锂离子电池纳米电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的大量应用导致了温室效应,随着全球变暖问题日益紧迫,节能减排成为当今世界最为关注的焦点和主题。为了降低对石油能源的依靠和二氧化碳的排放,许多国家加大了对混合电动汽车及电动汽车的研究和投入,对其主要电源设备锂离子电池的能量密度,特别是功率密度提出了更高的要求。电极材料是影响锂离子性能的关键。由于纳米材料具有尺寸小,锂离子嵌/脱行程短,动力学性能优秀;比表面积大,嵌锂活性位点多;大电流下充放电时电极极化程度小、可逆容量高等特点,锂离子电池纳米电极材料得到广泛关注和研究。
     本论文从纳米材料出发,以MoOx、Ge、C为研究客体,探索了多种形貌纳米材料的合成条件及规律,进一步扩充了纳米材料库;测试了它们在大电流密度下的充放电性能,并着重考察了MoO2纳米材料电化学性能与其结构形貌的关系。主要内容包括:
     1.a-MoO3纳米带的制备和电化学性能研究
     通过水热法制备了单晶α-MoO3纳米带。该纳米带材料长5-10μm,宽200-500 nm,厚约50 nm,沿着[001]方向生长。作为锂离子电池正极材料,α-MOO3纳米带在30 mA/g电流密度下表现出264mAh/g的容量;当电流密度上升到5000mA/g时,容量达176mAh/gi(能量密度300Wh/kg,功率密度9000 W/kg),50次循环后容量还能保持到114mAh/g。相比微米级MoO3纳米材料在5000mA/g电流密度下容量不到70mAh/g,MoO3纳米带表现出更优越的倍率性能。
     2.系列MoO2纳米材料的制备和电化学性能研究
     首先,利用乙醇蒸汽还原法制得MOO2纳米颗粒。相比传统制备MOo2采用H2还原MoO3的方法,采用乙醇蒸汽替代H2,更加便宜、安全,而且还原温度降低,节约了能源。乙醇蒸汽在400℃6下还原MoO3,得到表面有半石墨化碳包覆的粒径约为100nm的单斜MoO2颗粒。该产物在500 mA/g的电流密度下首次充放电表现出约320mAh/g的可逆容量,20次循环几乎没有衰减。而H2还原MoO3所得MoO2微米颗粒在500 mA/g电流密度下可逆容量不到175mAh/g。可见乙醇蒸汽还原所得的MoO2表现出良好的大电流放电性能。
     同时,本文还关注MoO2一维纳米结构的合成。文献报道的一维MoO2纳米线和纳米棒主要是通过电化学沉积或气相沉积来制备,这些方法比较复杂,产物较难控制,产量低。用α-MoO3纳米带作为前驱体分散在水中,加入葡萄糖和乙醇后180℃反应一段时间,可得到碳包覆的单斜MoO2纳米带。通过对合成条件的探索,可以发现葡萄糖在α-MoO3纳米带表面的缩聚和焦化形成保护层的作用,有效防止了其在被乙醇还原过程中坍塌。所得MoO2@C纳米带含碳量23.81%,比表面积46.85 m2/g。500 mA/g电流密度下恒流充放电,该材料首次可逆容量达600 mAh/g,30次循环后仍能保持在550mAh/g。电流密度上升到1 000mA/g,首次可逆容量接近500mAh/g,30次循环后仍可保持在300mAh/g。
     此外,还以微米级MoO3为前驱体,乙二胺为还原剂,Fe2O3为辅助剂,通过水热法合成了银耳状六方MoO2。该材料具有多级结构,它由超薄MoO2纳米片(厚约10 nm)组成外观形貌,内部包裹辅助剂Fe2O3。在70 mA/g电流密度下,银耳状MoO2可逆容量可达650mAh/g;当电流密度提高到10倍700 mA/g,其可逆容量仍然可以保持在300mAh/g左右。
     从所合成的MoO2纳米材料的电化学性能可以看出,它们都表现出比微米级MoO2材料更加良好的大电流充放电性能,这与它们尺寸小,比表面积大的形貌结构特征是分不开的。对比三种材料,MoO2@C纳米带表现出最好的性能,这可能是由于它具有适中的尺寸、一维形貌和完好的碳包覆层,这三个因素使其在大电流下既具有高的比容量,又保持了良好的循环性能。
     3.无序介孔Ge的制备和电化学性能
     以GeO2为前驱体、Mg为还原剂,通过机械球磨方法使其发生氧化还原反应,得到Ge、MgO和GeMg:的混合物,然后在盐酸溶液的刻蚀作用下除去MgO和GeMg2,成功制备了无序介孔的Ge单质。通过TEM观察,可以清楚看到无序介孔的存在,氮气等温吸附结果测得其比表面积为49.98 m2/g,主要孔径分布在10nm左右,进一步证明了产物的无序介孔结构。作为锂离子电池负极材料,无序介孔Ge在150 mA/g电流密度下首次可逆容量为944.2mAh/g,20次循环后可逆容量还能保持在789.3mAh/g,表现出比无孔Ge更好的循环性能(无孔Ge首次可逆容量为970.2 mAh/g,20次后衰减至16.1mAh/g)和较好的大倍率性能。
     4.碳纳米球的制备和电化学性能
     以乳液聚合所得聚丙烯腈(PAN)纳米粒子为前驱体,通过在其表面包覆一层磷酸钛以隔离粒子间相互接触,有效防止了PAN在碳化过程中发生交联和团聚。碳化之后酸洗除去包覆层,得到了平均粒径约为50 nm的纯净碳纳米球。将碳纳米球作为锂离子电池负极材料测试了其电化学性能。循环伏安法测得其表观扩散系数为1.59×10-cm2/s,在5 mA/cm2(约720.0 mA/g)电流密度下首次可逆容量为131.3mAh/g,表现出比石墨微球更好的倍率性能。
     5.氧化物包覆石墨材料在丙烯碳酸酯(PC)基电解液中的电化学性能
     用MoO3作为包覆材料,在石墨化材料CMS表面进行了改性。研究发现,MoO3包覆层减少了石墨端面在电解液中的暴露。恒流充放电结果显示,MoO3包覆后的CMS有效防止了PC电解液的持续分解和溶剂化Li+在石墨片层中的嵌入,使CMS在PC基电解液中能够可逆储锂。其首次可逆容量达到380mAh/g,
     18次循环后可逆容量仍能够保持在300mAh/g(60 mA/g电流密度下恒流充放电),与石墨材料在乙烯碳酸酯(EC)中的容量相当,性能比较令人满意。
The lithium ion battery is now prevailing in many portable electronic devices such as cell phones, digital cameras/videos and laptops due to its longer cycling life and higher energy density than other rechargeable batteries. However, its relatively low charge/discharge rate and safety concerns have limited its use in new applications such as regenerative braking in hybrid electric vehicles (HEVs), power backups, power sources for EVs, and portable power tools, which require both high energy and high power densities. The rate limitations result from a number of factors including low ionic (Li+) and electronic conductivities of electrode materials, and slow insertion/extraction rate of Li+ into the active materials.Recent studies show that decreasing the particle size and enlarging the surface area of electrode materials are effective ways to improve the electrochemical performance, especially the rate capability of electrode materials. So, in my dissertation, the work is focused on the nanostructured materials:the preparation, characterization and electrochemical performace of varies nanostructured electrode materials are discussed.
     1.Single crystallineα-MoO3 nanobelts are synthesized with a facile hydrothermal method.Theα-MoO3 nanobelts grow along the direction of [001],with the length of 5-10μm,width of 200~500 nm and thickness of about 50 nm.When used as cathode materials for rechargeable lithium battery,they exhibit good rate performance.At a low current density,30 mA/g, they deliver a discharge capacity of 264 mAh/g in the voltage of 1.5-3.5 V vs. Li+/Li.At a current density of 5000 mA/g (9000 W/kg), they deliver a capacity of 176 mAh/g, and preserve 114 mAh/g after 50 cycles.
     2.A series of MoO2 nanomaterials have been synthesized.
