新型二阶非线性光学聚合物膜材料的设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
任何技术的创新都由相应领域材料学的快速发展来推动,光电信息通讯技术的发展正在广泛而深刻地影响着人们的生活和社会的进步。作为光电调制波导器件的基础,二阶非线性光学材料的研究正成为科学家们关注的热点。无论从材料的结构、性能,还是材料自身的成本和可加工性,有机聚合物二阶非线性光学材料都显示出了比无机晶体材料更加优越的应用前景。对有机聚合物二阶非线性光学材料的研究主要集中在各种新型发色团偶极分子的合成及宏观非对称有机聚合物膜的设计与开发等方面,而膜中发色团分子取向排列的稳定性是最受关注的问题之一。研制兼具大的非线性光学响应和高稳定性的二阶非线性光学有机聚合物膜材料是决定有机材料能否真正实用化的关键性课题。本论文正是基于这一思路,从新型有机聚合物非对称膜的结构设计出发,运用分子和超分子技术,分别在极化聚合物材料、Langmuir-Blodgett(LB)膜,组装膜等材料领域进行了有益的探索,设计并制备了三种可交联型高稳定性极化聚合物材料,一种可紫外光辐射聚合且具有特殊的非经典型LB 膜结构的二阶非线性光学Langmuir-Blodgett 膜材料,一种具有较高非线性光学响应且经紫外光曝光交联后显示很高热稳定性的有机聚合物组装膜材料。本论文根据电场对偶极分子的不均匀作用原理提出了在电场诱导下Layer-by-Layer 定向组装制备单层和多层二阶非线性光学聚合物膜材料的思想,并通过实验成功验证了该方法的可行性。此外,我们还对所得到的极化聚合物旋涂膜、LB 膜和组装膜进行了微观结构变化与宏观性质表现之间联系的研究;对得到的有机-无机杂化聚合物材料开展了初步调制波导器件方面的尝试。
Recently, various novel and high performance second-order nonlinear optical (NLO) organic polymer materials, owing to their wide application in electro-optical (E-O) modulated devices and advantages superior to inorganic materials, have been prepared and investigated by numerous scientists. It is still considered to be a challenge for researchers to prepare novel polymer lattices with macroscopically non-centrosymmetric structure and in which chromophoric dipolar molecules arranged with orientation. We can define three general approaches to achieving noncentrosymmetric lattices of nonlinear optical chromophores: electric-field poling technique, Langmuir-Blodgett film technique and Layer-by-Lay (LBL) assembly technique. Accordingly, three types of NLO materials were classified: poled polymer materials, NLO LB film materials and NLO assembly film materials. The theory and development of these types of NLO organic polymer film materials have been reviewed in chapter 1.
    In this dissertation, we have provided some promising attempts to fabricate novel high performance and thermal stability NLO organic polymer films in the three fields of NLO organic polymer materials, respectively.
    In chapter 2, we have synthesized and characterized two side-chain crosslinkable PMMA and PS types of NLO polymers through sealed-tube polymerization method. We have evidently improved the thermal stability of poly [(1-(4-nitrophenyl)-2-(4-{[2-(methacryloyloxy) ethyl] ethylamino}-phenyl)diazene (DR1M))-co-(methyl methacrylate(MMA))](P1) and poly [(DR1M)-co-(styrene(St))] (P2), respectively, by copolymerizing with epoxy glycidyl methacrylate (GMA). Studied with DSC and TGA, the glass transition temperature of the two polymers is 125℃and 124℃respectively, approximately increased 30-50℃compared with that before crosslinked. The values of electro-optic coefficient (r33) of the polymer P1, P2 after crosslinked, measured with the simple reflection technique at 1.3 μm wavelengths, was 12.50 pm/v, 8.60 pm/v and they both kept around 75% of their initial values after 100h at room temperature. Two crosslinkable second-order nonlinear optical fluorinated polymers (P3, P4) were prepared by copolymerization of 2, 3, 4, 5, 6-pentafluorostyrene, GMA and DR1M via same technique. The crosslinkable polymers were characterized concretely and have large relative molecular weight, good organosolubility, excellent film-forming property. Polymer P3 and P4 possess high glass transition temperature (106-110 oC) and high thermal decomposition temperature (290-350 oC) after crosslinked. Furthermore, the polymer P3 films possess not only high values (12-16 pm/v) of electro-optic coefficient (r33) at 1.3 μm wavelengths but also the low optical loss (1.7 dB/cm) at 1.55 μm wavelengths, which is instructive for application of electro-optical devices. The above confirmed that the thermal stability of the poled polymer P1-P4 were improved significantly, owing to the crosslinking of the epoxy group in the copolymers. In addition, the organic chromophore ((3-Triethoxysilanyl-propyl)-carbamic acid 2-{ethyl-[4-(4-nitro-phenylazo)-phenyl] -amino}-ethyl ester (SG-DANS))-inorganic matrix hybrid materials have been
    fabricated via sol-gel methodology and using the obtained hybrid materials, a polymer waveguide electro-optic modulator (Mach-Zehnder Interferometer) was fabricated and studied primarily.
    In chapter 3, a photopolymerisable SHG active Langmuir-Blodgett (LB) film of 1-(10-{[(10-nitro)-6,7-azobenzenl]-ether}-decyl)-3-(tetracosa-12,14-diynyl)urea (N-AEDTDU) with nontraditional architecture was fabricated based on the strong molecular interactions of hydrogen bonding. Further, the noncentrosymmetric and nontraditional structures of the LB monolayer and multilayer were proved by characterization of surface pressure-area (π-A) isotherm, Atomic force microscopy (AFM), UV-vis absorption spectroscopy, contact angle as well as second harmonic generation (SHG) equipments. The study of SHG activity demonstrated that the thermal stability of nonlinear optics of LB films was improved evidently after photopolymerization via UV irradiation. (A 17-layer LB multilayer film of NAEDTDU on one side of a quartz glass after irradiation retained >55 % of the origin polar order up to 120 °C.) Most interestingly, accompanied with the falling back of the environmental temperature, we discovered all the photopolymerized LB monolayer and multilayer films exhibited unique phenomenon of SHG rebounding from decreased intensity induced by heating, which is attributed to the photopolymerization of diacetylene.
    In chapter 4, a promising methodology for fabricating high thermally stable organic second-order NLO thin films containing low molecular weight chromophoric (LMWC) molecules was sustained by the electric field-induced layer-by-layer assembly. The new LMWC molecule but-2-enedioic acid mono-[2-({4-[4-(2-carboxy-2-cyano-vinyl)-phenylazo]-phenyl}-methyl-amino)-eth-yl]ester(BCPE) was first designed and synthesized successfully, which possesses two negative groups at both ends and still retains the molecular polarity after ionized.
引文
[1] 傅竹西,《固体光电子学》,中国科学技术大学出版社1999,pl. 1.
    [2] 叶成,Zyss, J.; 《分子非线性光学的理论与实践》,北京化学工业出版社1996,pl.1.
    [3] Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons: New York, 1991.
