介孔材料组装酶蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Studies on Encapsulation of Enzyme in Mesoporous Materials
  • 作者:高波
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2005
  • 导师:裘式纶
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-04-25
  • 答辩委员会主席:张洪杰
摘要
本论文对介孔材料组装酶蛋白进行了较为系统的研究,首先合成了不同孔径的介孔材料并进行了表面修饰,以介孔材料为载体进行了多种酶的组装的研究。对固定方法,酶蛋白固定量、催化活性、固定化酶的性质和稳定性进行了深入的研究。其中,首次用冷冻-真空吸附法对酶蛋白进行了成功组装,为介孔分子筛组装酶蛋白提供了一种新的实验方法,该方法在控制合适真空度的情况下,在保持酶活性的同时,组装量巨大,远远高于浸渍法及其它常见方法。首次运用能谱手段对酶蛋白在介孔材料上的固定位置进行表征,结果表明透射电镜能谱和扫描电镜能谱联合进行固定化酶活性定位这一手段完全可行,解决了由于杂蛋白、杂质进入孔道而造成的酶蛋白用普通手段,如N2吸附、UV 光谱等手段无法表征的难题。对在工业上应用较大的青霉素酰化酶、脂肪酶进行了固定,尤其在稳定性方面进行了深入研究,研究发现固定化酶的稳定性与介孔材料的孔径关系较大,当介孔材料的孔径与酶分子的大小接近时,稳定性较高。通过对介孔材料的修饰,用交联法固定时,固定化酶的操作稳定性好,可多次反复应用,显示了较好的工业应用前景。利用介孔材料固定化酶稳定性高的优点,本论文最后进行了非水催化的研究,首次在有机介质中成功进行了肽合成,并发现介孔材料的孔道表面性质对合成影响巨大。通过介孔材料固定辣根过氧化物酶成功进行了高分子聚合物聚苯胺(PANI)的合成,得到结构特殊的邻位聚苯胺纳米棒和管。
Silica mesoporous materials with narrow pore size distribution, as carriers in enzyme immobilization, have attracted increasing attention. The internal surfaces of these pores, which can achieve some 1000 m 2 g -1, are lined with silanol hydroxyls. Such feature may promise high potential as supports for catalytic applications. The immobilized enzyme on solid supports has been widely used in many investigations. When the enzyme is immobilized, its autolysis is minimized and protein aggregation is reduced. The immobilized enzyme offers several advantages, such as repeated use of enzyme, ease of product separation and improvement of enzymatic stability and so on. Previously, Balkus and his co-workers had immobilized enzymes onto mesoporous silicate materials, while they had been only successful in immobilizing small enzymes, because the mesoporous materials were still restrictive due to the limit of their pore diameters (ca. 20~60 ?). Little had been written about big enzymes and no systematic research had been done on the
    application of mesoporous materials as new support. In out work, we synthesized, for the first time, mesoporous materials of various diameters(6-22nm)which were used as carriers in the immobilization of many kinds of enzymes. And detailed studies were conducted on immobilization methods, the immobilized amount and the characterization of immobilized enzyme, etc. The characteristics and stability were also included in our research. It was found that the amount of enzyme immobilized in mesoporous materials was far larger than that in other carriers. The reason lies in the great surface area of these materials.
    Vacuum adsorption was also first employed in the protein immobilization. The results indicate that this method can guarantee a large amount, achieving 400mg/g support,which is incomparable for other means. As long as vacuum degree is properly controlled, the enzymatic activity can retain. The characterization of enzyme on site of mesoporous material was carried out via EDS. The results show that the localization of the activity of immobilized enzyme through TEM EDS and SEM EDS is perfectly applicable in that it can provide the solution than other methods to the problem of characterization caused by the entry of other protein and materials into the channels. Penicillin G acylase and lipase, industrially promising, were also attempted through immobilization. Specifically a study was carried out in its stability.
