. J Electrochem Soc,1995,14(5):211-214
    [14]Nam S C, Yoon Y S, Yun K S, et al. Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes. J Electrochem Soc,2001,148(3): A220-A223
    [15]Yin J, Wada M, Sakai T, et al. New Ag-Sn alloy anode materials for lithium-ion batteries. J Electrochem Soc,2003,150(8):A1129-A1135
    [16]Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for
    electrochemical energy storage and production. Nature,1998,393(28): 346-348
    [17]Takeuchi E S, Gan H, Palazzo M, et al. Anode passivation and electrolyte solvent disproportionation:mechanism of ester exchange reaction in lithium-ion batteries . J Eletrochem Soc,1997,144(6):1944-1948
    [18]Smart M C, Ratnakumar B V, Surampuli S, et al. Irreversible capacities of fraphite in low temperature electrolytes for lithium-ion batteries. J Electrochem Soc,1999,146(11):3963-3969
    [19]Huang W. W,Frech. Vibartional spectroscopic and electrochemical studies of the low and high temperature phase of LiCo1-xMxO2(M=Ni,Ti), Solid State Ionics,1996:395-400
    [20]Holzaple.,Sechreiner R.,Ott A. Lithium-ion conductors of the system Acta,2001,46:1063-1070
    [21]Paulsen J M, Muller-Nehaus J R and Dahn J R. Layered LiCoO2 with a different oxygen stacking as a cathode material for rechargeable lithium batteries. J. Electrochimical Soc,2000,147(2):508-516
    [22]Akimoto J..Gotoh Y.,Oosawa Y. Synthesis and structure refinement of LiCoO2 single crystals. J.Solid State Chemistry,1998,14:298-302
    [23]Akimoto J J,Yoshito G, Yohshinao O. Synthesis and structure refinement of LiCoO2 single crystals.J.Solid State Chemistry,1998,141:298-302
    [24]Paulsen. J.M, Muller-Nehaus. J. R, Dahn. J. R. Layered LiCoO2 with a different oxygen stacking(O2 structure) as a cathode material for rechargeable lithium batteries. J. Electrochem.Soc.,2000,147(2):508-516
    [25]Ritchie A.G. Recent development and future prospects for lithium rechargeable batteries. J. Power Sources,2001,96(1):1-4
    [26]Inaba. M, Ogumi.Z. Up-to-date development of lithium-ion battery in Japan. IEEE Electrical Insulation Magazine,2001,17(6):6-20
    [27]Perkins. J.D, Bahn.C.S,Parilla.P.A, McGraw.J.M, Fu.L.M, Duncan.M, Yu.H,Ginley.D.S. LiCoO2 and LiCo1-xAlxO2 thin film cathodes grown by pulsed laser ablation. J. Power Sources,1999,81-82(9):675-679
    [28]Mladenov.M, Stoyanova.R, Zhecheva.E, Vassilev.S. Effect of Mg doping and MgO-surface modification on cycling stability of LiCoO2 electrodes. Electroche Commun.,2001,3(8):410-416
    [29]Oh.S, Lee.J.K,Byun.D, Cho.W.I, Byung.W.C. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J.Power Sources,2004,132(1/2):249-255
    [30]Huang.W, Frech.R.Vibrational spectroscopic and electrochemical studies of the low and high temperature phase of LiCo1-xMxO2(M=Ni or Ti). Solid State Ionic,1996,86-88(1):395-400
    [31]Lundblad A, Bergman B. Synthesis of LiCoO2 starting from carbonate precursors: The reaction mechanisms.Solid State Ionics,1997,96:173-181
    [32]Lundblad A, Bergman B. Synthesis of LiCoO2 starting from carbonate precursors: Ⅱ Influence of calcinations conditions and leaching. Solid State Ionics,1997,96:183-193
    [33]Tukaoto H., West A.R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping.J.Electrochem. Soc.,1997,144 (9):3164-3168