    [4] Dalton, L. R. Nonlinear Optical Materials. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Kroschwite, J. I.; Howe-Grant, M.; Eds.; Wiley: New York, 1996, 17, 287.
    [5] Shen, Y. R. The Principles of Nonlinear Optics; Wiley: New York 1984.
    [6] Boyd, R. W. Nonlinear Optics; Academic Press: New York 1992.
    [7] Zyss, J.; Ledoux, I. Chem. Rev. 1994, 94, 77.
    [8] Zyss, J. Nonlinear Opt. 1991, 1, 3.
    [9] Dalton, L. R.; Harper, A. W.; Ghosn, R.; Steier, W. H.; Ziari, M.; Fetterman, H.; Shi, Y.; Mustacich, R. V.; Jen, A. K. Y.; Shea, K. J. Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Applications in Photonics. Chem. Mater. 1995, 7, 1060 and references contained therein.
    [10] 秦金贵; 刘道玉化学通报1990, 10, 23.
    [11] 徐志凌; 刘丽英; 杨鹏; 侯占佳; 徐雷; 王文澄物理学报1999, 48(11), 2076.
    [12] Teng, C.C.; Man, H. T. Appl. Phys. Lett. 1990, 56, 1734.
    [13] Kalluri S.; W.H. Steier, Yongqiang Shi, L.R. Dalton et al. “Simple two-slit interference electro-optic coefficients measurement technique and efficient coplanarelectrode poling of polymer thin film”, Appl. Phys. Lett. 1996, 69(2) 275.
    [14] Kiguchi, M. J. J.Opt.Soc.Am., B 1995, 12(5), 871.
    [15] Mortazavi, M. A. et al., J.Opt.Soc.Am., B 1989, 6, 733.
    [16] 叶成等功能高分子学报1993, 4, 289.
    [17] Barnik, M. I.; Blinov, L. M. et al. MLCL S&T, Sect.C 1994, 3(4), 319.
    [18] Dalton, L. R. Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications, Advances in Polymer Science, 2002, 158, pl. 1.
    [19] Davydov, B. L.; Derkacheva, L. D.; Duna, V. V. Sov. Phys. JEPT Lett. 1970, 12.
    [20] Oudar, J. L.; Chemla, D.S. J. Chem. Phys. 1977, 66, 2664.
    [21] Chemla, D. S.; Oudar, J. L. Phys. Rev. 1975, B12, 4543.
    [22] Marder, S. R.; Beratan, D. N.; Cheng, L. T. Science 1991, 252, 103.
    [23] 叶成,“有机固体的非线性光学特性”,《有机固体》第五章主编: 朱道本; 王佛松上海科学出版社1999, p.181.
    [24] Marder, S. R.; Perry, J.W. Science 1994, 263, 1706.
    [25] Ahlheim, M.;Barzoukas, M.;Bedworth, P. V. Science 1996, 271, 335.
    [26] Albota, M.; Beljorme, D.; Bredas, J. L. et al Science 1998, 281,1653.
    [27] Meredith, G. R.; Van Dusen, J. G..; Williams, D. J. Nonlinear Optical Properties of Organic and Polymer Materials, D. Williams Ed., Acs Symp. Series 1983, 233, 109.
    [28] Havinga, E. E.; Van Pelt, P.; Bunsenges. B. Phys. Chem. 1979, 83, 816.
    [29] Miyata, S.; Yoshiikawa, Y.; Tasaka, S.; Ko, M. Polymer J. 1980, 12, 857.
    [30] Messier, J.; Kajzar, F.; Prasad, P.; Ulrich, D. (ed.), “Nonlinear Optical Effects in Organic Polymers”, Kluwer Academic Pubisher, Dordrecht, 1989.
    [31] K.D.Singer, et al., Mol. Cryst. Liq. Cryst., 1990, 189, 123.
    [32] Cheng, L. T.; Tam, W.; Marder. S. R.; Stiegman, A. E.; Rikken, G.; Spangler, C. W. Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 2. A Study of Conjugation Dependences. J. Phys. Chem. 1991, 95, 10643.
    [33] Clays, K.; Persoons, A. Hyper-Rayleigh Scattering in Solution. Phys. Rev. Lett. 1991, 66, 2980.
    [34] Lupo, D. J. Opt. Soc. Am. B. 1988, 5(2), 300.
    [35] Gorman, C. B.;Marder, S. R. Proc. Natl. Acad. Sci. USA 1993, 90, 11297.
    [36] Meyers, F.;Marder, S. R.;Pierce, B. M.;Bredas, J. L. J Am. Chem, Soc. 1994, 116, 10703.
    [37] Rao, V. P.;Jen, A. K. –Y.;Wong, K. Y.;Drost, K. J. J. Chem. Soc., Chem. Commun. 1993, 1118.
    [38] Jen, A. K. -Y.; Rao, V. P.; Chandrasekhar, J. Polymers for Second-Order Nonlinear Optics, Lindsay, G. A. and Singer, K. D. Ed., ACS Symp. Series 1995, 601, 147.
    [39] Albert, I. D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575.
    [40] Gilmour, S.; Montgomery, R. A.; Marder, S. R. Chem. Mater. 1994, 6, 1603.
    [41] Rao, V. P.; Wong, K. Y.; Jen, A.-K. Y. Chem. Mater. 1994, 6, 2210.
    [42] Shi, R. F.; Wu, M. H.; Yamada, S. Appl. Phys. Lett. 1993, 63, 1173.
    [43] Shi, R. F.;Yamada, S.;Garito, A. F. Polymers for Second-order Nonlinear Optics, Lindsay, G. A.;Singer,K. D. Ed., ACS Symp.Series. 1995, 601, 22.
    [44] Mader, S. R.;Gorman, C. B.;Tiemann, B. G.;Cheng, L. T. J. Am. Chem. Soc. 1993, 115, 3006.
    [45] Mader, S. R.; Cheng, L. T.; Tiemann, B. G.; Friedli, A. C.; Blandchard-Desce,M.; Perry, J.W.; Skindhoj, J. Science 1994, 263, 511.
    [46] Blandchard-Desce, M.; Alain, V.; Bedworth, P. V.; Marder, S. R.; Fort. A.; Runser, C.; Barzoukas, M.; Lebus, S.; Wortman, R. Chem. Eur. J. 1997, 3, 1091.
    [47] Ahlheim, M.; Barzoukas, M.; Bedworth, P. V.; Blandchard-Desce, M.; Fort, A.; Hu, Z-Y.; Marder, S.R.; Perry, J.W.; Runser, C.; Staehelin, M.; Zysset, B. Science 1996, 271, 335.
    [48] Dalton, L. R.; Steier, W. H.; Robinson, B. H.; Zhang, C.; Ren, A.; Garner, S.; Chen, A.; Londergan, T.; Irwin, L.; Carlson, B.; Fifield, L.; Phelan, G.; Kincaid, C. ; Amend, J.; Jen, A. J. Mater, Chem. 1999, 9, 1905.