    Penicillin G acylase is globular enzyme of a large size (100 ?) and molecular mass (123,000). So it is difficult to be driven into the pores of mesoporous solids for MCM-41 (30 ?) and SBA-15 (60 ?). The usage of swelling agent, such as TMB, made it possible to synthesize materials with large pore size. At the same time, we also concentrated on the largest pore mesoporous solid for further study, because it could permit easier access of reactant molecules to the
    active sites of the enzyme and the transport of products out of the pores.
    Penicillin G acylase catalyses the cleavage of the amide bond in the benzyl penicillin (penicillin G) side-chain to produce phenylacetic acid and 6-aminopenicillanic acid (6-APA). The enzyme is of great pharmaceutical importance, as the product 6-APA is the starting point for the synthesis of many semi-synthetic penicillin antibiotics. The activity of nature PGA is low, which limits application of PGA. By immobilizing PGA on a solid support, it can be reused and its useful lifetime be extended because the immobilized PGA is less susceptible to degradation, aggregation, or denaturation.
    In our work, we had examined the efficacy of pure silica mesoporous material in immobilizing the enzyme by physical adsorption. However, there was very significant leaching observed from the support under the reaction conditions and it was, therefore, concluded that the interaction between the enzyme and the inorganic surface was not strong enough. One approach to reducing the degree of leaching of enzymes from mesoporous material is to functionalize surface of mesoporous material. So from the perspective of pharmaceutical industry, it is practical to immobilize enzyme by crosslinking or covalent attachment in order to prevent enzyme from leaking and facilitate the reuse of the immobilized enzyme. Once again, triethoxysilane with a NH2 group is usually the reagent for this type of experiment. Amines can couple enzyme molecules with support by using glutaraldehyde as coupling agent through Schiff reaction. The research results indicate that the functionalization of the internal surfaces of mesoporous solids permitted enzyme immobilization.
    Catalytic testing of the most promising composite supported enzyme solids showed that strong attachment did not adversely affect the enzyme’s
    ability to hydrolyse penicillin. This solid achieved a catalytic activity per gram of original protein 84% of that measured for the free enzyme. Re-use of the catalysts is also possible. Retention of up to 90% of the PGA is observed in the most favorable cases after used 20 times. The surface characteristics of the mesoporous silica, and matching of the sizes of the enzyme molecules and the pore diameters of the mesoporous silica are essential for the stabilization of enzymes.
    Lipase is an interesting enzyme with potential application in a number of industrial processes such as the synthesis of triglycerides and esterification of terpenic alcohols. The immobilization of lipase resembles that of PGA in outcomes. These characterizations show that immobilized enzyme in mesoporous materials can be applied in practical production.
    α-chymotrpsin immobilized in SBA-15 was employed as a biocatalyst in the synthesis of protected peptides, BOC-Phe-Arg-Ome, in ethyl acetate media. The influences of reaction conditions such as pH, temperature, reaction time and channel property of SBA-15 on the enzymatic peptide synthesis were studied and optimized. The results show that the hydrophobilic environment of the inner surface of SBA-15 channel effects significantly on the enzymatic peptide synthesis. These results also indicate that the immobilized α-chymotrpsin is an effective catalyst for peptide synthesis in organic media.
    At last,the oxidative polymerization of aniline was carried out in the channel of mesoporous material SBA-15 in the presence of horseradish peroxidase (HRP )in a mixture of NaAc buffer and organic solvent and ortho-directed polyaniline (PANI) with special structures in polymerization occurring in controlled nanoscale are obtained.
引文
1. Liebau F., Zeolite, 1983, 3, 191.
    2. Gates B.C., Chem. Rev. 1995, 511.
    3. IUPAC Manual of Symbols and Terminology, Pure Appl. Chem. 1972, 31, 578.
    4. Flanigen E.M., Molecular Sieve Zeolite Technology-The First twenty-five years, Proc. of the fifth Intl. Conf. on Zeolites, Heyden, Rees L.V.C.(Ed.) 1980, 760.