    [34]张露露,游敏.锂离子电池正极材LiCoO2的研究进展.云南化工,2006,33(6):64-67
    [35]周恒辉,慈云祥,刘昌炎.锂离子电池正极材料研究进展.化学进展,1998,10(1):85-94
    [36]张胜利,余仲宝,韩周详.锂离子电池的研究与进展.电池工业,1999,4(1):26-28
    [37]Delmas. C, Peres.J.P, Rougier.A.On the behavior of the LixNiO2 system:an electrochemical and structural overview. J.Power Sources,1997,68(1):120-125
    [38]Wang Miaojun, Navrotsky Alexandra. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1-xCoxO2. Solid State Ionics,2004,166(1-2):167-173
    [39]Broussely.M, Biensan.P, Simon.B. Lithium insertion into best material:the key to success for Li ion batteries. Electrochimica Acta,1999,45:7-12
    [40]Lee. M-H, Kang. Y-J, Myung. S-T, Sun. Y-K. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta.2004,50(4); 939-948
    [41]吴宇平,李阳兴,万春荣.锂离子二次电池正极材料氧化锰理的研究进展.功能材料,2000,31(1):18-22
    [42]Tabuchi M,Ado K,Kobayashi H.Synthesis of LiMnO2 with α-NaMnO2 type by a mixed alkaline hydrothermal reaction. J.Electrochem.Soc.,1998,145:L49-52
    [43]Armstrong A R,Bruce P G.Sythesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature,1996,381:499-500
    [44]李建刚.锂离子电池用LixMn2-xO4正极材料的应用基础研究:[博士学位论文].天津:天津大学,2001
    [45]Jang D H, Shin Y J,Oh S M.Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cells. J.Electorchem. Soe.,1996,143(7):2204-2211
    [46]Thackeyar M M.Stuctural considerations of layered and spinel lithiated oxides for lithium ion batteries. J.Electrochem. Soe.,1995,142(8):2558-2563
    [47]万传云,努丽岩娜,江志裕.掺稀土的LiM0.02Mn1.98O4锂离子电池正极材料.高等学校化学学报,2002,23:126-128
    [48]Lee.J.H, Hong.J.K, Jang D.H. Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4(M=Li, B, Al, Co, and Ni) for Li secondary batteries. J.Power Sources,2000,89:7-14
    [49]Palacin. M.R, Amatucci.G.G, Anne. M. Electrochemical and structural study of the 3.3V reduction step in defective LixMn2O4 and LiMn2O4_yFy compounds. J. Power Sources,1999,81-82:627-631
    [50]M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador. On-demand design of polyoxianionic cathode materials based on elelctronegativity correlations:An exploration of the Li2MSiO4 system(M=Fe, Mn, Co, Ni). Electrochemistry Communications 2006,8:1292-1298
    [51]Anton Nyten, Ali Abouimrane, Michel Armand, Torbjorn Gustafsson, John O. Thomas. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, Electrochemistry Communications 2005,7:156-160
    [52]Zaghib K, Ait Salah A, Ravet N, Mauger A, Gendron F, Julien C M. Structural, magnetic and electrochemical properties of lithium iron orthosilicate, Journal of Power Sources 2006,160:1381-1386
    [53]Zhou F, Matteo Cococcioni, Kisuk Kang, Gerbrand Ceder. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni, Electrochemistry Communications 2004,6:1144-1148
    [54]Dominko R, Conte D E, Hanzel D, Gaberscek M, Jamnik J. Impact of systhesis conditions on the structure and performance of Li2FeSiO4, Journal of Power Sources2008,178(2):842-847
    [55]Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U. On-demand design of polyoxianionic cathode materials basded on electronegativity correlations:An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni), Electrochemistry Communications 2006,8:1292-1298
    [56]Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials, Electrochemistry Communications 2006,8:217-222