     Firstly, monoclinic MoO2 nanoparticles are synthesized through reduction of MoO3 with ethanol vapor at 400℃During the reduction process, the starting material (MoO3) collapsed into nanoparticles(~100 nm), and on the nanoparticles remains a semi-graphite carbon layer from ethanol decomposition.As anode materials for lithiumn ion battery, the carbon coated MoO2 nanoparticles displays a reversible capacity of about 318 mAh/g in the initial cycle, with capacity retention of 100% after 20 cycles in the range of 0.01~3.00 V vs. lithium metal at a current density of around 500 mA/g. However, at the same discharge/charge condition, the MoO2 microparticles obtained from reduction of MoO3 with H2 only deliver a reversible capacity less than 175 mAh/g.
     Secondly, carbon coated monoclinic MoO2 nanobelts (MoO2@C nanobelts) are synthesized withα-MoO3 nanobelts as precursor, ethanol as reducer and glucose as protector. In the reduction procedure, glucose decomposes on the surface ofα-MoO3 nanobelts, forming an caramel layer which protects the nanobelts from collapse. The MoO2@C nanobelts delivers a reversible capacity of around 600 mAh/g in the initial cycle, and preserve 550 mAh/g after 30 cylces, at a current density of 500 mAh/g in the range of 0.01-3.00 V vs. lithium metal.When the current density increases to 1000 mA/g, the reversible capacity is close to 550 mAh/g, and retains around 300 mAh/g after 30 cycles.
     Moreover, tremella-like hexagonal MoO2 was obtained via a Fe2O3-assisted hydrothermal reduction of MoO3 in ethylenediamine aqueous solution.The "tremella" consists of ultrathin MoO2 nanosheets (about 10 nm in thickness),with residual Fe2O3 resting in its body. This structured MoO2 shows a reversible capacity up to 650 mAh/g at a current density of 70 mAh/g in the range of 0.01-3.00 V, and preseves around 300 mAh/g when the current density increase to 70 mAh/g.
     The above synthesized nanostructured MoO2 show much better rate capability compared with their micro-sized counterpart, which is highly related with their decreased size, and increased surface areas. And among them, MoO2@C nanobelts present the best electrochemical performance, which may because they have optimum size, one-dimensional morphology and perfect carbon coating.
     3.Disordered mesoporous Ge was prepared by mechanochemical reaction of GeO2 and Mg powders followed by an etching process with HC1 solution.With a pore-distribution concentrated around 10 nm, the product presents a BET surface area of 49.98 m2/g. When using as an anode material for lithium ion battery, the mesoporous Ge exhibits a reversible capacity of 950 mAh/g and retains a capacity of 789 mAh/g after 20 cycles at a current density of 150 mA/g. The cycleability is significantly improved compared with nonporous Ge.
     4.A low-cost and practical route to prepare carbon nanospheres (CNSs) from pyrolysis of polyacrylonitrile (PAN) nanospheres is introduced.A layer of titanium phosphate is coated on the surface of PAN nanospheres before the carbonization process, which effectively prevents the crosslinking and aggregation of PAN nanoparticles under high temperature. After removal of the coating following the carbonization, CNSs with average size of 50 nm are obtained.The CNSs, with the Li+ diffusion coefficient of 1.59×10-9 cm2/s, present better rate capability compared with carbonaceous mesophase spheres (CMS) as anode material for lithium ion battery.
     5.Besides the synthesis of nanostructured electrode materials, CMS@MoO3 composite was prepared by coating MoO3 on CMS in order to improve the performance of graphite as an anode for lithium ion battery in propylene carbonate (PC)-based electrolyte. The coated MoO3 layer acts as a protective layer which separates graphite from PC-based electrolyte solution.Cyclic voltammograms and discharge/charge measurement suggest that the cointercalation of PC is suppressed and lithium ions can reversibly intercalate into and deintercalate from the CMS@MoO3.CMS with the optimum amount of MoO3(14.4 wt.% of the composite) presents the best electrochemical performance:it delivers a reversible capacity of 380 mAh/g in 1 M LiClO4 solution of PC/DMC (1:1,v/v), and preserves above 300 mAh/g after 18 cycles.
引文
[1]J. M. Tarascon, M.Armand. Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414(6861):359-367.
    [2]吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:3.
    [3]郭丙焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:2.
    [4]M.S.Whittingham. Electrochemical energy storage and intercalation chemistry [J].Science,1976,192(4224):1226-1127.
    [5]M.S.Whittingham. Chalcogenide battery [P].US Patent:4009052.
    [6]M.B.Armand, Materials for Advanced Batteries (D.W. Murphy, J.Broodhead, B. C.H.Steele, Editors), New York:Plenum Press,1980:145.
    [7]M. Lazzari, B.Scrosati.A cyclable lithium organic electrolyte cell based on two intercalation electrodes [J].J. Electrochem.Soc.,1980,127(3):113-114.
    [8]T. Nagaura, K. Tozawa. Lithium ion rechargeable battery [J].Prog. Batteries Solar Cells,1990,9(1):209-217.
    [9]吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:9-10.
    [10]郭丙焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:12-13.
    [11]D.Aurbach. The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable "Rocking-Chair" type batteries [J].J.Electrochem. Soc.,1994,141:603-611
    [12]T. Ohzuku, R. J. Brodd.An overview of positive-electrode materials for advanced lithium-ion batteries[J].J. Power Sources,2007,174:449-456.
    [13]K. Mizushima, P. C.Jones, P. J.Wiseman, J.B.Goodenough.Lithium cobalt oxide(LixCoO2) (0≤x≤1):a new cathode material for batteries of high energy density [J].Mater. Res. Bull.,1980,15(6):783-789.
    [14]C. D. W. Jones, E. Rossen, J. R. Dahn.Structure and electrochemistry of LixCryCo1-yO2 [J].Solid State Ionics,1994,68(1-2):65-69.
    [15]吴宇平,方世壁,刘昌炎,周恒辉,江英彦.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-209.
    [16]Y.I.Jang, B.Y. Huang, H.F.Wang, D. R. Sadoway, G.Ceder, Y.M.Chiang, H. Liu, H.J.Tamura. LiAlyCo1-yO2 (R3-m) intercalation cathode for rechargeable lithium batteries[J].J.Electrochem. Soc.,1999,146(3):862-868.
    [17]R. K. B.Gover, M.Yonemura, A.Hirano, R. Kanno, Y.Kawamoto, C.Murphy, B. J.Mitchell, J.W. Richardson.The control of nonstoichiometry in lithium nickel-cobalt oxides[J].J.Power Sources,1999,81:535-541.
    [18]史延慧,郝万君,陈岗,冯守华.锂电池阴极材料Li(CoxAl(1-x))O2的溶胶凝胶法合成及表征[J].高等学校化学学报,2000,21(4):497-500.
    [19]W.B.Luo, J.R. Dahn.Comparative study of Li[Co1-zAlz]O2 prepared by solid-state and co-precipitation methods [J].Electrochim.Acta,2009,54(20): 4655-4661.
    [20]J. Cho.Improved thermal stability of LiCoO2 by nanoparticle AIPO4 coating with respect to spinel Li1.05 Mn1.95O4 [J].Electrochem.Commun.,2003,5(1):146-148
    [21]J.Cho. Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability [J].Electrochim.Acta.,2003,48(19):2807-2811.
    [22]J.Cho, T. G.Kim, C.J.Kim, J.G Lee, Y. W. Kim, B.W. Park. Comparison of Al2O3-and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell [J].J.Power Sources,2005,146(1-2):58-64.
    [23]刘汉三,杨勇,张忠如,林祖赓.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学,2001,7(2):145-154.
    [24]I.Saadoune, C.Delmas.LiNi1-yCoyO2 positive electrode materials:Relationships between the structure, physical properties and electrochemical behaviour [J].J. Mater. Chem.,1996,6(2):193-199.
    [25]吴辉煌.电化学[M].北京:化学工业出版社,2004:257.
    [26]A.D. Robertson, A.R. Armstrong, P.G.Bruce. Layered LixMn1-yCoyO2 intercalation electrodes-influence of ion exchange on capacity and structure upon cycling [J].Chem.Mater.2001,13(7):2380-2386.
    [27]B.Ammundsen,J.Desilvestro, T. Groutso, D.Hassell,J.B.Metson, E. Regan, R. Steiner, P. J.Pickering.Formation and structural properties of layered LiMnO2 cathode materials[J].J.Electrochem.Soc.,2000,147(11):4078-4082.