    [49] Mignani, G.; Kramer-Puccetti, G.; Lwdoux, I.; Soula, G.; Zyss, J.; Meyrueix, R. Organometallics. 1990, 9, 2640.
    [50] Cheng, L. T.; Tam, W.; Mader, S. R.; Stiegman, A. E.; Rikken, G.; Spangler, C. W. J. Phys. Chem. 1991, 95, 10643.
    [51] Hao, B. Z.; Chen, C. Y.; Zhou, Z. H.; Yang, C.; Li, M. J. Mater. Chem. 2000, 10, 1581.
    [52] Molecular Nonlinear Optics: Materials, Physics, and Devices Zyss, J. ed. Academic Press, 1994, p.36-58.
    [53] Alain, V.; Redogiia, S.; Blandchard-Desce, M.; Lebus, S.; Lukaszuk, K.; Wortmann, R.; Gubler, U.; Bosshard, C.; Gunter, P. Chem. Phys. 1999, 245, 51.
    [54] Nerenz, H.; Meier, M.; Grahn, W.; Reisner, A.; Schmalzlin, E.; Stadler, S.; Meerholz, K.; Brauchle, C.; Jones, R. G. J. Chem. Soc. Perkin Trans. 2, 1998, 437.
    [55] Wang, P.; Zhu, P.; Wu, W.; Kang, H.; Ye, C. Progressin Natural Sci. 2000, 1, 1.
    [56] Qin; Liu, D.; Dai, C.; Chen, C.; Wu, B.; Yang, C.; Zhan, C. Coordination Chemistry Review 1999, 188, 23.
    [57] Luo, J.; Hua, J.; Qin, J.; Cheng, J.; Shen, Y.; Lu, Z.; Wang, P.; Ye, C. Chem. Commun. 2001, 1, 171.
    [58] Abraham, U.; Graig, S. W.; Werner, K.; Donglas, D. R.; David, J. W. ; Laura, H. J. Am. Chem. Soc. 1990, 112, 7083.
    [59] Zhao, B.; Lu, W.; Zhou, Z.; Wu, Y. J. Mater. Chem. 2000, 10, 1513.
    [60] Grain, J.; Orduna, J.; Ruperez, J. I.; Alcala, R.; Villacampa, B.; Sanchez, C.; Martin, N.; Segura; Gonzalez, M. Tetrahedron Lett. 1998, 39, 3577.
    [61] Gonzalez, M.; Martin, N.; Seoane, C.; Grain, J.; Orduna, J.; Alcala, R.; Sanchez, C.; Villacampa, B. Tetrahedron Lett. 1999, 40 , 8599.
    [62] Watanabe, T.; Yamamoto, T.; Hosomin, T. NATO ASI series 1991, 194, 151.
    [63] Wang, P.; Zhu, P.; Wu, W.; Kang, H.; Ye, C. Phys. Chem. 1999, 1, 3519.
    [64] Cho, B.; Lee, S.; Son, K.; Kim, Y.; Doo, J.; Lee, G.; Kang, T.; Jeon, S. Chem. Mater. 2001, 13,1438.
    [65] Brunel, J.; Jutand, A.; Ledoux, I.; Zyss, J.; Blanchard-Desce, M. Synthetic Metals 2001, 124, 195.
    [66] 花建丽,《新型二阶非线性光学有机分子和高分子材料的设计、合成与性能》, 武汉大学博士学位论文2002.
    [67] Harper, A. W.; Sun. S. –S.; Dalton, L. R.; Garner, S. M.; Chen, A.; Kalluri, S.; Steier, W. H.; Robinson, B. H. J. Opt. Soc. Am. B 1998, 15, 329.
    [68] Verbiet, T.; Clays, K.; Samyn, C. J. Am. Chem. Soc. 1994, 116, 9320.
    [69] Dalton, L.; Harper, A.; Ren, A.; Wang, F.; Todorova, G.; Chen, J.; Zhang, C.; Lee, M. Ind. Eng. Chem. Res. 1999, 38, 8.
    [70] Stahelin, M.; Walsh, C.; Burland, D.; Miller, R.; Twieg, R.; Volksen, W. J. Appl. Phys. 1993, 73, 8471.
    [71] Hampsch, H. L.; Yang, J.; Wong, G. K.; Torkelson, J. M. Polym. Commun. 1989, 30, 40.
    [72] Wu, J.; Binkley, E.; Kenney, J.; Lytel, R.; Garito, A. J . Appl. Phys. 1991, 69, 7366.
    [73] Wu, J.; Valley, J.; Ermer, S.; Binkley, E.; Kenney, J.; Lytel, R. Appl. Phys. Lett. 1991. 59, 2213.
    [74] Valley, J.; Wu, J.; Ermer, S.; Stiller, M.; Binkley, E.; Denney, J.; Lipscomb, G.; Lytel, R. Appl. Phys. Lett. 1992. 60. 160.
    [75] Ermer, S.; Valley, J.; Lytel, R.; Lipscomb, G.; Van Eck, T.; Girton, D. Appl. Phys. Lett. 1992, 61, 2272.
    [76] Jen, A. K.-Y.; Wong, K. Y.; Rao, V. P.; Drost, K.; Cai, Y. M.; Caldwell, B.; Mininni, R. M. Mater. Res. SOC. Symp. Proc. 1994, 328, 413.
    [77] Meinhardt, M. B.; Cahill, P. A,; Seager, C. H.; Beuhler, A. J.; Wargowski, D. A. Mater. Res. SOC. Symp. Proc. 1994, 328, 467.
    [78] Kenney, J. T.; Binkley, E. S.; Jen, A. K.-Y.; Wong, K. Mater.Res. SOC. Symp. Proc. 1994, 328, 511.
    [79] Fujimoto, H. H.; Das, S.; Valley, J. F.; Stiller, M.; Dries, L.; Girton, D.; Van Eck, T.; Ermer, S.; Binkley, E. S.; Nurse, J. C.; Kenney, J. T. Mater. Res. SOC. Symp. Proc. 1994, 328, 553.
    [80] Wu, J. W.; Valley, J. F.; Stiller, M.; Ermer, S.; Binkley, E. S.; Kenney, J. T.; Lipscomb, G. F.; Lytel, R. Proc. SPIE 1991, 1560, 196.
    [81] Cahill, P. A.; Seager, C. H.; Meinhardt, M. B.; Beuhler, A. J.; Wargowski, D. A.; Singer, K. D.; Kowalczyk, T. C.; Kose, T. Z. Proc. SPIE 1993,2025, 48.
    [82] Schilling, M.; Katz, H.; Cox, D. Synthesis and reaction of cyanovinyl-substituted benzenediazonium salts for nonlinear optics, J. Org. Chem. 53, 1988.
    [83] Ye, C.; Marks, T.; Yang, J.; Wong, G. Synthesis of molecular arrays with nonlinear optical properties second-harmonic generation by covalently functionlized glassy polymers, Macromolecules 1987, 20, 2322.
    [84] Hann, R. A,; Bloor, D. Organic Materials for Non-Linear OpticsIII; Royal Society of Chemistry: London 1992.