    [57]Gong Z L, Li Y X, Yang Y. Systhesis and Characterization of Li2MnxFe1-xSiO4 as a Cathode Material for Lithium-ion Batteries, Electrochemical and Solid-state Letters,2006,9(12) A542-A544
    [58]杨勇,李益孝,龚正良.可充电锂电池用硅酸锰铁锂/碳复合材料及其制备方法.中国专利,ZL1803608A,2006.7
    [59]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc,1997,144(4):1188-1194
    [60]Andersson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics,2000,130:41-52
    [61]Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4 . J Power Sources,2001,97-98:498-502
    [62]Anderson AS,Thomas JO.The source of first-cycle capacity lose in LiFePO4.J.Power Sources,2001,(97-98):498-502
    [63]Anderson A S,Kalska B,Haggstorm L,et al.Lothium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauser spectroscopy stusy. Solid State Ionics,2002,5(5):95-98
    [64]Ravet N,Chouinard Y,Magna J F.Electroactiviy of natural and synthetic triphylite.J Power Sources,2001,97-98:503-507
    [65]Ynag S,Song Y,Zavalij P Y,et al.Reactiviy, stabilityt and electrochemical behavior of lithium iron Phosphates.Electrochemistry Communications,2002,4(3):239-244
    [66]Takahashi M,Tohishima S,Takei K,et al.Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics,2002,148(3-4):283-289
    [67]Wang DY,Wu XD,Wang ZX,et al. Cracking causing cyclic instability of LiFePO4 cathode material. J. Power Sources,2005,140:125-128
    [68]Chung S Y,Bloking J T,Chiang Y M. Electronically conductive phosphor-olivines as lithium storage electrodes. Nat. Mater.,2002,1(2):123
    [69]黄学杰.锂离子电池正极材料磷酸铁锂研究进展.电池工业,2004,9(4):176-180
    [70]Yamada A, Chung S C, Hinokuma K. Op timized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc.,2001,148 (3):224-229
    [71]刘立君.锂离子电池正极材料研究:[博士学位论文].北京:中国科学院物理研 究所,2003
    [72]Hosoya M, Takahashi K, Fukushima Y. Method to manufacture activate substance for positive electrode and method of manufacturing non aqueous electrolyte cell:Japan,250555[Japan Patent].2001-09-14
    [73]S. Yang, P. Y. Zavalij, M. S. Whittingham, Hydrothermal synthesis of lithiumiron phosphate cathodes, Electrochem. Commun.,2001,3:505-508
    [74]Franger. S, Cras. F.L, Bourbon.C, Bonault.H. LiFePO4 sythesis routes for enhanced electrochemical performance. Electrochem Solid-State Lett, 2002,5(10):A231-A233
    [75]Yang S F, Zavalij P Y,Whittingham M S. Hydrothermal synthesis lithium iron phosphate cathodes. Electrochem. Commun.,2001(3):505-508
    [76]Lee J, Teja A S. Characteristics of lithium iron phosphate(LiFePO4) particles synthesized in subcritical and supercritical water.J. Supercrit Fluids,2005,35: 83-90
    [77]Zhu.B.Q, Li.X.H, Wang Z.X, Novel synthesis of LiFePO4 by aqueous precipitation and carbonthermal reduction. Material Chemistry and Physics 2006,98:373-376
    [78]Arnold.G, Garche. J, Hemmer. R, Strobele.S. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources,2003,119-121:247-251
    [79]Prosini P P, Carew SM, Scaccia S. A new synthetic route for p reparing LiFePO4 with enhanced electrochemical performance.J.Electrochem. Soc.,2002, 149(7):886-890
    [80]Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous p recip itation technique J.Power Sources,2003,119-121:247-251
    [81]Iltchev. N, Chen. Y, Okada.Sh, Yamaki. J, LiFePO4 storage at room and elevated temperatures. J. Power Sources,2003,119-121:749-754