    [28]S. Jouanneau, K. W. Eberman, L. J. Krause, J.R. Dahn. Synthesis, characterization,and electrochemical behavior of improved Li[NixCo1-2xMnx]O2 (0.1    [29]J. K. Ngala, N. A.Chernova, M.M.Ma, M.Mamak, P. Y. Zavalij,M.S. Whittingham.The synthesis,characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound [J].J.Mater. Chem.,2004,14(2): 214-220.
    [30]Y. Xia, M.Yoshio. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part Ⅳ. High and low temperature performance of LiMn2O4 [J].J.Power Sources,1997, 66(1-2):129.
    [31]T. A. Eriksson, M.M.Doeff. A study of layered lithium manganese oxide cathode materials [J].J.Power Sources,2003,119(S1):145-149.
    [32]Z.P.Guo,G.X.Wang, H.K. Liu, S. X.Dou.Structure and electrochemistry of LiCrxMn1-xO2 cathode for lithium-ion batteries [J].Solid State Ionics,2002, 148(3-4):359-366.
    [33]Y.G.Xia, Q. Zhang, H.Y.Wang, H. Nakamura, H. Noguchi, M.Yoshio. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyM1-x-yO4+δ at elevated temperature [J].Electrochim. Acta,2007,52(14): 4708-4714.
    [34]A.Manthiram, W. Choi.Suppression of Mn Dissolution in Spinel Cathodes by trapping the protons within layered oxide cathodes[J].Electrochem. Solid-State Lett.,2007,10(9):A228-A231.
    [35]A.Eftekhari.Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode [J].Solid State Ionics,2004,167(3-4): 237-242.
    [36]M.R. Lim, W. I.Cho, K. B.Kim.Preparation and characterization of gold-codeposited LiMn2O4 electrodes [J].J.Power Sources,2001,92(1-2): 168-176.
    [37]F.Jiao, J.L. Bao, A.H.Hill, P. G. Bruce. Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries [J]. Angew. Chem. Int. Ed.,2008,47(50):9711-9716.
    [38]D. K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H.Peng, R. A.Huggins, Y.Cui.Spinel LiMn2O4 nanorods as lithium ion battery cathodes [J].Nano Lett.,2008,8(11):3948-3952.
    [39]B.L.Ellis,K. T. Lee,L.F.Nazar. Positive electrode materials for Li-ion and Li batteries[J].Chem. Mater.,2010,22(3):691-714.
    [40]K.S. Park, J.T. Sona, H.T. Chungb, S.J.Kimc, C.H. Leea, K. T. Kanga, H. G. Kim. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J].Solid State Commun.,2004,129(5):311-314.
    [41]G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, H. K. Liu. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries[J].Electrochem.Acta,2005,50(24):4649-4654.
    [42]Y.G.Wang, Y. R. Wang, E.Hosono, K.X.Wang, H.S.Zhou.The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method.Angew. Chem.Int.Ed.,2008,47(39): 7461-7465.
    [43]S.Y. Chung, J. T. Bloking, Y.M.Chiang. Electronically conductive phospho-olivines as lithium storage electrodes [J].Nat. Mater.,2002,10(1): 123-128.
    [44]T. Jiang, W. C.Pan, J. Wang, X.F. Bie, F.Du, Y.J.Wei, C.Z. Wang. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method [J].Electrochimica Acta,2010,55(12):3864-3869.
    [45]L. Zhang, X. L. Wang, J. Y.Xiang, Y. Zhou, S.J. Shi,J.P. Tu.Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode [J].J. Power Sources,2010,195(15):5057-5061.
    [46]J. W. Lee, M. S. Park, B. Anass, J. H. Park, M. S. Paik, S. G. Doo. Electrochemical lithiation and delithiation of LiMnPO4:Effect of cation substitution[J].Electrochimica Acta,2010,55(13):4162-4169.
    [47]V.Koleva, R. Stoyanova, E. Zhecheva. Nano-crystalline LiMnPO4 prepared by a new phosphate-formate precursor method [J].Mater. Chem.Phys.,2010, 121(1-2):370-377.
    [48]M.S.Whittingham, Y.N.Song, S.Lutta, P.Y.Zavalij,N.A.Chernova. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries [J].J. Mater. Chem.,2005,15(33):3362-3379.
    [49]Y.N.Song, Zavalij,P.Y.Zavalij,M.S.Whittingham.VOPO4:electrochemical synthesis and enhanced cathode behavior [J].J.Electrochemi.Soc.,2005,152(4): A721-A728.
    [50]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002:2-5.
    [51]吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:222-223.
    [52]J.Y. Song, Y.Y.Wang, C.C.Wan.Review of gel-type polymer electrolytes for lithium-ion batteries [J].J. Power Sources,1999,77(1-2):183-197.
    [53]K. Xu, S.S.Zhang, U.Lee, J.L.Allen, T. R. Jow. LiBOB:Is it an alternative salt for lithium ion chemistry [J].J.Power Sources,2005,146(1-2):79-85.
    [54]A.Lewandowski,A.Swiderska-Mocek.Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies[J].J.Power Sources,2009, 194(2):601-609.
    [55]G.B.Appetecchi,F. Croce, B.Scrosati.High-performance electrolyte membranes for plastic lithium batteries [J].J.Power Sources,1997,66(1-2):77-82.
    [56]Z. X.Wang, B.Y. Huang, H.Huang, R. J.Xue, L.Q.Chen, F. O.Wang. A vibrational spectroscopic study on the interaction between lithium salt and ethylene carbonate plasticizer for PAN-based electrolytes [J].J.Electrochem. Soc.,1996,143(5):1510-1514.
    [57]X.J.Liu, T. Osaka. Properties of electric double-layer capacitors with various polymer gel electrolytes [J].J. Electrochem.Soc.,1997,144(6):3066-3071.
    [58]Z.Jiang., B.Carroll,K.M.Abraham.Studies of some poly (vinylidene fluoride) electrolytes [J].Electrochim.Acta,1997,42(17):2667-2677.
    [59]G. Eichinger. Cathodic decomposition reactions of propylene carbonate [J].J. Electroanal.Chem.,1976,74(2):183-193.
    [60]K. Tatsumi, A.Mabuchi.The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries.J. Electrochem.Soc.,1995,142(3):716-720.
    [61]宋怀河,陈晓红,章颂云,高燕.中间相沥青炭微球及其在锂离子二次电池方面的应用[J].炭素技术,2002,(1):28-33.
    [62]H.H. Lee,C.C.Wan, Y. Y. Wang.Identity and thermodynamics of lithium intercalated in graphite [J].J.Power Sources,2003,114(1):285-291.
    [63]K.Sato, M.Noguchi,A.Demachi.A mechanism of lithium storage in disordered carbons[J].Science,1994,264(5158):556-558.
    [64]Y.H.Liu, J. S.Xue, T. Zheng, J.R. Dahn.Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins [J].Carbon,1996,34(12): 193-200.
    [65]T. Zheng, Y. H.Liu,J.R. Dahn.Carbon prepared from coals for anodes of lithium-ion batteries [J].Carbon,1996,34(12):1501-1507.
    [66]B.Huang, R. J.Xue, G. B.Li,Y. Z. Huang, H.W. Yan, L.Q.Chen, F. S.Wang. Lithium-ion rechargeable cells with polyacenic semiconductor (PAS) and Li electrodes [J].J.Power Sources,1996,58(2):177-181.
    [67]T. Fukutsuka, T. Abe, M.Inaba, Z. Ogumi.Electrochemical properties of carbonaceous thin films prepared by plasma chemical vapor deposition [J].J. Electrochem.Soc.,2001,148(11):A1260-A1265.
    [68]G. T. K.Fey, D.C.Lee,Y. Y. Lin.High-capacity carbons prepared from acrylonitrile-butadiene-styrene terpolymer for use as an anode material in lithium-ion batteries[J].J.Power Sources,2003,119-121:30-44.
    [69]Q.Wang, H.Li,L.Q.Chen,X.J.Huang.Novel spherical microporous carbon as anode material for Li-ion batteries[J].Solid State Ionics,2002,152-153:43-50.
    [70]J.O.Besenhard, J.Yang, M.Winter. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries[J].J.Power Sources,1997,68(1):87-90.
    [71]B.Gao,S.Sinha, L.Fleming, O.Zhou.Alloy formation in nanostructured silicon [J].Adv.Mater.,2001,13(11):816-819.