    [85] Katz, H. E.; Singer, K. D.; Sohn. J.; Dirk. C.; King. L.; Gordon. H. J. Am. Chem. Soc. 1987, 109, 6561.
    [86] Burland, D. M.; Miller. R. D.; Walsh, C. A. Chem. Rev. 1994, 94, 31.
    [87] Drost, K. J.; Rao, V. P.; Jen, A. K.-Y. J. Chem. Soc., Chem. Commun. 1994. 369.
    [88] Drost, K. J.; Jen, A. K.-Y.; Rao, V. P.; Mininni, R. M. Mater. Res. Soc. Symp. Proc. 1994, 328, 517.
    [89] Lin, J. T.; Hubbard, M. A.; Marks, T. J.; Lin, W.; Wong, G. K. Chem. Mater. 1992, 4, 1148.
    [90] Becker, M. W.; Sapochak, L. S.; Ghosen, R.; Xu, C.; Dalton, L. R.; Shi, Y.; Steier, W. H.; Jen, A. K.-Y. Chem. Muter. 1994, 6, 104.
    [91] Jen, A. K.-Y.; Drost, K. J.; Cai, Y.; Rao, V. P.; Dalton, L. R. J. Chem. Soc., Chem. Commun. 1994, 965.
    [92] Pretre, P.; Kaatz, P.; Bohren, A.; Gunter, P.; Zysset, B.; Ahlheim, M.; Stahelin, M.; Lehr, F. Macromolecules 1994, 27, 5476.
    [93] Mitchell, M.; Mulvaney, J.; Hall, H., Jr.; Willand, C.; Hampsch, H.; Williams, D. Polym. Bull. 1992, 28, 381.
    [94] Fuso, F.; Padias, A.; Hall, H., Jr. Macromolecules 1991, 24, 1710.
    [95] Katz, H. E.; Schilling, M. L.; Fang, T.; Holland, W. R.; King, L.; Gordon, H. Macromolecules 1991,24, 1201.
    [96] Lindsay, G.; Stenger-Smith, J.; Henry, R.; Hoover, J.; Nissan, R.; Wynne, K. Macromolecules 1992, 25, 6075.
    [97] Xu, C.; Wu, B.; Dalton, L. R.; Ranon, P. M.; Shi, Y.; Steier, W. H. Macromolecules 1992,25, 6716.
    [98] Kelderman, E.; Derhaeg, L.; Heesink, G. J. T.; Verboom, W.; Engbersen, J. F. J.; van Hulst, N. F.; Persoons, A.; Reinhoudt, D. N. Angew. Chem., Intl. Ed. Engl. 1992, 31, 1075.
    [99] White, K. M.; Cross, E. M.; Francis, C. V. Polym. Prepr. 1994, 35, 172.
    [100] Marturunkakul, S.; Chen, J. I.; Li, L.; Jeng, R. J.; Kumar, J.; Tripathy, S. K. Chem. Mater. 1993, 5, 592.
    [101] Chen, J. I.; Marturunkakul, S.; Li, L.; Jeng, R. J.; Kumar, J.; Tripathy, S. K.; Macromolecules 1993, 26, 7379.
    [102] Marturunkakul, S.; Chen, J. I.; Li, L.; Jiang, X. L.; Jeng, R. J.; Kumar, J.; Tripathy, S. K. Mater. Res. Soc. Symp. Proc. 1994, 328, 541.
    [103] Hubbard, M. A,; Marks, T. J.; Yang, J.; Wong, G. K. Chem. Mater. 1989, 1, 167.
    [104] Park, J.; Marks, T. J.; Yang, J.; Wong, G. K. Chem. Mater. 1990, 2, 229.
    [105] Jin, Y.; Carr. S. H.; Marks, T. J.; Lin, W.; Wong, G. K. Chem. Mater. 1992, 4, 963.
    [106] Hubbard, M. A.; Marks, T. J.; Lin, W.; Wong, G. K. Chem. Mater. 1992, 4, 965.
    [107] Eich, M.; Bjorklund, G. C.; Yoon. D. Y. Polym. Adu. Technol. 1990, 1, 189.
    [108] Jungbauer, D.; Reck, B.: Twieg, R.; Yoon, D.; Wilson, C.; Swalen, J. Appl. Phys. Lett. 1990, 56, 2610.
    [109] Chen, M.; Yu, L. P.; Dalton, L. R.; Shi, Y.; Steier, W. H. Macromolecules 1991, 24, 5421.
    [110] Chen, M.; Dalton, L. R.; Yu, L. P.; Shi, Y. Q.; Steier. W. H. Macromolecules 1992, 25, 4032.
    [111] Shi, Y.; Steier, W. H.; Chen, M.; Yu, L.; Dalton, L. R. Appl. Phys. Lett. 1992, 60, 2577.
    [112] Boogers, J. A. F.; Masse, P. Th. A,; de Wlieger, J. J.; Tinnemans, A. H. A. Macromolecules 1994. 27. 205.
    [113] Yu, L.; Chan, W.; Bao, Z. Macromolecules 1992, 25, 5609.
    [114] Yu, L.; Chan, W.; Dikshit, S.; Bao, Z. Appl. Phys. Lett. 1992, 60, 1655.
    [115] Lon, J. T.; Hubbard, M. A.; Marks, T. J.; Lin, W.; Wong, G. K. Chem. Mater. 1992, 4, 1148.
    [116] Matsuda, H.; Okada, S.; Minami, N.; Nakanishi, H.; Kamaimoto, Y.; Hashidate, S.; Nagasaki, Y.; Kato, M. In Nonlinear Optics: Fundamentals, Materials and Devices; Miyata, S., Ed.; Elsevier Science Publishers: Holland, 1992; p195.
    [117] Mandal, R. B.; Jeng, J.; Kumar, J.; Tripathy, S. K. Makromol. Chem. Rapid Commun. 1991, 12, 607.
    [118] Zhu, X.; Chen, Y. M.; Li, L.; Jeng, R. J.; Mandal, B. K.; Kumar, J.; Trioathv. S. K. Opt. Commun. 1992. 88. 77.
    [119] Levy, D.; Esquivias, L. Adv. Mater. 1995, 7, 120.
    [120] Ikushima, A. J.; Fujiwara, T.; Saito, K. Jpn. J. Appl. Phys. 2000, 88, 1201.
    [121] Chaumel, F.; Jiang, H. W.; Kakkar, A. Chem. Mater. 2001, 13, 3389.
    [122] Yang, J.-X.; Tao, X.-T.; Yuan, C. X.; Yan, Y. X.; Wang, L.; Liu, Z.; Ren, Y.; Jiang, M. H. J. Am. Chem. Soc. 2005, 127, 3278.
    [123] Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. “Intermolecular Coupling Enhancement of the Molecular Hyperpolarizability in Multi-chromophoric Dipolar Dendrons”J. Am. Chem. Soc. 2000, 122, 3174-3181.
    [124] Ma, H.; Liu, S.; Luo, J. D.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K.-Y. Adv. Funct. Mater. 2002, 12, 565.