    [82]Ait Salah.A, Mauger.A, Julien.C. M, Gendron. F, Nano-sized impurity phases in relation to the mode of preparation of LiFePO4.Mater. Sci. Eng., B,2006,129: 232-244
    [83]J. Yang, J.J. Xu, Nonaqueous sol-gel synthesis of high-performance LiFePO4. Electrochem. Solid-State Lett.,2004,7:A515-A518
    [84]Sundaraya.Y, Kumara Swamy K. C, Sunandana C. S, Oxalate
    basednonaqueoussol-gel synthesis of phase pure sub-micron LiFePO4. Mater. Res. Bull.,2007,42:1942-1948
    [85]Croce F, Epifanio A D, Hassoun J,et al. A novel concep t for the synthesis of an imp roved LiFePO4 lithium battery cathode.Electrochem. Solid-State Lett.2002 5(3):47-50
    [86]Higuchi M, Katayama K, Azuma Y, Yukawa M, Suhara M, Synthesis ofLiFePO4 cathode material by microwave processing, J. Power Sources,2003, 119-121:258-261
    [87]Hu Y Q, Doff M M, Kostecki R,et al. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. J.Electrochem. Soc.2004,51(8):1 279-1285
    [88]Cho T.-H, Chung H.-T, Synthesis of olivine-type LiFePO4 by emulsion-dryingmethod. J. Power Sources,2004,133:272-276
    [89]Myung S.-T, Komaba Sh, Hirosaki N, Yashiro H, Kumagai N, Emulsiondrying synthesis of olivine LiFePO4/C composite and its electrochemicalproperties as lithium intercalation material, Electrochim. Acta,2004,49:4213-4222
    [90]Zh. Xu, L. Xu, Q. Lai, X. Ji, Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells, Mater. Chem. Phys,2007,105:80-85
    [91]Tomonari Takeuchi, Mitsuharu Tabuchi, Akiko Nakashima, Tatsuya Nakamura, Yoshiki Miwa, Hiroyuki Kageyama, Kuniaki Tatsumi. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process. Journal of Power Sources.2005,146(1-2):575-579
    [92]Hirokazu Okawa, Junpei Yabuki, Youhei Kawamura, Ichiro Arise, Mineo Sato. Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method. Materials Research Bulletin 2008,43:1203-1208
    [93]Yang M.-R, Teng T.-H, Wu Sh.-H, LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. J. Power Sources,2006,159:307-311
    [94]Konarova M, Taniguchi I, Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Mater. Res. Bull.,2008,43:3305-3317
    [95]Jugovic.D, Cvjeticanin. N, Mitric. M, Mentus. S, Uskokovic.D, Comparison between Different LiFePO4 Synthesis Routes. Mater. Sci. Forum,2007,555: 225-230.
    [96]Bewlay S. L, Konstantinov K, Wang G. X, Dou S. X, Liu H. K. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater.Lett.,2004,58:1788-1791
    [97]Teng T.-H, Yang M.-R, Wu Sh.-H, Chiang Y.-P. Electrochemical properties of LiFeo.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis,Solid State Commun.,2007,142:389-392
    [98]Konarova.M, Taniguchi. I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties, Powder Technology2009,191 (1-2)111-116
    [99]Lu Z.G, Cheng H, Lo M.F, Chung C.Y. Pulsed laser deposition and electrochemical characterization of LiFePO4-Ag composite thin film. Advanced Functional Materials.2007,17(18):3885-3896
    [100]Chihiro Yada, Yasutoshi Iriyama, Soon-Ki Jeong, Takeshi Abe, Minoru Inaba, Zempachi Ogumi. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition. Journal of Power Sources.2005,146(1-2):559-564
    [101]Li.P, He. W, Zhao. H, Wang S. Biomimetic synthesis and characterization of the positive electrode material LiFePO4. Journal of Alloys and Compounds.2009, 471:536-538