    [72]I.Sandu, P.Moreau, D.Guyomard,T. Brousse, L.Roue.Synthesis of nanosized Si particles via a mechanochemical solid-liquid reaction and application in Li-ion batteries[J].Solid State Ionics,2007,178(21-22):1297-1303.
    [73]G.Cui,L.Gu, L.Zhi,N.Kaskhedikar, P. A.van Aken,K.Mullen,J.Maier, A germanium-carbon nanocomposite material for lithium batteries [J].Adv. Mater., 2008,20(16):3079-3083.
    [74]T. P.Kumar, R. Ramesh, Y.Lin,G.T. Fey.Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries[J].Electrochem.Commun., 2004,6(6):520-525.
    [75]D. Q.Shi, J.P. Tu, Y. F.Yuan, H.M.Wu, Y.Li, X. B.Zhao.Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery [J].Electrochem.Commun.,2006,8(10): 1610-1614.
    [76]S.H.Ng, J.Wang, D. Wexler, K.Konstantinov, Z. P. Guo, H.K. Liu.Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries [J].Angew. Chem.Int. Ed.,2006,45(41): 6896-6899.
    [77]T. Zhang, L.J.Fu, J. Gao, L.C.Yang, Y. P. Wu, H.Q. Wu. Core-shell Si/C nanocomposite as anode material for lithium ion batteries [J].Pure Appl.Chem., 2006,78(10):1889-1896.
    [78]Y. Idota, T. Kubota, A.Matsufuji,Y. Maekawa, T. Miyasaka.Tin-based amorphous oxide:a high-capacity lithium-ion-storage material [J].Science,1997, 276(5317):1395-1397.
    [79]I.A.Courtney, J.R. Dahn.Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J].J.Electrochem.Soc., 1997,144(6):2045-2052.
    [80]P. Poizot, S.Laruelle, S.Grugeon,L.Dupont and J.M.Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J].Nature,2000,407(6803):496-499.
    [81]S.Y.Huang, L.Kavan, I.Exnar, M.Gratzel.Rocking chair lithium battery basedf on nanocrystalline TiO2 (anatase) [J].J.Electrochem.Soc.,1995,142(9): L142-L144.
    [82]Panduwiinata, Dwi;Gale,Julian D.A first principles investigation of lithium intercalation in TiO2-B.J. Mater. Chem.,2009,19(23):3931-3940.
    [83]T. Yuan, X.Yu, R. Cai, Y. K.Zhou, Z. P. Shao. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance [J].J.Power Sources,2010,195(15):4997-5004.
    [84]L.Cheng, J.Yan,G. N.Zhu, J.Y.Luo, C.X.Wang, Y. Y. Xia. General synthesis of carbon-coated nanostructure Li4T15O12 as a high rate electrode material for Li-ion intercalation [J].J.Mater. Chem.,2010,20(3):595-602.
    [85]M.Nishijima, N. Tadokoro, Y. Takeda, N.Imanishi, O. Yamamoto. Li deintercalation-intercalation reaction and structural change in lithium transition metal nitride Li7MnN4[J].J.Electrochem.Soc.,1994,141(11):2966-2971.
    [86]Y.Sakurai,T. Shodai,H.Arai.Li-ion cell based on Li3-xCoxN anode with large capacity [J].Proc.Electrochem.Soc.,2000,99(25):226-232.
    [87]Y.Takeda, M.Nishijima, M.Yamahata, K.Takeda, N.Imanishi,O. Yamamoto. Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N as the anode[J].Solid State Ionics,2000,130(1-2):61-69.
    [88]F.Gillot, L.Monconduit, M.L.Doublet. Electrochemical behavior of binary and ternary manganese phosphides [J].Chem.Mater.,2005,17(23):5817-5823.
    [89]R. Alcantara,J.L.Tirado,J.C.Jumas,L.Monconduit,J.Olivier-Fourcade. Electrochemical reaction of lithium with CoP3 [J].J.Power Sources,2002,109(2): 308-312.
    [90]K.Wang, J.Yang, J.Y.Xie, B.F.Wang, Z.S.Wen.Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem [J]. Comm.,2003,5(6):480-483.
    [91]S.Boyanov,D.Zitoun, M.Menetrier, J.C.Jumas, M.Womes, L.Monconduit. Comparison of the electrochemical lithiation/delithiation mechanisms of FePx (x= 1,2,4) based electrodes in Li-ilon Batteries [J].J.Phys.Chem.C,2009,113(51): 21441-21452.
    [92]S.Denis, E. Baudrin, M.Touboul,J.M.Tarascon.Synthesis and electrochemical properties of amorphous vanadates of general formula RVO4 (R=In,Cr, Fe,Al, Y)vs. Li[J].J.Electrochem.Soc.,1997,144(12):4099-4109.
    [93]N.Sharma, K. M.Shaju, G.V.Subba Rao, B.V.R. Chowdari,Z.L.Dong, T. J. White.Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries [J].Chem.Mater.,2004,16(3):504-512.
    [94]W. Xiao, J.S.Chen, C.M.Li,R. Xu, X.W.Lou.Synthesis, characterization,and lithium storage capability of AMoO4 (A=Ni,Co) Nanorods [J].Chem.Mater., 2010,22(3):746-754.
    [95]Y. Q.Chu,Z.W.Fu,Q.Z.Qin.Cobalt ferrite thin films as anode materials for lithium ion batteries[J].Electrochim.Acta,2004,49(27):4915-4921.
    [96]P.Novak, K.Muller, K.S.V.Santhanam, O.Haas.Electrochemically active polymers for rechargeable batteries [J].Chem.Rev.,1997,97(1):207-282.
    [97]Y.G.Guo, J.S.Hu, L.J. Wan.Nanostructured materials for electrochemical energy conversion and storage devices [J].Adv. Mater.,2008,20(15): 2878-2887.
    [98]Y.S. Hu, L.Kienle, Y.G.Guo, J.Maier. High lithium electroactivity.of nanometer-sized rutile TiO2[J].Adv.Mater.,2006,18(11):1421-1426.
    [99]A.D. Robertson, A. R. Armstrong, P. G.Bruce. Layered LixMn1-yCoyO2 intercalation electrodes-influence of ion exchange on capacity and structure upon cycling [J].Chem.Mater.,2001,13(7):2380-2386.
    [100]J.Maier. Nanoionics:ion transport and electrochemical storage in confined systems [J].Nat. Mater.,2005,4(11):805-815.
    [101]J.Jamnik, J.Maier. Nanocrystallinity effects in lithium battery materials-Aspects of nano-ionics.Part Ⅳ[J].Phys.Chem.Chem.Phys.,2003,5(23): 5215-5220.
    [102]G. G.Amatucci,F.Badway, A. D. Pasquier, T. Zheng. An asymmetric hybrid nonaqueous energy storage cell [J].J.Electrochem.Soc.,2001,148(8): A930-A939.
    [103]Q. Wang, H.Li, L. Q. Chen, X. J.Huang. Monodispersed hard carbon spherules with uniform nanopores [J].Carbon,2001,39(14):2211-2214.
    [104]A.S.Arico, P.Bruce, B.Scrosati,J.M.Tarascon, W. Van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices [J]. Nat. Mater.,2005,4(5):366-377.
    [105]P.G.Bruce, B.Scrosati,J.M.Tarascon.Nanomaterials for rechargeable lithium batteries [J].Angew. Chem.Int.Ed.,2008,47(16):2930-2946.
    [106]A.R. Armstrong, G. Armstrong, J.Canales, R. Garcia, P.G.Bruce. Lithium-ion intercalation into TiO2-B nanowires[J].Adv. Mater.,2005,17(7): 862-865.
    [107]H.Liu, D. Wexler, G. Wang. One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries [J].J.Alloy and Compounds,2009,487(1-2):24-27.
    [108]N. H. Zhao, G. J. Wang, Y. Huang, B. Wang, B. D. Yao, Y. P. Wu. Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2 [J].Chem.Mater.,2008,20(8):2612-2614.
    [109]M.S.Park, G X. Wang, Y. M.Kang, D.Wexler, S.X.Dou, H.K.Liu. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries [J].Angw. Chem.Int. Ed.,2007,46(5):750-753.
    [110]C.K.Chan, X.F. Zhang, Y.Cui.High capacity Li ion battery anodes using Ge nanowires[J].Nano Lett.,2008,8(1):307-309.