    [125] Delaire, J. A.; Nakatani, K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials, Chem. Rev. 2000, 100, 1817.
    [126] Nakahara, H.; Fukuda, K. Thin Solid Films 1982, 99, 45.
    [127] 欧阳健明,《LB 膜原理与应用》,暨南大学出版社1999.
    [128] 刘云圻,化学通报,1988, 8, 12.
    [129] Ashwell, G. J., et al. Nature 1994, 368, 438.
    [130] Ashwell, G. J., et al. Nature 1995, 375, 385.
    [131] 李富友,《光响应多功能材料的分子设计、合成、构效关系及其LB 膜性质的研究》,北京师范大学博士学位论文2000.
    [132] Jiang, H. W.; Kakkar, A. K. J. Am. Chem. Soc 1999, 121, 3657.
    [133] Girling, I. R., et al. J. Opt. Soc. Am 1987, B4, 950.
    [134] Cross, G. H., et al. Thin Solid Films 1988, 156, 39.
    [135] Neal, D. B., et al. Electro. Lett. 1986, 22, 460.
    [136] Aktipetrov, O. A. Sov. Phsy. JETP 1985, 62, 524.
    [137] Lesoux, I. et al. Eur. Phys.Lett. 1987, 3, 803.
    [138] Lupo, D. J. Opt. Soc. Am. B 1988, 5(2), 300.
    [139] Biro, R. J. Am. Chem. Soc. 1988, 110, 2672.
    [140] Decher, G. J. Chem. Soc. Chem. Commun. 1988, 14, 933.
    [141] Ashwell, G. J., et al. Nature 1992, 357, 393.
    [142] Merdar, S. R., et al. Science 1989, 245, 626.
    [143] Ashwell, G. J., et al. Nature 1994, 1775, 32.
    [144] Gorman, C. B. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 11297.
    [145] Jen, A.K., Mater Res. Soc. Symp. Proc., 1994, 328, 413.
    [146] 黄春辉, 李富友,黄岩谊,《光电功能超薄膜》,北京大学出版社2001.
    [147] Penner, T. L.; Motschmann, H. R.; Armstrong, N. J.; Ezenyilimba; Williams, D. J. Nature 1994, 367, 49.
    [148] Iler, R. K. J. Colloid Interface Sci. 1966, 21, 569.
    [149] Decher, G.; Hong, J. D. Makromol. Chem., Macromol. Symp. 1991, 46, 321.
    [150] Decher, G.; Hong, J. D. Ber. Bunsenges. Phys. Chem. 1991, 95, 1430.
    [151] Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210/211, 831.
    [152] Decher, G.; Schmitt, J. Progr. Colloid Polym. Sci. 1992, 89, 160.
    [153] Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Macromol. Rapid Commun. 2000, 21, 319.
    [154] Hammond, P. T. Curr. Opin. Colloid Interface Sci. 2000, 4, 430.
    [155] Tillman, N.; Ulman, A.; Penner, T. L. Langmuir 1989, 5, 101.
    [156] Lee, H.; Kepley, L. J.; Hong, H. G.; Mallouk, T. E. J. Am. Chem. Soc. 1988, 110, 618.
    [157] Lee, H.; Kepley, L. J.; Hong, H. G.; Akhter, S.; Mallouk, T. E. J. Phys. Chem. 1988, 92, 2597.
    [158] Decher, G. Science 1997, 277, 1232.
    [159] Gao, M. Y.; Zhang, X.; Yang, B.; Shen, J. C. Chem. Commun. 1994, 2229.
    [160] Blonder, R.; Sheeney, L.; Willner, I. Chem. Commun. 1998, 1393.
    [161] Bharathi, S.; Nogami, M.; Ikeda, S. Langmuir 2001, 17, 7468.
    [162] Ariga, K.; Onda, M.; Lvov, Y.; Kunitake, T. Chem. Lett. 1997, 25.
    [163] Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Macromol. Rapid Commun. 2000, 21, 319.
    [164] Figura, C.; Marciu, D.; Liu, Y.; Claus, R. O. Appl. Phys. Lett. 1999, 74, 25.
    [165] Lenahan, K. M.; Wang, Y. X.; Liu, Y. J.; Claus, R. O.; Heflin, J. R.; Marciu, D.; Figura, C. Adv. Mater. 1998, 10, 853.
    [166] Lvov, Y.; Yamada, S.; Kunitake, T. Thin Solid Films 1997, 300, 107.
    [167] Koetse, M.; Laschewsky, A.; Mayer, B.; Rolland, O.; Wischerhoff, E. Macromolecules 1998, 31, 9316.
    [168] Liu, W.; Yitzchaikk, S.; Lin, W.; Malik, A.; Durbin, M. K.; Richer, A. G.; Wong, G. K.; Dutta, P.; Marks, T. Angew. Chem. Int. Ed. Engl. 1995, 34, 1497.
    [169] Shipway, A. N.; Lahav, M.; Millner, I. Adv. Mater. 2000, 12, 993.
    [170] Lahav, M.; Gabriel, T.; Shipway, A. N.; Millner, I. J. Am. Chem. Soc. 1999, 121, 258.
    [171] 张俊虎,《功能性纳米微粒与纳米线的合成及其在聚合物中的组装》, 吉林大学博士学位论文2003.
    [172] Lin, W. B.; Lin, W. P.; Wong, G. K.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 8034.
    [173] Wu, D. G.; Huang, C. H.; Huang, Y. Y.; Gan, L. B.; Yu, A. C.; Ying, L. M.; Zhao, X. S. J. Phys, Chem. B, 1999, 103, 7130.
    [174] Li, F. Y.; Zheng, J.; Huang, C. H.; Jin, L. P.; Zhuang, J. Y.; Guo, J. Q.; Zhao, X. S.; Liu, T. T. J. Phys. Chem. B, 2000, 104, 5090.
    [175] F. Y. Li, J. Zheng, L. P. Jin, X. S. Zhao, T. T. Liu, J. Q. Guo, J. Mater. Chem. 2000, 10,1287.
    [176] F. Y. Li, L. P. Jin, C. H. Huang, J. Zheng, J. Q. Guo, X. S. Zhao, T. T. Liu, Chem. Mater. 2001, 103, 192.
    [177] Zheng, J.; Huang, C. H.; Wei, T. X.; Huang, Y. Y.; Gan, L. B. J. Mater. Chem. 2000, 10, 921.
    [178] Wei, T. X.; Zhai, J.; Gan, L. B.; Huang, C. H.Chin. Chem. Lett. 2000, 11, 161.
    [179] 韦天新,黄春辉,于小丰,吴念祖中国科学B(英文版)2000, 43, 609.
    [180] Yu, D.; Gharavi, A.; Yu, L.P. J. Am.Chem.Soc. 1995, 117, 11680-11686.
    [181] Peng, Z.G.; Yu, L. P. Macromolecules 1994,27,2638-2640 (c) Chen, T. A.; Jen, K.-Y.; Cai, Y. Macromolecules 1996,29,535-539.