    5. Iwamoto M., Zeolites in Environmental Catalysis, Stud. Surf. Sci. Catal. 1994 84B,1395.
    6. Inui T., High Potential of Novel Zeolitic materials Catalysts for Solving energy and environmental Problems, Stud. Surf. Sci. Catal. 1997,105B,1441.
    7. Kresge C. T., Leonowocz M. E.,Roth W. J., et al, Nature 1992, 359, 710.
    8. Beck J.S., Vartuli J.C., Roth W. J., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc.1992, 114,10834.
    9. 徐如人,分子筛与多孔材料化学,科学出版社,2003
    10. Yanagisawa T, Shimizu T, Kiroda K, et al., Bull. Chem. Soc. Jpn. 1990,63,988.
    11. Inagaki S, Fukushima Y, Kiroda K, Chem. Commun. 1993,680.
    12. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, et al., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science 1998, 279,548.
    13. Schmidt-Winkel P., Lukens W. W. Jr., Zhao D., Yang P., Chmelka B. F., Stucky G. D., Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows, J. Am. Chem. Soc. 1999,121,254.
    14. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, 268, 16742.
    15. Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T. et al. Stud. Surf. Sci. Catal. 1994, 84, 53.
    16. Attard, G. S.; Glyde, J. G. Nature 1995, 378, 366.
    17. Vartuli, J. C.; Kresge, C. T.; Leonowicz, M. E. Chem. Mater. 1994, 6, 2070.
    18. Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
    19. Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D. Science 1995, 268, 1324.
    20. Monnier, A.; Schuth, F.; Huo, Q. et al. Science 1993, 261, 1229.
    21. Fiouzi, A.; Kunnar, D.; Bull, L. M. Scence 1995, 267, 1138.
    22. T. Asefa, M.J. MacLachlan, N. Coombs, G.A. Ozin, Nature 420 (1999) 867.
    23. A.M. Liu, K. Hidajat, S. Kawi, D.Y. Zhao, J. Chem. Soc. Chem. Commun. (2000) 1145.
    24. P.M. Price, J.H. Clark, D.J. Macquarrie, J. Chem. Soc., Dalton Trans. (2000) 101.
    25. A. Stein, B.J. Melde, R.C. Schroden, Adv. Mater. 12 (2000) 1403.
    26. Brunel D,Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals,Microporous Mesoporous Mater. 1999,27,329.
    27. Anwander R., Nagl I., Widenmeyer M., et al., Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation, J. Phys. Chem. B 2000, 104,3532.
    28. Benjelloun M., Vander Voort P., Cool P., et al., Reproducible synthesis of high quality MCM-48 by extraction and recuperation of the gemini surfactant, Phys. Chem. Phys. 2001,3,127.
    29. P?ppl A.; Newhouse M.; Kevan L. E. Electron spin resonance and electron spin echo modulation studies of cupric ion ion-exchanged into siliceous MCM-41. J. Phys. Chem. 1995, 99, 10019
    30. Yamamoto, T.; Shido, T.; Inagaki, S.; Fukushima, Y.; Ichikawa, M. Ship-in-bottle synthesis of [Pt15(CO)30] 2-encapsulated in ordered hexagonal mesoporous channels of FSM-16 and their effective catalysis in water-gas shift reaction. J. Am. Chem. Soc. 1996, 118, 5810-5811.
    31. Zhou, W. Z.; Thomas, J. M.; Shephard, D. S. et al. Ordering of ruthenium cluster carbonyls in mesoporous silica. Science 1998, 280, 705.
    32. Shephard, D. S.; Maschmeyer, T.; Johnson, B. F. G. et al. Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew. Chem. Int. Ed. 1997, 36, 2242.
    33. Huang, M. H.; Choudrey, A.; Yang, P. Ag nanowire formation within mesoporous silica. Chem. Commun. 2000, 1063-1064.
    34. Liu, Z.; Sakamoto, Y.; Ohsuna, T.; Hiraga, K.; Terasaki, O.; Ko, c. H.; Shin, H. J.; Ryoo, R. TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angew. Chem. Int. Ed. 2000, 39, 3107-3110.