    [111]D.K.Kim, P.Muralidharan, H.W.Lee, R. Ruffo, Y.Yang, C.K. Chan,H.L. Peng, R. A.Huggins, Y.Cui.Spinel LiMn2O4 Nanorods as lithium ion battery cathodes [J].Nano Lett.,2008,8(11):3948-3952.
    [112]E. Hosono, T. Kudo, I.Honma, H.Matsuda, H.S.Zhou.Synthesis of single crystalline spinel LiMnO4 nanowires for a lithium ion battery with high power density [J].Nano Lett.,2009,9(3):1045-1051.
    [113]F. Jiao, K.M. Shaju, P.G Bruce. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction [J].Angew. Chem.Int. Ed.,2005,44(40):6550-6553.
    [114]X.L.Ji,S.Herle, Y. H.Rho, L.F. Nazar. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers [J].Chem.Mater.,2007,19(3):374-383.
    [115]H.Kim, B.Han, J.Cho.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries [J].Angew. Chem.Int. Ed.,2008, 47(52):10151-10154.
    [116]L. J. Fu, T. Zhang, Q. Cao, H. P. Zhang, Y. P. Wu. Preparation and characterization of 3-D ordered mesoporous titania microparticles as anode material for lithium ion battery [J].Electrochem.Comm.,2007,9(8):2140-2144.
    [117]C.M.Doherty, R. A.Caruso, B.M.Smarsly, P.Adelhelm, C.J.Drummond. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries [J].Chem.Mater.,2009,21(21):5300-5306.
    [118]Y.Ren,L.J.Hardwick, P. G.Bruce.Lithium intercalation into mesoporous anatase with an ordered 3D pore structure [J].Angew. Chem.Int. Ed.,2010, 49(14):2570-2574.
    [119]H.L.Chen,C.P.Grey.Molten salt synthesis and high rate performance of the "desert-rose" form of LiCoO2 [J].Adv.Mater.,2008,20(11):2206-2210.
    [120]Y. F. Tang, L.Yang, Z.Qiu,J.S.Huang.Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets [J]. Electrochem.Commun.,2008,10(10):1513-1516.
    [121]H.Ma, F.Y. Cheng, J. Chen, J.Z. Zhao, C.S. Li, Z. L.Tao, J.Liang. Nest-like silicon nanospheres for high-capacity lithium storage [J].Adv.Mater.,2007, 19(22):4067-4070.
    [122]A.M.Cao, J. S.Hu, H.P. Liang, L. J.Wan. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J].Angew. Chem.Int. Ed.,2005,44(28):4391-4395.
    [123]T. Muraliganth, A.V. Murugan, A.Manthiram.Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries [J].Chem.Commun.,2009,47: 7360-7362.
    [124]Y. Wang, M. Wu, Z. Jiao, J. Y. Lee. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage [J].Chem.Mater.,2009, 21(14):3210-3215.
    [125]J.Liu,H.Xia, D.Xue, L.Lu.Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries [J].J.Am.Chem.Soc.,2009,131(34),12086-12087.
    [1]J.N.Yao, K. Hashimoto, A. Fujishima. Photochromism induced in an electrolytically pretreated MoO3 thin-film by visible-light [J].Nature,1992, 355(6361):624-626.
    [2]Y.A.Yang, Y. W.Cao, B.H.Loo, J.N.Yao. Microstructures of electrochromic MoO3 thin films colored by injection of different cations [J].J.Phys.Chem.B, 1998,102(47):9392-9396.
    [3]Zeng, H.C.Chemical etching of molybdenum trioxide:A new tailor-made synthesis of MoO3 catalysts [J].Inorg. Chem.,1998,37(8):1967-1973.
    [4]J.F.Wang, K. C.Rose, C.M.Lieber. Load-independent friction:MoO3 nanocrystal lubricants [J]. J.Phys.Chem. B,1999,103(40):8405-8409.
    [5]E. Comini,L.Yubao, Y. Brando, G.Sberveglieri.Gas sensing properties of MoO3 nanorods to CO and CH3OH [J].Chem.Phys. Lett.,2005,407(46): 368-371.
    [6]M.Ferroni,V.Guidi, G. Martinelli,M.Sacerdoti,P. Nelli,G. Sberveglieri. MoO3-based sputtered thin films for fast NO2 detection [J].Sens.Actuators, B 1998,48(13):285-288.
    [7]D.O.Scanlon, G.W. Watson, D.J.Payne, G R. Atkinson, R. G.Egdell,D. S.L. Law. Theoretical and experimental study of the electronic Structures of MoO3 and MoO2 [J] J.Phys.Chem.C,2010,114(10):4636-4645.
    [8]T.Tsumura, M.Inagaki.Lithium insertion/extraction reaction on crystalline MoO3[J].Solid State Ion.,1997,104(3-4):183-189.
    [9]C.Julien, G.A.Nazri.Transport-properties of lithium-intercalated MoO3[J]. Solid State Ion.,1994,68(1-2):111-116.
    [10]L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C.S. Lao, R. S. Yang, Y. Dai, Z. L. Wang. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J].Adv.Mater.,2007,19(21):3712-3716.
    [11]W. Y.Li,F.Y.Cheng, Z.L.Tao, J.Chen. Vapor-Transportation Preparation and Reversible Lithium Intercalation/Deintercalation of a-MoO3 Microrods[J].J. Phys.Chem.B,2006,110(1):119-124.
    [12]C. V. S. Reddy, Z. R. Deng, Q. Y. Zhu, Y. Dai, J. Zhou, W. Chen, S.I.Mho. Characterization of MoO3 nanobelt cathode for Li-battery applications [J].Appl. Phys.A,2007,89(4):995-999.
    [13]C. V. S.Reddy, E. H. Walker, C.Wen, S.I.Mho. Hydrothermal synthesis of MoO3 nanobelts utilizing poly(ethylene glycol) [J].J. Power Sources,2008, 183(1):330-333.
    [14]A. R. Armstrong, G.Armstrong, J.Canales, R. Garcia, P. G.Bruce. Lithium-ion intercalation into TiO2-B nanowires [J].Adv. Mater.,2005,17(7):862-865.
    [15]P. Meduri, C.Pendyala, V. Kumar, G.U.Sumanasekera, M. K.. Sunkara. Hybrid Tin Oxide Nanowires as Stable and High Capacity Anodes for Li-Ion Batteries [J]. Nano Lett.,2009,9(2):612-616.
    [16]E. Hosono, T. Kudo, I.Honma, H.Matsuda, H Zhou. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density [J].Nano Lett.,2009,9(3):1045-1051.
    [17]P. G.Bruce, B.Scrosati, J.M.Tarascon. Nanomaterials for rechargeable lithium batteries [J].Angew. Chem.Int. Ed.,2008,47(16):2930-2946.
    [18]X.L.Li,J.F.Liu,Y. D.Li.Low temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts [J].Appl.Phys. Lett.,2002, 81(25):4832-4834.
    [19]C.V. Krishnan, J. L.Chen, C.Burger, B.Chu. Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process [J].J. Phys. Chem. B, 2006,110(41):20182-20188.
    [20]G. C. Li, L.Jiang, S.P. Pang, H. R. Peng, Z. K. Zhang. Molybdenum trioxide nanostructures:The evolution from helical nanosheets to crosslike nanoflowers to nanobelts [J].J.Phys. Chem.B,2006,110(48):24472-24475.
    [21]L.Fang, Y. Y. Shu, A. Q.Wang, T. Zhang. Green synthesis and characterization of anisotropic uniform single-crystal alpha-MoO3 nanostructures [J].J.Phys. Chem. C,2007,111(6):2401-2408.
    [22]J. L. Chen, C. Burger, C. V. Krishnan, B.Chu. Morphogenesis of highly ordered mixed-valent mesoporous molybdenum oxides [J].J. Am.Chem. Soc.,2005, 127(41):14140-14141.
    [23]D.Aurbach, B.Markovsky, I.Weissman, E. Levi, Y Ein-Eli.On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. [J].Electrochim. Acta,1999,45(1-2):67-86.
    [24]Y. C. Chang, J. H. Jong, G. T. K.Fey. Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes. [J].J. Electrochem.Soc.,2000,147(6):2033-2038.
    [25]M.D.Levi,D.Aurbach.Diffusion coefficients of lithium ions during intercalation into graphitic derived from the simultaneous measurements and modeling of the electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphitic electrodes [J].J.Phys. Chem.B,1997, 101(23):4641-4647.