    [182] Woo, H. Y.; Shim, H.-K.; Lee, K.-S.; Jeong, M.-Y.; Lim, T.-K.; Chem.Mater.1999, 11, 218-226.
    [183] Saadeh, H.; Yu, D.; Wangand, L. M.; Yu, L. P. J.Mater.Chem 1999, 9, 1865-1873.
    [184] Jeng, R. J.; Cheng, C.; Chen, C. P. Polymer 2003,44,143-155.
    [185] Lu, C. H.; Wu, N. Z.; Wei, F.; Zhao, X. S.; Jiao, X. M.; Xu, J.; Luo, C. Q.; Cao, W. X. Adv. Funct. Mater. 2003, 13, 548.
    [186] Doshi, D. A.; Huesing, N. K.; Lu, M. C.; Fan, H. Y.; Lu, Y. F.; Potter, K. S.; Jr., B. G. P.; Hurd, A. J.; Brinker, C. J. Science 2000, 290,107.
    [187] Xia, Y.; Kim, E.; Zhao, X. M.; Rogers, J. A.; Prentiss, M.; Whitesides, G. M. Science 1996, 273, 347.
    [188] Zheng, H. P.; Lee, I.; Rubner, M. F.; Hammond, P. T. Adv. Mater. 2002, 14, 569.
    [189] Stutzmann, N.; Tervoort, T. A.; Bastiaansen, C.; Feldmann, K.; Smith, P. Adv. Mater. 2000, 12, 557.
    [190] Lu, C. H.; Wei, F.; Wu, N. Z; Huang, L.; Zhao, X. S.; Jiao, X. M.; Luo, C. Q. and Cao, W. X. Langmuir 2004, 20, 974.
    [191] Wang, J. F.; Jia X. R.; Zhong, H.; Luo, Y. F.; Zhao, X. S.; Cao, W. X.; Li, M. Q. Chem. Mater. 2002, 14, 2854.
    [192] Cao, T. B.; Wei, L. H.; Yang, S. M.; Zhang, M. F.; Huang, C. H.; Cao, W. X. Langmuir 2002, 18, 50.
    [193] Wang, H. P.; He, Y. N.; Tuo, X. L.; Wang, X. G. et al. Macromolecules 2004 37 (1), 135.
    [194] Cheng, H.; Tuo, X. L.; Wang, G. J.; Wang, X. G. et al. Macromol Chem Physic 2001 202 (18), 3530.
    [195] Wu, L. F.; Tuo, X. L.; Cheng, H.; Wang, X. G. et al. Macromolecules 2001 34 (23), 8005.
    [196] Sun, J. Q.; Wang, Z. Q.; Sun, Y. P.; Zhang, X.; Shen, J. C. Chem. Comm. 999 (8) , 693.
    [197] Li, D. Q.; Ratner, M. A.; Marks, T. J.; Zhang, C. H.; Yang, J.; Wong, G. K. J. Am. Chem. Soc. 1990, 112, 7389.
    [198] Li, D. Q.; Swanson, B. I.; Robinson, J. M.; Hoffbauer, M. A. J. Am. Chem. Soc. 1993, 115, 6975
    [199] Li, D. Q.; Buscher, C. T.; Swanson, B. I. Chem. Mater. 1994, 6, 803.
    [200] Van der Boom, M. E.; Richter, A. G.; Malinsky, J. E.; Lee, P. A.; Armstrong, N. R.; Dutta, P.; Marks, T. J. Chem.Mater. 2001,13, 15.
    [201] Zhu, P.; Kang, H.; Facchetti, A.; Evmenenko, G.; Dutta, P.; Marks, T. J. J.Am.Chem.Soc. 2003,125,11496.
    [202] Lin, W. B.; Lee, T. L.; Marks, T. J. J.Am.Chem.Soc.1997,119,2205
    [203] Facchetti, A.; Marks, T. J. Chem.Mater.2003, 15, 1064.
    [204] Roscoe, S. B.; Marks, T. J. Langmuir 1996, 12, 4218.
    [205] Roberts, M. J.; Lindsay, G. A.; Herman, W. N.; Wynne, K. J. J.Am.Chem.Soc. 1998,120,11202.
    [206] Flory, W. C.; Mehrens, S. M.; Blanchard, G. J. J.Am.Chem.Soc. 2000, 122, 7976.
    [207] Neff, G. A.; Helfrich, M. R.; Clifton, M. C.; Page, C. J. Chem.Mater. 2000, 12, 2363.
    [208] Dong, X.; Bai, H.; Tuo, X. L.; Wang, X. G. Acta. Polym. Sin. 2004, (1), 54.
    [209] Yu, Z. B.; Yang, Z.; He, Y. N.; Wang, X. G.; Ye, C. Acta. Polym. Sin. 2004, (3), 345.
    [210] Wang, H. P.; He, Y. N.; Tuo, X. L.; Wang, X. G. Macromolecules 2004, 37, 135.
    [211] Wu, L. F.; Tuo, X. L.; Cheng, H.; Chen, Z.; Wang, X. G. Macromolecules 2001, 34, 8005.
    [212] Li, Z.; Qin, J.; Li, S.; Ye, C.; Luo, J.; Cao, Y. Macromolecules 2002, 35, 9232.
    [213] Li, Z.; Qin, J.; Deng, X.; Cao, Y. J. Polym. Sci. Part A: Polym.Chem. 2001, 39, 3428.
    [214] Tang, H.; Luo, J.; Qin, J.; et al. Macromol. Rapid Commun.2000, 21, 1125.
    [215] Luo, J.; Qin, J.; Kang, H.; Ye, C. Chem. Mater. 2001, 13, 927.
    [216] Qin, A. J.; Yang, Z.; Bai, F. L.; Ye, C. Journal of Polymer Science Part A: Polymer Chemistry 2003,41,2846.
    [217] Ji, S. X.; Li, Z.; Zhou, X. S.; Ye, C. Polymers for Advanced Technologies 2003, 14, 254.
    [218] Yang, Z.; Li, S. J.; Ye, C. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 , 4297.
    [219] Wu, W.; Wang, D.; Wang, P.; Zhu, P. W.; Ye, C. Journal of Applied Polymer Science 2000, 77, 2939.
    [220] Wu, W.; Wang, D.; Wang, P.; Zhu, P. W.; Ye, C. Journal of Polymer Science Part A: Polymer Chemistry 2000, 37, 3598.
    [221] Sui, Y.; Wang, D.; Yin, J. Materials Letters 2002, 52, 53.
    [222] Lu, J. X.; Yin, J. Journal of Polymer Science:Part A:Polymer Chemistry 2003, 41, 303.
    [223] Zhong, A. Y. Journal of Applied Polymer Science 2002, 85, 638.
    [224] Eaton D. F.. Science 1991, 253, 281.
    [225] Marder S. R.; Kippelen B.; Jen A. K. Y. et al.. Nature 1997, 388, 845.
    [226] Ye C.. Chemistry Online 1997, 1: 6.