    35. Han, Y.; Kim, J. M.; Stucky, G. D. Prepatation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mater. 2000, 12, 2068-2069.
    36. Inagaki, S.; Fukushima. Y.; Kuroda, K. J. Chem. Soc. Chem.Commun. 1993, 680.
    37. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
    38. Zhang, Z.; Dai, S.; Blom, D. A.; Shen, J. Synthesis of Ordered Metallic Nanowires inside Ordered Mesoporous Materials through Electroless Deposition. Chem. Mater. 2002, 14, 965-968.
    39. Shin, H. J.; Ko, C. H.; Ryoo, R. Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template. J. Mater. Chem. 2001, 11, 260-261.
    40. Lee, K.; Kim, Y. H.; Han, S. B.; Kang, H. K.; Park, S.; Seo, W. S.; Park, J. T.; Kim, B.; Chang, S. B. Osmium replica of mesoporous silicate MCM -48: Efficient and reusable catalyst for oxidative cleavage and dihydroxylation reactions. J. Am. Chem. Soc. 2003, 125, 6844-6845.
    41. P?ppl A, Kevan L. Study of adsorbate interactions of Cu (II) ion-exchanged into siliceous MCM-41 silica tube material by electron spin resonance and electron spin echo modulation spectroscopy. Langmuir 1995, 11, 4486.
    42. Diza, J. F.; Balkus, D. J.; Bedioui, F.; Kurshev, V.; Kevan, L. Synthesis and characterization of Cobalt-complex functionalized MCM-41. Chem. Mater. 1997, 9, 61-67.
    43. Diaz, I.; Garcia, B.; Alonso, B.; Casado, C. M.; Moran, M.; Losada, J.; Pariente, J. P. Ferrocenyl dendrimers incorporated into mesoporous silica: new hybrid redox-active materials. Chem. Mater. 2003, 15, 1073-1079.
    44. Kim, S. S.; Zhang, W.; Pinnavaia, T. J. Catalytic oxidation of styrene by manganese (II) bipyridine complex cations immobilized in mesoporous Al-MCM-41. Catal. Lett. 1997, 101, 2285.
    45. Luan, Z. H.; Xu, J..; Kevan, L. Manganese-bipyridine complex incorporated into mesoporous MCM-41 molecular sieves. Chem. Mater. 1998, 10, 3699.
    46. Ganschow M.; Wohrle D.; Schulz-Ekloff G. Incorporation of differently substituted phthalocyanines in the mesoporous molecular sieve Si-MCM-41. J Porphyrins Phthalocyanines 1999, 3, 299.
    47. Wark M.; Ortlam A.; Ganschow M et al. Monomeric encapsulation of phthalocyanine-dye molecules in the pores of Si-MCM-41 and Ti-MCM-41. Ber. Bunsenges. Phys. Chem. 1998, 102, 1548.
    48. Hoppe R.; Ortlam A.; Rathousky J et al. Synthesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B. Microporous. Mater. 1997, 8, 267.
    49. Nicholas, R. B.; Coleman, M. A.; Trevor, R. S.; Justin, D. H. The formation of dimensionally ordered silicon nanowires within mesoporous silica. J. Am. Chem. Soc. 2001, 123, 187-188.
    50. Leon, R.; Margolese, D.; Stucky, G.; Petroff, P. M. Nanocrystalline Ge filaments in the pores of a mesosilicate. Physical Review B 1995, 52, R2285-2287.
    51. Agger, J. R.; Anderson, M. W.; Pemble, M. E. et al. Growth of quantum-confined indium phosphide inside MCM-41. J. Phys. Chem. B 1998, 102, 3345
    52. Srdanov, V. I.; Alxneit, I.; Stucky, G. D. et al. Optical properties of GaAs confined in the pores of MCM-41. J Phys Chem 1998, 102, 3341
    53. Wingkler, H.; Birkner, A.; Hagen, V.; Wolf, I.; Schmechel, R.; Seggern, H.; Fischer, R. A. Quantum-confined gallium nitride in MCM-41. Adv. Mater. 1999, 11, 1444-1448.