    [1]D. O. Scanlon, G.W. Watson, D. J.Payne, G.R. Atkinson, R. G.Egdell, D. S.L. Law. Theoretical and experimental study of the electronic structures of MoO3 and MoO2 [J].J. Phys. Chem. C,2010,114(10):4636-4645.
    [2]H. Shinohara. Gas-phase acetoxylation of 1,3-butadiene over palladium catalysts. 4.suppression of the carbon deposit on catalysts by addition of cesium-chloride [J].Appl.Catal.,1986,24(1-2):17-23.
    [3]N.Okamoto, Y. Kobayashi,O.Terasaki,T. Kodaira, T. Kubota. Structure of intrazeolite molybdenum oxide clusters and their catalysis of the oxidation of ethyl alcohol [J].Phys. Chem. Chem.Phys.,2002,4(12):2852-2862.
    [4]M.Shiono.Japanese Patent, JP 04,05,561[92,05,561],1992.
    [5]K. Yoshida, M. Wada, Y. Takahashi, E. Hasegawa. Ger. Offen. DE 3,336,445, 1984.
    [6]J.J.Auborn, Y. L.Barberio. Lithium intercalation cells without metallic lithium-MoO2/LiCoO2 and WO2/LiCoO2 [J].J. Electrochem.Soc.,1987,134(4): 638-641.
    [7]J. R. Dahn, W. R. McKinnon. Structure and electrochemistry of LixMoO2 [J]. Solid State Ionics,1987,23(1-2):1-7.
    [8]Y.Liang, S.Yang, Z.Yi,J. Sun, Y.Zhou. Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide [J].Mater. Chem.Phys.,2005,93(2-3):395-398.
    [9]Y. Shi,B.Guo, S.A.Corr, Q. Shi,Y.S.Hu, K. R. Heier, L.Chen, R. Seshadri, G. D. Stucky. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity [J].Nano Lett.,2009,9(12):4215-4220.
    [10]J.H.Ku, Y. S.Jung, K. T. Lee, C.H. Kim, S.M. Oh. Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries [J].J. Electrochem.Soc.,2009,156(8):A688-A693.
    [11]A.Manthiram, C.Tsang. Synthesis of amorphous MoO2+deita and its electrode performance in lithium batteries [J].J. Electrochem. Soc.,1996,143(7):143-145.
    [12]X.L.Ji,S.Herle, Y. H.Rho, L. F. Nazar. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers [J].Chem. Mater.,2007,19(3):374-383.
    [13]M. P. Zach, K. H. Ng, R. M. Penner. Molybdenum nanowires by electrodeposition [J].Science,2000,290(5499):2120-2123.
    [14]J. Zhou, N. S. Xu, S. Z.Deng, J.Chen, J.C.She, Z. L. Wang. Large-area nanowire arrays of molybdenum and molybdenum oxides:synthesis and field emission properties [J].Adv.Mater.,2003,15(21):1835-1840.
    [15]Y.Liang, Z.Yi,X.Lei,X.Ma, S.Yang, J.Sun, Y. Liang, Y.Zhou. A novel route to prepare nano-sized MoO2 powders in various dimensions [J].J.Alloys and compounds,2006,421(1-2):133-135.
    [16]Y. G.Liang, Z.H.Yi,S.J.Yang, L.Q.Zhou,J.T. Sun, Y.H.Zhou.Hydrothermal synthesis and lithium-intercalation properties of MoO2 nanoparticles with different morphologies [J].Solid State Ionics,2006,177(5-6):501-505.
    [17]L.Kumari,Y. R.Ma,C.C Tsai,Y. W. Lin,S.Y. Wu, K. W. Cheng, Y. Liou.X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods [J].Nanotechnology,2007,18(11):115717.
    [18]Y. Z. Yang, X. G. Liu, C. Y. Zhang, M. C. Guo, B. S. Xu. Controllable synthesis and modification of carbon micro-spheres from deoiled asphalt [J].J. Phys. Chem. Solids,2010,22(14):145303.
    [19]M.H.Rummeli,C.Kramberger, A.Gruneis, P. Ayala, T. Gemming, B.Buchner, T. Pichler. On the graphitization nature of oxides for the formation of carbon nanostructures[J].Chem.Mater.,2007,19(17):4105-4107.
    [20]B.C.Satishkumar, A.Govindaraj,Manashi Nath, C.N.R. Rao, Synthesis of metal oxide nanorods using carbon nanotubes as templates [J].J.Mater. Chem.,2000, 10(9):2115-2119.
    [21]P. Wehrer, C.Bigey, and L.Hilaire. Catalytic reactions of n-hexane and 1-hexene on molybdenum dioxide [J].Appl.Catal.A-Gen.,2003,243(1):109-119.
    [22]A.Katrib, J.W. Sobczak, M.Krawczyk, L.Zommer, A.Benadda, A.Jablonski, G. Maire.Surface studies and catalytic properties of the bifunctional bulk MoO2 system [J].Surf. Interface Anal.,2002,34(1):225-229.
    [23]R. B.Levy, M.Boudart. Platinum-like behavior of tungsten carbide in surface catalysis [J].Science,1973,181(4099):547-549.
    [24]J.R. G.Chen.Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization,and reactivities [J].Chem.Rev.,1996,96(4): 1477-1498.
    [25]V. G.Pol,S.V. Pol, A. Gedanken.One-step synthesis and characterization of SiC, Mo2C,and WC nanostructures [J].Eur. J.Inorg.Chem.,2009,2009(6):709-715.
    [26]T. C.Xiao, A. P. E.York, V. C.Williams, H. Al-Megren, A. Hanif, X.Y. Zhou, M.L. H. Green. Preparation of molybdenum carbides using butane and their catalytic performance [J].Chem. Mater.,2000,12(12):3896-3905.
    [27]T. Miyao, I.Shishikura, M.Matsuoka, M.Nagal,S.T. Oyama. Preparation and characterization of alumina-supported molybdenum carbide [J].Appl.Catal.A, 1997,165(12):419-428.
    [28]A. Hanif, T. C.Xiao, A. P. E. York, J. Sloan, M. L. H. Green. Study on the structure and formation mechanism of molybdenum carbides [J].Chem.Mater., 2002,14(3):1009-1015.
    [29]D.Aurbach, B.Markovsky, I.Weissman, E. Levi, Y.Ein-Eli.On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J].Electrochim. Acta,1999,45(1-2):67-86.
    [30]Y. C. Chang, J. H. Jong, G. T. K. Fey. Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes [J].J. Electrochem. Soc.,2000,147(6):2033-2038.
    [31]M.D.Levi, D. Aurbach.Diffusion coefficients of lithium ions during intercalation into graphitic derived from the simultaneous measurements and modeling of the electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphitic electrodes [J].J.Phys. Chem.B,1997, 101(23):4641-4647.
    [32]L. J. Fu, H. Liu, H. P. Zhang, C. Li, T. Zhang, Y. P. Wu, R. Holze, H. Q. Wu. Synthesis and electrochemical performance of novel core/shell structured nanocomposites [J].Electrochem.Commun.,2006,8(1):1-4.
    [33]T. Zhang, L.J. Fu, J. Gao, L.C. Yang, Y. P. Wu, H. Q. Wu. Core-shell Si/C nanocomposite as anode material for lithium ion batteries [J].Pure Appl.Chem., 2006,78(10):1889-1896.
    [34]W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode materials in lithium-ion batteries [J].Adv.Mater.,2008, 20(6):1160-1165.
    [35]马礼敦.高等结构分析[M].上海:复旦大学出版社,2002:375-450.
    [36]周公度.晶体结构测试[M].北京:科学出版社,1982.
    [37]J. G. Choi, L.T. Thompson. XPS study of as-prepared and reduced molybdenum oxides [J].Appl.Surf. Sci.,1996,93(2):143-149.
    [38]H.Liu, D.Wexler, G.Wang. One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries [J].J.Alloy and Compounds,2009,487(1-2):24-27.
    [39]R. Dedryvere, S.Laruelle, S.Grugeon, P. Poizot, D.Gonbeau, J.M.Tarascon. Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium [J].Chem. Mater.,2004,16(6): 1056-1061.
    [40]P. Balaya, H.Li,L.Kienle, J.Maier, Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].Adv.Func. Mater.,2003, 13(8):621-625.