    [102]Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4 based composite cathode. Electrochimica Acta,2001,46:3517-3523
    [103]Rho Y H, Kanamura K. Li+-ion diffusion in LiCoO2 thin film prepared by the poly(vinylpyrrolidone) sol-gel method. J Electrochem Soc,2004,151(9): A1406-A1411
    [104]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phosphor-olivines as lithium storage electrodes. Nature Materials,2002, 2:123-128
    [105]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters,2001, 4(10):A170-A172
    [106]Croce.F, Epifanio. A.D, Hassoun J, Deptula.A, Olczac. T, Scrosati. B. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochemical and Solid-State Letters,2002,5(3) A47-A50
    [107]Mi C.H, Cao Y.X, Zhang X.G, Zhao X.B, Li H.L. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technology 2008,181:301-306
    [108]Park K.S, Son J.T, Chung H.T, Kim S.J, Lee C.H, Kang K.T, Kim H.G. Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun.2004,129:311
    [109]Kim D H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochemical and Solid-State Letters, 2006,9(9):A439-A442
    [110]Charles R. Sides, Fausto Croce, Vaneica Y. Young, Charles R. Martin, Bruno Scrosati. A High-rate, nanocomposite LiFePO4/carbon cathode. Electrochemical and solid-state letters,2005,8(9) A484-487
    [111]Xiao-hong Liu, Jin-qing Wang, Jun-yan Zhang, Sheng-rong Yang. Fabrication and characterization of LiFePO4 nanotubes by a sol-gel-AAO template process.Chinese Journal of Chemical Physics.2006,19(6):530-534
    [112]Natalia N. Bramnik, Kristian Nikoliwski, Dmytro M. Trots, Helmut Ehrenberg. Thermal Stability of LiCoPO4 Cathodes,Electrochemical and Solid-State Letters,2008,11(6) A89-A93
    [113]Arcon D, Zorko A, Cevc P, Dominko R, Bele M, Jamnik J. Weak ferromagnetism of LiMnPO4. Journal of Physics and Chemistry of Solids 2004, 65:1773-1777
    [114]Wolfenstine. J, Allen. J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources,2005,142:389-390
    [115]Padhi A.K, Nanjundawamy. K.S, Goodenough. J.B. Phospho-olivine as positive electrode materials for rechargeable lithium batteries. J. Electrochem Soc, 1997,144(4):1188-1194
    [116]Deniard. P, Dulac. A.M, Rocquefelte.X, Grigorova.V, Lebacq.O, Pasturel. A, Jobic. S. High potential positive materials for lithium-ion batteries:transition metal phosphates. J.Phys.Chem. Solids,2004,65:229-233
    [117]Fey.G.T, Li.W, Dahn.J.R.LiNiVO4:A 4.8V Electrode Material for Lithium Cells. J. Electrochem.Soc.,1994,141 (9):2279-2282
    [118]Okada.S, Sawa.S, Egashira.M, Yamaki.J-I, Tabuchi.M, Kageyama.H, Konishi.T, Yoshino.A. Cathode properties of phosphor-olivine LiMPO4 for lithium secondary batteries. J Power Sources,2001,97-98:430-432
    [119]Yoshida K, Toda K, Uematsu K, Sato M, Cathode characterisitics of lithium transition metal phophate synthesized by ion-exchangeKey Eng. Mater.1999, 157-158:289-296
    [120]Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem.Mater.2000,12: 3240-3242
    [121]Padhi A K, Nanjundaswamy K S, Masquelier C, et all Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc,1997,144(8):2581-25861
    [122]朱先军,刘云霞,耿良梅,程龙兵.锂离子电池正极材料Li3V2(PO4)3的研究进展.电池,2007,37(5):390-393
    [123]Huang. H, Yin S-C, Kerr. T, Taylor. N, Nazar. F. Nanostructured composites:A high capacity, fast rate Li3V2(PO4)3/Carbon cathode for rechargeable lithium batteries. Advanced Materials.2002,14(21):1525-1528