    54. Yang, H.; Shi, Q.; Lu, Q.; Gao, F.; Xie, S.; Fan, J.; Tian, B.; Yu, C.; Tu, B.; Zhao, D. One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays From Mesostructured Frameworks. J. Am. Chem. Soc. 2003, 125, 4724-4725.
    55. Gao, F.; Lu, Q.; Liu, X.; Yan, Y.; Zhao, D. Controlled synthesis of semiconductor PbS nanocrystal and nanowires inside mesoporous silica SBA-15 phase. Nano Lett. 2001, 1, 743-748.
    56. Abe, T.; Tachibana, Y.; Uematsu, T.; Lwamoto, M. Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate. J. Chem. Soc. Chem. Commun. 1995, 1617-1618.
    57. Zhang, W.; Shi, J.; Chen, H.; Hua, Z.; Yan, D. Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica. Chem. Mater. 2001, 13, 648-654.
    58. Ciuparu, D.; Klie, R. F.; Zhu, Y.; Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 2004, 108, 3967-3969.
    59. Ganschow, M.; Wark, M.; Wohrle, D. et al. Anchoring of functional dye molecules in MCM-41 by microwave-assisted hydrothermal cocondensation. Angew. Chem. Int. Ed. 2000, 39, 160
    60. Vogel, R.; Meredith, P.; Kartini, I. et al. Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications. Chem. Phys. Chem. 2003, 4, 595
    61. Yang, P.; Wirnsberger, G.; Huang, H. C. et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 2000, 287, 465
    62. Wirnsberger, G.; Stucky, G. D. Microring lasing from dye-doped silica/block copolymer nanocomposites. Chem. Mater. 2000, 12, 2525
    63. Loerke, J.; Marlow, F. Laser emission from dye-doped mesoporous silica fibers. Adv. Mater. 2002, 14, 1745-1749.
    64. Drljaca, A.; Kepert, C.; Spiccia, L. et al. Qualitative test for supramolecular complexation of C60 using a mesoporous silica. Chem Commun 1997, 195
    65. Chen, J. S.; Li, Q. H.; Ding, H. et al. Infrared study on the dehydroxylation of C60-loaded MCM-41. Langmuir 1997, 13, 2050.
    66. Zheng, G. F.; Zhu, H. G.; Luo, Q. et al. Chemical vapor deposition growth of well-aligned carbon nanotube patterns on cubic mesoporous silica films by soft lithography. Chem. Mater. 2001, 13, 2240-2242.
    67. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM -48 by electron crystallography. J. Phys. Chem. B 2002, 106, 1256-1266.
    68. Lee, J.; Yoon, S.; Hyeon, T.; Oh, S. M.; Kim, K. B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 1999, 2177-2178.
    69. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677-681.
    70. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712-10713.
    71. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z. Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.
    72. Kruk, M.; Jaroniec, M.; Kim, T. W.; Ryoo, R. Synthesis and characterization of hexagonally ordered carbon nanopipes. Chem. Mater. 2003, 15, 2815-2823.
    73. Zhang, W. H.; Liang, C. H.; Sun, H. J.; Shen, Z. Q.; Guan, Y. J.; Ying, P. L.; Li, C. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition. Adv. Mater. 2002, 14, 1776-1778.
    74. Lee, J.; Yoon, S.; Oh, S. M.; Shin, C. H.; Hyeon, T. Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv. Mater. 2000, 12, 359.
    75. Kim, S. S.; Pinnavaia, T. J. A low cost route to hexagonal mesostructured carbon molecular sieves. Chem. Commun. 2001, 2418-2419.