    [227] Jingdong L.; Jingui Q.; Hu K. et al.. Chem. Mater. 2001, 13, 927.
    [228] Hayden L. M.; Kim W. K.; Chafin A. P.; Lindsay G. A.. Macromolecules 2001, 34, 1493 .
    [229] Pan J.; Chen M. F.; Warner W.; He M. Q.; Dalton L.; Hogen-Esch T. E.. Macromolecules 2000, 33, 4673.
    [230] Park K. H.; Lim J. T.; Song S.; Kwak M. G.; Lee C. J.; Kim N.. Reactive & Functional Polymers 1999, 40, 169.
    [231] Mao S. S. H.; Ra Y.; Guo L.; Zhang C.; Dalton L. R.. Chem. Mater. 1998, 10, 146.
    [232] Lu J. X.; Yin J.. J. Polym. Sc.i Part A : Polym. Chem. 2003, 41, 303.
    [233] Chaumel F.; Jiang H. W.; Kakkar A.. Chem. Mater. 2001, 13, 3389-.
    [234] Zhang D. M.; Sun J. Z.; Shen J. C.; Yi MB.. J. Appl. Polym. Sci. 2000, 77, 1506.
    [235] Zhang C.; Wang C. G.; Dalton L. R.; Zhang H.; Steier W. H.. Macromolecules 2001, 34, 253.
    [236] Cho Y. S.; Lee J. S.; Cho G.; Wada T.; Sasabe H.. Polymer 2001, 42, 9379.
    [237] Shuang X.; Natansohn A.; Rochon P.. Macromolecules, 1994, 27, 1 489.
    [238] Lu G.; Cui Z. C.; Yang B. et al.. Chem. J. Chinese Universities, 1998, 14, 1.
    [239] Natansohn A.; Rochon P.; Gosselin J. et al.. Macromolecules, 1992, 25, 2268.
    [240] Yang C. C.; Jing X. B.; Wang F. S. et al.. Chem. J. Chinese Universities, 1995, 16, 1315.
    [241] Teng C.C.; Man H.T.. Appl. Phys. Lett., 1990, 56, 1 734.
    [242] Shuang X.; Natansohn A.; Rochon P.. Macromolecules, 1994, 27, 1885.
    [243] Page R. H.; Jurich M. C.; Willson C.G. et al.. J. Opt. Soc. Am. B, 1990, 7, 1239.
    [244] Tao X.; Watanable T.; Miyata S. et al.. Chem. Mater., 1996, 8, 1326.
    [245] Meng X.,; Natansohn A.; Barrett C. et al.. Macromolecules, 1996, 29, 946.
    [246] Verbiest T.; Burland D. M.; Jurich M. C.; Lee V. Y.; Miller R. D.; Volksen W.. Science 1995, 268, 1604.
    [247] Yu D.; Gharavi A.; Yu L.. J. Am. Chem. Soc. 1995, 117, 11680.
    [248] Ma H.; Wang X. J.;Wu X. M.; Liu S.; Jen A. K. Y.. Macromolecules 1998, 31, 4049.
    [249] Ma H.; Wu J. Y.; Herguth P.; Chen B. Q.; Jen A. K. Y.. Chem. Mater. 2000, 12, 1187.
    [250] Sui Y.; Lu J. X.; Yin J.; Wang D.; Zhu Z. K.; Wang Z. G.. J Appl. Polym. Sci. 2002, 85, 944.
    [251] Ma H.; Chen B. Q.; Sassa T.; Dalton L. R.; Jen A. K. Y.. J. Am. Chem. Soc. 2001, 123, 986.
    [252] Zhang C.; Wang C. G.; Yang J. L .; Dalton L. R.. Macromolecules 2001, 34, 235-.
    [253] Lee J. Y.; Park E. J.. J Polym Sci Part A: Polym. Chem. 2002, 40, 1742.
    [254] Ma H.; Jen A. K. Y.; Dalton L. R.. Adv Mater. 2002, 14, 1339.
    [255] Luo J. D.; Ma H.; Haller M.; Jen A. K. Y.; Barto R. R.. Chem. Commun. 2002, 888.
    [256] Smith D. W. J.; Babb D. A.. Macromolecules 1996, 29, 852.
    [257] Pitois C.; Wiesmann D.; Lindgren M.; Hult A.. Adv. Mater. 2001, 13:1483.
    [258] Wang J.; Zhang L. Z.; Niu Y. P.; Liang Z. X.; Chen Y. L.; Huang Y. P.; Wang H.; Lin W. Z.. Polym. Int. 2003, 52, 1165.
    [259] Takase H.; Natansohn A ; Rochon P.. J Polym Sci Part B: Polym. Phys. 2001, 39, 1686.
    [260] Xie S.; Natansohn A.; Richon P.. Macromolecules 1994, 27, 1885.
    [261] Lee S. H.; Kang Y. S.; Song S. J.. Chem. Commun. 1998, 2513.
    [262] Levy D.; Esquivias L.. Adv. Mater.1995,7,120.
    [263] Ikushima A. J.; Fujiwara T.; Satio K.. Jpn.J.Appl.Phys. 2000,188,1201.
    [264] Brinker C. J.; Scherer G. W.. Sol-Gel Science;The Physics and chemistry of Sol-Gel Processing, academic Press; Scan Diego,1990.
    [265] Loy D. A.; Baugher B. M.; Baugher C. R.; Schneider D.A.; Rahimian K.. Chem.Mater. 2000, 12, 3624.
    [266] Lebeau B.; Sanchez C.. Solid state Mater. Sci. 1999, 4, 11.
    [267] Sung P. H.; Hsu T. F.; Ding Y. H.; Wu A. Y.. Chem. Mater. 1998, 10, 1642.
    [268] Prasad, P. N. and Williams, D. J.; Introdution to Nonlinear Optical Effects in Molecules and Polymers; John Wiley & Sons: New York, 1991.
    [269] Ashwell, G. J. J. Mater. Chem. 1999, 9, 1991-2003. (c) Delaire, J. A. and Nakatan, K. Chem. Rev. 2000, 100, 1817.
    [270] Gao, L. H.; Wang, K. Z.; Huang, C. H.; Zhao, X. S.; Xia, X. H.; Li, T. K.; Xu, J. M. Chem. Mater., 1995, 7, 1047.
    [271] Dunne, D.; Hodge, P.; Ali-Adib, Z.; McKeown, N. B.; West, D. J. Mater. Chem., 1998, 8, 1391-1397.
    [272] Clays, K.; Armstrong, N. J.; Ezenyilimba, M. C.; Penner, T. L. Chem. Mater. 1993, 5, 1032.
    [273] Ashwell, G. J.; Dyer, A. N.; Green, A.; Sato, N.; Sakuma, T. J. Mater. Chem., 2000, 10, 2473.
    [274] Ashwell, G. J.; Maxwell, A. A.; Green, A. J. Mater. Chem., 2002, 12, 2192.
    [275] MacDonald, J. C.; Whitesides, G. M. Chem. Rev. 1994, 94, 2383.