    [41]J.Jamnik, J.Maier. Nanocrystallinity effects in lithium battery materials-aspects of nano-ionics. Part Ⅳ [J].Phys.Chem.Chem.Phys.,2003,5(23):5215-5220.
    [42]P. G.Bruce, B.Scrosati,J.M.Tarascon.Nanomaterials for rechargeable lithium batteries [J].Angew. Chem.Int. Ed.,2008,47(16):2930-2946.
    [1]N.H. Zhao, L. J.Fu, L. C.Yang, T. Zhang, G.J. Wang, Y. H.Deng, Y.P. Wu, T. van Ree. Nanostructured anode materials for Li-ion batteries [J].Pure Appl. Chem.,2008,80(11):2283-2295.
    [2]M.Winter, J. Besenhard, M. E. Spahr, P. Novak. Insertion electrode materials for rechargeable lithium batteries [J].Adv.Mater.,1998,10(10):725-763.
    [3]W.J.Weydanz, M. Wohlfahrens-Mehrens, R. A.HHuggins. A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries [J].J. Power Sources,1999,81: 237-242.
    [4]S.D. Beattie, D. Larcher, M. Morcrette, B.Simon, J.M.Tarascon. Si electrodes for Li-ion batteries-A new way to look at an old problem [J].J. Electrochem. Soc., 2008,155(2):158-163.
    [5]C.S.Fuller, J.C.Severiens. Mobility of impurity ions in germanium and silicon [J].Phys. Rev.,1954,96(1):21-24.
    [6]J. Graetz, C. C.Ahn, R. Yazami, B.Fultz. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities [J].J. Electrochem. Soc.,2004,151(5):698-702.
    [7]H.Lee, M.G.Kim, C.H.Choi, Y. Sun, C.S.Yoon, J. Cho. Surface-stabilized amorphous germanium nanoparticles for lithium-storage material [J].J.Phys. Chem.B,2005,109(44):20719-20723.
    [8]H.Lee, H.Kim, S. Doo, J.Cho.Synthesis and optimization of nanoparticle Ge confined in a carbon matrix for lithium battery anode material [J].J. Electrochem. Soc.,2007,154(4):343-346.
    [9]C. K. Chan, X.F. Zhang, Y. Cui.High capacity Li ion battery anodes using Ge nanowires[J].Nano Lett.,2008,8(1):307-309.
    [10]G.Cui,L.Gu, L.Zhi,N. Kaskhedikar, P.A.van Aken, K. Mullen, J. Maier. A germanium-carbon nanocomposite material for lithium batteries [J].Adv. Mater., 2008,20(16):3079-3083.
    [11]B.Laforge, L. Levan-Jodin, R. Salot, A. Billard. Study of germanium as electrode in thin-film battery [J].J. Electrochem. Soc.,2008,155(2):181-188.
    [12]S.Yoon, C.M.Park, H.J.Sohn. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries [J]. Electrochem.Solid State Lett.,2008,11(4):42-45.
    [13]L. Baggetto, P. H.L.Notten.Lithium-ion (De) insertion reaction of germanium thin-film electrodes:An electrochemical and in situ XRD study [J].J. Electrochem.Soc.,2009,156(3):169-175.
    [14]B.A.Boukamp, G.C.Lesh,R. A.Huggins. All-solid lithium electrodes with mixed-conductor matrix [J].J.Electrochem.Soc.,1981,128(4):725-729.
    [15]M.Winter, J.O. Bsenhard.Electrochemical lithiation of tin and tin-based intermetallics and composites [J].Electrochim.Acta.,2000,45(1-2):31-50.
    [16]L.Y.Beaulieu,J.R. Dahn.Reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying [J].J.Electrochem. Soc.,2000,147(9): 3237-3241.
    [17]B.Gao, S.Sinha, L.Fleming, O.Zhou.Alloy formation in nanostructured silicon [J].Adv.Mater.,2001,13(11):816-819.
    [18]I.Sandu,P.Moreau, D.Guyomard,T. Brousse, L.Roue. Synthesis of nanosized Si particles via a mechanochemical solid-liquid reaction and application in Li-ion batteries[J].Solid State Ionics,2007,178(21-22):1297-1303.
    [19]T. P. Kumar, R. Ramesh, Y.Lin, G.T. Fey.Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries[J].Electrochem.Commun., 2004,6(6):520-525.
    [20]D. Q. Shi, J. P. Tu, Y. F.Yuan, H.M.Wu,Y.Li,X.B.Zhao. Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery [J].Electrochem.Commun.,2006,8(10): 1610-1614.
    [21]S. H.Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H.K. Liu. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries [J]. Angew. Chem.Int. Ed.,2006,45(41): 6896-6899.
    [22]H.C. Shin, J.Dong, M.Liu. Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries [J].Adv.Funct. Mater.,2005,15(4): 582-586.
    [23]H.Kim, B. Han, J.Cho.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries [J].Angew. Chem.Int. Ed.,2008, 47(52):10151-10154.
    [24]T. Zhang, L. J. Fu, J.Gao, L. C.Yang, Y.P. Wu, H.Q. Wu. Core-shell Si/C nanocomposite as anode material for lithium ion batteries [J].Pure Appl.Chem., 2006,78(10):1889-1896.
    [25]G.S.Armatas, M. G.Kanatzidis. Hexagonal mesoporous germanium [J].Science, 2006,313(5788):817-820.
    [26]M.G.Kanatzidis.Beyond silica:nonoxidic mesostructured materials [J].Adv. Mater.,2007,19(9):1165-1181.
    [27]N. Husing. Cluster-based holey semiconductors [J].Angew. Chem. Int. Ed.,2008, 47(11):1992-1994.
    [28]G.S.Armatas, M.G. Kanatzidis. Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation [J]. Nature Mater.,2009,8(3):217-222.
    [29]G.S.Armatas, M.G.Kanatzidis. Mesoporous compound semiconductors from the reaction of metal ions with deltahedral [Ge9]4" clusters [J].J. Am.Chem.Soc., 2008,130(34):11430-11436.
    [30]S.C.Warren, L.C.Messina, L.S.Slaughter, M.Kamperman, Q. Zhou, S.M. Gruner, F. J.DiSalvo, U. Wiesner. Ordered mesoporous materials from metal nanoparticle:block copolymer self-assembly [J].Science,2008,320(5884): 1748-1752.
    [31]Z. Bao, M.R. Weatherspoon, S.Shian, Y. Cai, P. D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B. C. Church, Z. Kang, H. W. Abernathy, C.J. Summers, M.Liu, K. H.Sandhage. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].Nature,2007, 446(7132):172-175.
    [32]R.Murray. Method of producing Finely Divided Nickel (P).US Patent 1628190,issued 1927-05-10.
    [33]X.Wu, Z.Wang, L.Chen, X. Huang. Ag-enhanced SEI formation on Si particles for lithium batteries[J].Electrochem.Commun.,2003,5(11):935-939.
    [34]W. M.Zhang, X.L. Wu, J.S.Hu,Y.G.Guo, L. J.Wan.Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries [J].Adv.Funct. Mater.,2008,18(24):3941-3946.
    [1]H.Zhou, S.Zhu, M.Hibino, I.Honma, M.Ichihara. Lithium storage in ordered mesoporous carbon (CMK-3)with high reversible specific energy capacity and good cycling performance [J].Adv.Mater.,2003,15(24):2107-2111.
    [2]W.Lisowski,E.G.Keim, A.H.J.van den Berg, M.A.Smithers. Structural and chemical evolution of single-wall carbon nanotubes under atomic and molecular deuterium interaction[J].Carbon,2005,43(5):1073-1083.
    [3]H.M.Yang, P.H.Liao.Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol [J].Appl.Catal.A-Gen.,2007,317(2):226-233.
    [4]S.Boussaad, B.A.Diner, J.Fan.Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors:application to chemical and biological sensing [J].J Am.Chem. Soc.,2008,130(12): 3780-3787.
    [5]Y. J. Jung, M.C. Suh, H.Lee, M. Kim, S. L. Lee, S. C. Shim, J. Kwak, Electrochemical insertion of lithium into polyacrylonitrile-based disordered carbons[J].J.Electrochem.Soc.,1998,144(12):4279-4284.
    [6]C. B.Tang, K. Qi,K.L.Wooley, K. Matyjaszewski, T. Kowalewski. Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylonitrile cores [J].Angew. Chem.Int. Ed.,2004, 43(21):2783-2787.