    [124]Yin S C, Gronodey H, Strobel P, et all Electrochemical property structure relationships in monoclinic Li3V2(PO4)3 J Am Chem Soc,2003,125 (34): 10402-10411
    [125]Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion.-Electrochemical and Solid State Letters,2002-Pennington, NJ: The Society,1998-7
    [126]Whittingham.M.S. Lithium batteries and cathode materials.Chem Rev,2004, 104:4271-4301
    [127]Saidi M Y, Barker J, Huang H, et all Electrochemical property of lithium vanadium phosphate as a cathode material for lithium ion batteries. J Electrochem Soc,2002,5 (7):A149-A1511
    [128]Li. Y, Zhou. Z, Gao. X, Yan. J. A promising sol-gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries. Electrochimica Acta,2007,52:4922-4926
    [129]刘素琴,唐联兴,黄可龙.溶胶-凝胶法制备Li3V2(PO4)3及其性能研究无机化学学报2006,22(6):1067-10711
    [130]钟胜奎,尹周澜,王志兴.低温固相反应合成正极材料及其性能.无机化学学报,2006,22(10):1843-18461
    [131]PATOUXS, WURM C, MORCRETTE M, et al. A comparative structural and electro-chemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J Power
    Sources,2003,119-121:278-284
    [132]EGUCHE M, OZAWA K, SAKKA Y. Preparation and lithium insertion property of layered LixV2O5·nH2O. J Power Sources,2003,119-121:201-204
    [133]应皆荣,姜长印,唐昌平,高剑.微波碳热还原法制备Li3V2(PO4)3及其性能研究.2006,35(11):1792-1796
    [134]任慢慢,李宇展,周震,高学平,阎杰.微波法合成正极材料Li3V2(PO4)3.电池,2006,36(1):13-14
    [135]Atsuo Y, Mamoru H, Chung S C, et all Olivine type cathodes achievements and problems. J Power Sources,2003,119-121:232-2381
    [136]Huang H, Yin S C, Kerr T, et al. Nanostructured composites:a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Advanced Materials,2002,14 (21):1525-15281
    [137]Sato. M, Ohkawa. H, Yoshida. K, Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics,2000,135:137-142
    [138]刘素琴,李世彩,黄可龙,陈朝晖.Ti4+离子掺杂对Li3V2(PO4)3晶体结构与性能的影响.物理化学学报.2007,23(4):537-542
    [139]Barker. J, Gover. R.K.B, Burns. P, Bryan. A, The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate Li3V2(PO4)3. J. The Electrochemical Society,2007,154(4):A307-A313
    [140]J.Barker, M.Y. Saidi, J.L. Swoyer. Electrochemical insertion properties of the novel lithium vanadium fluorophosphates LiVPO4F. J. Electrochem. Soc,. 2003,150(10):A1394-A1398
    [141]Ohzuku T, Komori H.New route to prepare lithium nickel dioxide for 4 volts secondary 1 ithium cell.Chem Express,1992,7:689-694
    [142]Wadsley A D.Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides:crystal structure of Li1+xV3O8.Acta Crystallogr,1957,10:261-267
    [143]Picciotola, Thackeray M M.An electrochemical study of the lithium vanadate system Li1+xV2O4 and Li1-xVO4.Solid State Ionics,1988,30:1364-1370
    [144]Feygtk, Li W, Dahnjr. LiNiVO4:a 4.8-volt electrode material for lithium cell.J ElectrochemSoc.1994,141(9):2279-2282
    [145]Charles Delacourt, Calin Wurm, Priscilla Reale. Low temperature preparation of optimized phosphates for Li-battery applications Solid State Ionics.2004,173:113-118
    [146]朱炳权,李新海,张宝,王志兴,郭华军.改进的碳热还原法制备正极材料LiFePO4/C.电池.2005,35(6):445-447
    [147]Yangning Song, Shoufeng Yang, Peter Y. Zavalij, M. Stanley Whittingham. Tempertature-dependent properties of FePO4 cathode materials. Materials Research Bulletin 2002,37:1249-1257