    [276] Koyano, H.; Bissel, P.; Yoshihara, K.; Ariga, K.; Kunitake, T. Chem. Eur. J. 1997, 3, 1077.
    [277] Weck, M.; Fink, R.; Ringsdorf, H. Langmuir 1997, 13, 3515.
    [278] Huo, Q.; Russell, K. C.; Leblanc, R. M. Langmuir 1998, 14, 2174.
    [279] Seki, T.; Fukuchi, T.; Kobayashi, T.; Ichimura, K. Bull. Chem. Soc. Jpn., 2003, 76, 2217.
    [280] Huo, Q.; Russev, S.; Hasegawa, T.; Nishijo, J.; Umemura, J.; Puccetti, G.; Russell, K. C.; Leblanc, R. M. J. Am. Chem. Soc. 2000, 122, 7890.
    [281] Seki, T.; Fukuchi, T.; Ichimura, K. Bull. Chem. Soc. Jpn., 1998, 71, 2807.
    [282] Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M. Langmuir, 1989, 5, 1074.
    [283] Mino, N.; Tamura, H.; Ogawa, K. Langmuir 1991, 7, 2336.
    [284] Seki, T.; Fukuchi, T.; Ichimura, K. Langmuir 2002, 18, 5462.
    [285] Ulman, A. Chem. Rev. 1996, 96, 1533.
    [286] Pasquier, C.; Tieke, B.; Zahir, S.; Bosshard, C.; Günter, P. Chem. Mater. 1991, 3, 211.
    [287] Kajikawa, K.; Yamada, T.; Yokoyama, S.; Okada, S.; Matsuda, H.; Nakanishi, H.; Kakimoto, M.; Imai, Y.; Takezoe, H.; Fukuda, A. Langmuir, 1996, 12, 580.
    [288] Kodali, N. B.; Kim, W.; Kumar, J.; Tripathy, S. K.; Talwar, S. S. Macromolecules 1994, 27, 6612.
    [289] Sarkar, A.; Okada, S.; Nakanishi, H.; Matsuda, H. Macromolecules 1998, 31, 9174.
    [290] Sarkar, A.; Okada, S.; Matsuzawa, H.; Matsuda, H.; Nakanishi, H. J. Mater. Chem., 2000, 10, 819.
    [291] Mino, N.; Tamura, H.; Ogawa, K. Langmuir 1991, 7, 2336.
    [292] Coe, S.; Kane, J. J.; Nguyen, T. L.; Toledo, L. M.; Wininger, E.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 1997, 119, 86.
    [293] Kuriyama, K.; Kikuchi, H.; Kajiyama, T. Langmuir, 1998, 14, 1130.
    [294] Cai, M.; Mowery, M. D.; Menzel, H.; Evans, C. E. Langmuir, 1999, 15, 1215.
    [295] Liu, L. Y.; Zheng, J. B.; Wang, W. C.; Zhang, Z. M.; Tao, F. G.; Xu, L. X.; Hu, J. C. Opt. Commun., 1992, 93, 207.
    [296] Girling, I. R.; Cade, N. A.; Kolinsky, P.V.; Jones, R. J.; Peterson, I. R.; Ahmad, M. M.; Neal, D. B.; Petty, M. C.; Roberts, G. G.; Feast, W. J. J. Opt. Soc. Am.
    B., 1987, 4, 950.
    [297] Schwartz, H.; Mazor, R.; Khodorkovsky, V.; Shapiro, L.; Klug, J. T.; Kovalev, E.; Meshulam, G.; Berkovic, G.; Kotler, Z.; Efrima, S. J. Phys. Chem. B 2001, 105, 5914.
    [298] Wang, Y.; Wang, X. J.; Chuai, X. H.; Fu, N.; Cui, Z. C.; Yi, M. B.; Zhang, D. M.; Yang, B. Polymer International 2004, 53, 1106.
    [299] Lee, J. Y.; Park, E. J. J Polym Sci Part A: Polym Chem, 2002, 40, 1742.
    [300] Heflin, J. R.; Figura, C.; Marciu, D.; Liu, Y.; Claus, R. O. Appl. Phys. Lett. 1999, 74, 495.
    [301] Lee, S. H.; Balasubramanian, S.; Kim, D. Y.; Viswanathan, N. K.; Bian, J. K.; Tripathy, S. K. Macromolecules, 2000, 33, 6534.
    [302] Zhu, P. W.; Kang, H.; Facchetti, A.; Evmenenko, G.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 11496.
    [303] Advincula, R. C.; Fells, E.; Park, M. K. Chem. Mater. 2001, 13, 2870.
    [304] Li, D. Q.; Ratner, M. A.; Marks, T. J.; Zhang, C. H.; Yang, J.; Wong, G. K. J. Am. Chem. Soc. 1990, 112, 7389.
    [305] Katz, H. E.; Scheller, G.; Putvinski, T.; Schilling, M.; Wilson, W. L.; Chidsey, C. Science 1991, 254, 1485.
    [306] Katz, H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994, 116, 6636.
    [307] Lin, W. B.; Lin, W. P.; Wong, G. K.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 8034.
    [308] Flory, W. C.; Mehrens, S. M.; Blanchard, G. J. J. Am. Chem. Soc. 2000, 122, 7976.
    [309] Roberts, M. J.; Lindsay, G. A.; Herman, W. N.; Wynne, K. J. J. Am. Chem. Soc. 1998, 120, 11202.
    [310] Ishow, E.; Bella?che, C.; Bouteiller, L.; Nakatani, K.; Delaire, J. A. J. Am. Chem. Soc. 2003, 125, 15744.
    [311] Van Cott, K. E.; Guzy, M.; Neyman, P.; Brands, C.; Heflin, J. R.; Gibson, H. W.; Davis, R. M. Angew. Chem. Int. Ed. 2002, 41, 3236.
    [312] Cao, S. G.; Zhao, C.; Cao, W. X. Polym. Int. 1998, 45, 142.
    [313] Tirelli, N.; Altomare, A.; Solaro, R.; Ciardelli, F.; Meier, U.; Bosshard, Ch.; Günter, P. J. prakt. Chem. 1998, 340, 122.
    [314] Tirelli, N.; Suter, U. W.; Altomare, A.; Solaro, R.; Ciardelli, F.; Follonier, S.; Bosshard, Ch.; Günter, P. Macromolecules 1998, 31, 2152.
    [315] Schilling, M. L.; Katz, H. E. Chem. Mater. 1989, 1, 668.
    [316] Lu, C. H.; Wu, N. Z.; Wei, F.; Zhao, X. S.; Jiao, X. M.; Xu, J.; Luo, C. Q.; Cao, W. X. Adv. Funct. Mater. 2003, 13, 548.
    [317] Cao, T. B.; Yang, S. M.; Yang, Y. L.; Huang, C. H. and Cao, W. X. Langmuir 2001, 17, 6034.
    [318] Lu, C. H.; Wei, F.; Wu, N. Z; Huang, L.; Zhao, X. S.; Jiao, X. M.; Luo, C. Q.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700