    [7]Q. Wang, L.Zhong, J.Sun,J.Shen.A facile layer-by-layer adsorption and reaction method to the preparation of titanium phosphate ultrathin films [J]. Chem.Mater.,2005,17(13):3563-3569.
    [8]L.Boguslavsky, S.Baruch,S.Margel.Synthesis and characterization of polyacrylonitrile nanoparticles by dispersion/emulsion polymerization process [J]. J.Coll.Interface Sci.,2005,289(1):71-85.
    [9]P. Bajaj,A. K.Roopanwal.Thermal stabilization of acrylic precursors for the production of carbon fibers:an overview [J].J Sci.Rev. Macromol.Chem.Phys., 1997,37(1):97-147.
    [10]T. W.Kim, I.S.Park, R. Ryoo.A synthetic route to ordered mesoporous carbon materials with graphitic pore walls [J].Angew. Chem.Int. Ed.,2003,42(36): 4375-4379.
    [11]Y.P.Wu,S.B.Fang, Y.Y.Jiang. Carbon anodes for a lithium secondary battery based on polyacrylonitrile [J].J. Power Sources,1998,75(2):201-206.
    [12]P. Delahay. New Instrumental Methods in Electrochemistry [M].New York: Wiley-Interscience,1954:p119.
    [13]高杰.低温锂离子电池负极材料的制备及其电化学性能研究[D].上海:复旦大学。
    [1]E. Peled. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems-the solid electrolyte interphase model [J].J. Electrochem.Soc.,1979,126(12):2047-2051.
    [2]R. Fong, U.von Sacken, J. R. Dahn. Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells [J].J.Electrochem.Soc.,1990,137(7): 2009-2013.
    [3]K. Ui, S.Kikuchi, F. Mikami, Y. Kadoma, N. Kumagai. Improvement of electrochemical characteristics of natural graphite negative electrode coated with polyacrylic acid in pure propylene carbonate electrolyte [J].J.Power Sources, 2007,173(1):518-521.
    [4]J. T. Dudley, D. P. Wilkinson, G. Thomas, R. LeVae, S. Woo, H. Blom, C. Horvath, M.W.Juzkow, B.Denis, P. Juric, P. Aghakian, J.R. Dahn.Conductivity of electrolytes for rechargeable lithium batteries [J].J.Power Sources,1991, 35(1):59-82.
    [5]A.N. Dey, B.P. Sullivan. Electrochemical decomposition of propylene carbonate on graphite [J].J. Electrochem.Soc.,1970,117(2):222-232.
    [6]J.O. Besenhard, H. P. Fritz. Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts[J].J.Electroanal. Chem.1974,53(2):329-333.
    [7]G.Eichinger. Cathodic decomposition reactions of propylene carbonate [J].J. Electroanal.Chem.,1976,74(2):183-193.
    [8]M.Inaba, Z. Siroma, A.Funabiki,Z.Ogumi,T. Abe, Y. Mizutani,M.Asano. Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution [J].Langmuir,1996,12(6):1535-1540.
    [9]G.Schroeder, B.Gierczyk, D.Waszak, M.Kopczyk, M.Walkowiak. Vinyl tris-2-methoxyethoxy silane-A new class of film-forming electrolyte components for Li-ion cells with graphite anodes [J].Electrochem. Commun., 2006,8(4):523-517.
    [10]M.Walkowiak, D.Waszak, G.Schroeder, B.Gierczyk. Polyether-functionalized disiloxanes as new film-forming electrolyte additive for Li-ion cells with graphitic anodes [J].Electrochem. Commun.,2008,10(11):1676-1679.
    [11]G. Park, H.Nakamura, Y. Lee, M.Yoshio.The important role of additives for improved lithium ion battery safety [J].J. Power Sources,2009,189(1):602-606.
    [12]F.Wang, H.Cheng, H.Wu, S. Chu, C.Cheng, C.Yang. Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries[J].Electrochim.Acta,2009,54(12):3344-3351.
    [13]S.K.Jeong, M.Inaba, R. Mogi, Y.Iriyama, T.Abe, Z.Ogumi.Surface filmFormation on a graphite negative electrode in lithium-ion batteries:atomic force microscopyp study on the effeets of film-forming additives in propylene carbonate solutions [J].Langmuir,2001,17(26):8281-8286.
    [14]M.Arakawa, J.Yamaki.The decomposition of propylene carbonate in a lithium metal phthalocyanine cell [J].J.Electrochem.Soc.,1984,131(11):2605-2607.
    [15]M.Yoshio, H.Y.Wang, K. Fukuda, Y.Hara, Y.Adachi.Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material[J].J.Electrochem.Soc.,2000,147(4):1245-1250.
    [16]X.Wu, Z. Wang, L.Chen, X.Huang. Ag-deposited mesocarbon microbeads as an anode in a lithium ion battery with propylene carbonate electrolyte [J].Surf. Coat. Tech.,2004,186(3):412-415.
    [17]J.Gao, L. J.Fu, H.P. Zhang, T. Zhang, Y.P.Wu,H.Q.Wu. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating [J].Electrochem. Commun.,2006,8(11):1726-1730.
    [18]L.J.Fu, J.Gao, T. Zhang, Q. Cao, L.C.Yang, Y.P. Wu, R.Holze. Effect of Cu2O coating on graphite as lithium ion battery in PC-based anode material of electrolyte [J].J.Power Sources,2007,171(2):904-907.
    [19]Y.Liu, W.Wongwiriyapan,K.C.Park, H.Muramatsu, K. Takeuchi, Y.A.Kim, M.Endo.Combined catalyst system for preferential growth of few-walled carbon nanotubes [J].Carbon,2009,47(10):2543-2546.
    [20]D.P.Debecker, K. Bouchmella, C.Poleunis, P.Eloy,P.Bertrand, E. M. Gaigneaux, P. H.Mutin.Design of SiO2-Al2O3-MoO3 metathesis catalysts by nonhydrolytic sol-gel [J].Chem. Mater.,2009,21(13):2817-2824.
    [21]G.Wei,W. Qin, D.Zhang, G.Wang, P. Kim, K.Zheng, L.Wang.Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route [J].J. Alloy Compd.,2009,481(1-2):417-421.
    [22]S.C.Lee, H. Y.Choi, S.J.Lee, W.S.Lee, J.S.huh, D.D. Lee, J.C.Kim.Novel SnO2-based gas sensors promoted with metal oxides for the detection of dichloromethane[J].Sensor Actuat. B-Chem.B,2009,138(2):446-452.
    [23]M.Gu, G.Liu.Effects of MoO3 and TiO2 additions on the magnetic properties of manganese-zinc power ferrites [J].J. Alloy Compd.,2009,475(1-2):356-360.
    [24]L. Cheng, M.Shao, X.Wang, H. Hu. Single-crystalline molybdenum trioxide nanoribbons:photocatalytic, photoconductive, and electrochemical properties [J]. Chem. Eur. J.,2009,15(10):2310-2316.
    [25]C.Julien, G.A.Nazri.Transport-properties of lithium-intercalated MoO3 [J]. Solid State Ion.,1994,68(1-2):111-116.
    [26]W. Y. Li,F. Y. Cheng, Z. L.Tao, J. Chen.Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods [J].J. Phys.Chem. B,2006,110(1):119-124.
    [27]L.Q.Mai,B.Hu, W. Chen, Y.Y. Qi,C.S.Lao, R. S.Yang, Y.Dai, Z. L. Wang. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J].Adv. Mater.,2007,19(21):3712-3716.
    [28]C.V. Subba Reddy, Z. R. Deng, Q.Y. Zhu, Y. Dai, J.Zhou, W. Chen, S.I.Mho. Characterization of MoO3 nanobelt cathode for Li-battery applications [J].Appl. Phys. A,2007,89(4):995-999.
    [29]S.H.Lee, Y.H.Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M.Jones, A. H.Mahan, S.B.Zhang, A.C. Dillon.Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles [J]. Adv. Mater.,2008,20(19): 3627-3632.
    [30]Y. S.Jung, S.Lee, D.Ahn, A. C.Dillon, S.H.Lee. Electrochemical reactivity of ball-milled MoO3-y as anode materials for lithium-ion batteries [J].J.Power Sources,2009,188(1):286-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700