    76. Oda, Y.; Namba, S.; Yoshitake, H.; Tatsumi, T. Mesoporous carbon structure directed by mesostructured cellular foam silica. Electrochemistry 2002, 70, 953-955.
    77. Kruk, M.; Jaroniec, M.; Ryoo, R.; Joo, S. H. Characterization of ordered mesoporous carbons synthesized using MCM -48 silicas as templates. J. Phys. Chem. B 2000, 104, 7960-7968.
    78. Lisa Washmon-Kriel, Victoria L. Jimenez, Kenneth J. Balkus Jr,Cytochrome c immobilization into mesoporous molecular sieves, Journal of Molecular Catalysis B: Enzymatic 10 2000 453–469
    79. Takahashi Haruo, Li Bo, Sasaki Toshiya, Miyazaki Chie, Kajino Tsutomu, Inagaki Shinji, Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent, Micro. Meso. Mater. 2001,44-45,755.
    80. He Jing, Li Xiaofen, Evans D.G., Duan Xue, Li Chengyue, A new support for the immobilization of penicillin acylase, J. Mol. Catal. B: Enzymatic 2000,11, 45.
    81. A.S. Maria Chong, X.S. Zhao, Functionalized nanoporous silicas for the immobilization of penicillin acylase,Applied Surface Science 237 (2004) 398
    82. Rosa M. Blanco. Pilar Terreros, Mónica Fernández-Pérez, et al,Journal of Molecular Catalysis B: Enzymatic 30 (2004) 83–93
    83. Chibatai I., Immobilized Enzymes, NewYork, London, Sydney, Toronto, JohnWiloyandSons 1978.
    84. Klibanov A.M., Anal.Biochem. 1979,93,1.
    85. Furusakis, Engineering aspects of immobilized biocatalysts, J. Chem. Eng. Japan 1978,21(3),219.
    86. Kozhukharova A., et al., Properties of Glucose Oxidase Immobilized in Gel of Polyvinylacohol, Biotechology and Bioengineering 1988,32(2),245.
    87. 周记宁,江体乾,甲壳素/壳聚糖及其衍生物在固定化酶中的应用,化工新型材料1998,5,19.
    88. 蒋挺大,甲壳素和壳聚糖为酶和细胞的固定化载体的研究进展,工业微生物1998,28(3),32.
    89. 李非里,盛礼俊,俞桂莲等,甲壳素作为微生物载体在废水生化处理中的应用,浙江工业大学学报2000,28(2),152.
    90. 朱启忠,壳聚糖固定化半纤维素酶的研究,生物化学与生物物理进展2000,27(3),274.
    91. 宋扬,侯司,赵辉等,改性与修饰壳聚糖固定化酶纯化抑肽酶的研究,生物化学与生物物理进展2000,27(1),82.
    92. 陈盛,黄智跃,刘艳如,壳聚糖固定化纤维素酶的研究,生物化学与生物物理进展1996,23(3),250.
    93. 黄晨,徐新颜,徐静斐等,丝素膜作为固定化酶载体的研究—丝素膜固定化青霉素酰化酶性质的研究,丝绸1996,8,13.
    94. Lozinsky V. I., Pleva F. M., Poly(vinyl alcohol)cryogels employed as matrices for cell immobilization, Overview of recent research and development, Enzyme and Microbial Technology 1998,23,227.
    95. Catrinus van der Shuis, Arend N. T. Mulder, Katja C. F. Grolle, et al., Immobilized soy-sauce yeasts: development and characterization of a new polyethylene-oxide suppert, Journal of Biotechnology 2000,80,179.
    96. Bulmus V., Kesenci K., Piskin E., Poly(EGDMA/AAm)copolymer beads a novel carrier for enzyme immobilization, Reactive & Functional Polymers 1998,39,1.
    97. Joon-Taek Oh, Jung-Hyun kim, Preparation and properties of immobized amyloglucosidase on nonporous PS/PnaSS microspheres, Enzyme and Microbial Technology 2000,27,356.