    [148]雷敏,应皆荣,姜长印,万春荣.高密度球形LiFePO4的合成及性能.电源技术,2006,1(30):11-13
    [149]郑忠.胶体科学导论.北京:高等教育出版社,1989.17-18
    [150]HUANG H, YIN S-C,NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at High Rate.Electrochemical and Solid-State Letters,2001,4(10):A170-173
    [151]Prosini P.P, Carewska M, Scaccia S, et al.A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. Journal of the Electrochemical Society,2002,149(7):A886-890
    [152]Prosini P.P, Carewska M, Scaccia S, et al.Long-term cyclability of nanostructured LiFePO4.Electrochimica Acta,2003,48:4205-4211
    [153]邱亚丽,王保峰,杨立.LiFePO4纳米粉体的还原插锂合成及其电化学性能研究.无机材料学报,2007,22(1):79-83
    [154]Jaewon Lee, Amyn S. Teja. Characteristics of lithium iron phosphate(LiFePO4) particles synthesized in subcritical and supercritical water. J.of Supercritical Fluids 2005,35:83-90
    [155]Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thichness on the electrochemical performance of LiFePO4/C composites. Journal of the electrochemical society2005:152(3) A607-A610
    [156]Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil J.M, Porous olivine composites synthesized by sol-gel technique. Journal of Power Sources 2006,153:274-280
    [157]Chang Y-C, Sohn H-J.Electrochemical impedance analysis for lithium ion intercalation into graphitized carbonsJ. Electrochem. Soc.,2000,147(1):50-58.
    [158]庄大高,赵新兵,谢健,等.Nb掺杂LiFePO4/C的一步固相合成及电化学性能物理化学学报,2006,22(7):840-844
    [159]Gao. F, Tang. Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta,2008,53:5071-5075
    [160]刘素琴,李世彩,黄可龙.Li3V2(PO4)3电极过程及其锂离子脱嵌动力学研究.化学学报,2007,65(1)10-16
    [161]刘素琴, 李世彩, 唐联兴,黄可龙.Li3V2(PO4)3的溶胶-凝胶法合成及其性能研究.无机化学学报,2006,22(4):645-650
    [162]陈寿椿,唐春元,于肇德.重要无机化学反应,第3版.北京:科学出版社,1994:849-850
    [163]Chen Q, Wang J, Tang Z, He W, Shao H, Zhang J. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method Electrochimica Acta 2007,52:5251-5257
    [164]Zhu X, Liu Y, Geng L, Chen L, Liu H, Cao M. Synthesis and characteristics of cathode materials for lithium-ion batteries Solid State Ionics 2008, 179:1679-1682
    [165]Tang A, Wang X, Liu Z. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. Material Letters2008,62:1646-1648.
    [166]王德宇,锂离子电池磷酸盐正极材料的制备与改性研究:[博士学位论文].北京:中科院物理所,2005
    [167]Robert D, Miran G, Jernej D. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries.Electrochimica Acta,2003,48:3709-3716
    [168]Zhou X, Liu Y, Guo Y. Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction.Electrochemica Acta,2009,54:2253-2258
    [169]刘素琴,唐联兴,黄可龙,张静.新型锂离子电池正极材料Li3V2(PO4)3的合成及其性能.中国有色金属学报,2005,15(8):1294-1299
    [170]Panhi A K, Nanjundaswamy K S, Goodenough J B, Phospho-olivines as positive-electrode materials for rechargeable lithium batteriesJ.B. Goodenough, J. Electrochem. Soc.1997,144(5):1609-1613
    [171]Yang M-R, Ke W-h, Wu S-h. Improving electrochemical properties of lithium iron phosphate by addition of vanadium. Journal of power sources 2007, 165:646-650
    [172]Ren M, Zhou Z, Li Y, Gao X.P, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries Journal of power sources 2006,162:1357-1362
    [173]Chen X.J, Cao G.S, Zhao X.B, Tu J.P, Zhu T.J. Electrochemical performance of composites prepared by solid-state reaction Journal of Alloys and Compounds 2008,463:385-389
    [174]Wen Y, Zeng L, Tong Z, Nong L, Wei W. Structure and properties of LiFe0.9V0.1PO4. Journal of Alloys and Compounds 2006,416:206-208
    [175]Wang D, Wu X, Wang Z. Cracking causing cyclic instability of LiFePO4 cathode material.Journal of power sources,2005,140:125-128
    [176]Macdonald D.D. Transient techniques in electrochemistry. New York: Plenum Press,1977
    [177]Liu P., Wu H.Q. Diffusion of lithium in carbon, Solid State Ionics, 1996,92:91-97
    [178]Bohnke C.,Bohnke O.,Fourquet J.L. Electrochemical intercalation of lithium into LiLaNb2O7. J. Electrochem. Soc.,1997,144(4):1151-1158
    [179]Umeda M., Dokko K., Fujita Y, et al. Elcetrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part Ⅰ Graphitized carbon. Electrochimica Acta,2001,47:885-890
    [180]Umeda M., Dokko K., Fujita Y, et al. Elcetrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part II. Disordered carbon. Electrochimica Acta,2001,47:933-938
    [181]Deiss E. Spurious potential dependence of diffusion coefficients in Li+ insertion electrodes measured with PITT.Electrochimica Acta, 2002,47:4027-4034
    [182]McGraw J.M.,BahnC.S.,ParillaP.A.,et al. Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes. Electrochimica Acta 1999,45:187-196
    [183]Dahn.J. R, Jiang J. W, Moshurchak L. M,High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-diterbuty 1-1, 4-dimethoxybenzene J. Electrochem Soc2005,152(6):A1283-A1289
    [184]Moshurchak L. M, Buhrmester. C, Dahn J.R. Spectroelectrochemical studies of redox shuttle overcharge additive for LiFePO4-based Li-ion batteries. J. Electrochem Soc2005,152(6):A1279-A1282
    [185]Nakamura.T, Sakumoto. K, Okamoto. M. Electrochemical study on Mn2+ substitution on LiFePO4 olivine compound Journal of Power Sources 2007,174:435-441
    [186]Rho. Y.H, Kanamura. K. Li+ ion diffusion in LiCoO2 thin film prepared by the poly(vinylprrolidone) Sol-gel methode.Journal of The Electrochemical Society, 2004,151(9):A1406-A1411
    [187]Liu H, Fu L.J, Zhang H.P., Gao J,etal. Effects of carbon coating on nanocomposite electrodes for lithium-ion battery.Electrochemical and Solid-State Letters,2006,9(12)A529-A533
    [188]Yu D. Y.W., Fietzek. C, Weydanz.W. Study of LiFePO4 by cylic voltammetryJournal of The Electrochemical Society,2007,154(4):A253-A257
    [189]查全性.电极过程动力学导论[M].北京:科学出版社,1987:150-162
    [190]周友元,锂离子电池复合炭负极材料的制备及性能研究:[博士学位论文].长沙:中南大学,2008
    [191]龚竹青.理论电化学导论.长沙:中南工业大学出版社,1988:272-290
    [192]舒余德,陈白珍.冶金电化学研究方法.长沙:中南工业大学出版社,1990:73-94
    [193]钟胜奎,锂离子电池正极材料LiVPO4F和Li3V2(PO4)3的合成及电化学性能研究:[博士学位论文].2007
    [194]Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4.Solid State Ionics.2002,148:45-51
    [195]Srinivasan V, Newman J. Existence of Path-Dependence in LiFePO4 Electrode.Electrochemical and Solid-State Lett.2006,9:A110-A114
    [196]Wang L, Li Z, Xu H, Zhang K. Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J. Phys.Chem. C 2008,112,308-312
    [197]Poizot P, Baudrin E, Laruelle S, Dupont L. Low temperature synthesis and electrochemical performance of crystallized FeVO4.Solid State Ionics 2000,138:31-40
    [198]Deng J, Jiang J, Zhang Y, Lin X. FeVO4 as a highly active heterogeneous fenton-like catalyst towards the degradation of orang.Applied Catalysis B: Environmental 2008,84:468-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700