    98. 李源勋,苏新清,叶庆玲等,固定化酶的载体PF 凝胶的应用研究,胶体与聚合物2000,18(1),39.
    99. 李源勋,叶庆玲,酶固定化的新型载体—PF 凝胶的应用研究,生物化学与生物物理进展1994, 21(6), 523.
    100.张中勤,朱建华,新型固定化酶载体—球状纤维素单宁树脂的研制,生物技术1997, 7(5), 45.
    101.曲红波,丛威,韦新桂等,多孔醋酸纤维素球形载体固定化糖化酶的研究,生物化学与生物物理进展1998, 25(2), 155.
    102.Aravind Subramanian, Stephen J. Kennel, Patrick I. Oden et.al., Comparison of techniques for enzyme immobilization on silicon support,
    Enzyme and Microbial Technology 1999, 24, 26.
    103.F. He, R. X. Zhou, L. J. Liu, et al., Immobilization of acylase on porous silica beads:preparation and thermal activation studies, Reactive & Functional Polymers 2000, 45, 29.
    104.陈永生,李凯荣,李子民等,固定化葡萄糖异构化酶—氧化铝载体的浅析,1999, 31(6), 5.
    105.邱广亮,李咏兰,磁性琼脂糖复合微球固定化纤维素酶的研究,精细化工2000, 7(2), 115.
    106.Rohit Sharma, Yusuf Chisti, Uttam Chand Banerjee, Biotechnology Advances 19 (2001) 627–662
    107.邹国林、朱汝潘编著,酶学,武汉大学出版社,1997
    108.K. Moller and T. Bein, Chem. Mater., 1998, 10, 2950.
    109.K. Moller, T. Bein and R. X. Fischer, Chem. Mater., 1998, 10, 1841.
    110.K. Kageyama, S. Ogino, T. Aida and T. Tatsumi, Macromolecules, 1998, 31, 4069; K. Kageyama, T. Tatsumi, and T. Aida, Polym. J., 1999, 31, 1005.
    111.S. A. Johnson, T. E. Mallouk, G. A. Ozin J. Mater. Chem., 1998, 8(1), 13.
    112.L. K. Van Looveren, D. F. Geysen, K. A. Vercruysse, B. H. Wouters, P. J. Gorbet and P. A. Jacobs, Angew. Chem. Int. Ed., 1998, 37, 517.
    113.K. Kageyama, J. Tamazawa and T. Aida, Science, 1999, 285, 2113.
    114.C.-G. Wu and T. Bein, Science, 1994, 264, 1757; C.-G. Wu and T. Bein, Chem. Mater., 1994, 6, 1109.
    115.M. J. MacLachlan, P. Aroca, N. Coombs, I. Manners and G. A. Ozin, Adv. Mater., 1998, 10, 144; M. J. MacLachlan, M. Ginzburg, N. Coombs, Nandyala P. Raju, J. E. Greedan, G. A. Ozin and I. Manners, J. Am. Chem. Soc., 2000, 122, 3878.
    116.J. Y. Kim, J. S. Yu J. Mater. Chem., 2001, 11, 2912.
    117.Takahashi Haruo, Li Bo, Sasaki Toshiya, Miyazaki Chie, Kajino Tsutomu, Inagaki Shinji, Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent, Micro. Meso. Mater. 2001,44-45,755.
    118.Y. Wei, J.G. Xu, Q.W. Feng, H. Dong, M.D. Lin, Mater.Lett.44 (2000) 6.
    119.Liu A.M., Hidajat K., Kawi S., Zhao D.Y., J. Chem. Soc. Chem. Commun. 2000,1145.
    120.W. Tischer, V. Kasche, Trends Biotechnol. 17 (1999) 326..
    121.H.H.P.Yiu, P.A. Wright, N.P. Botting, Microporous Mesoporous Mater. 44-45 (2001) 763.
    122. Bradfordmm, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem.1976,72,248
    123.徐凤彩、李明启。尼龙固定化木瓜蛋白酶及其应用研究,生物化学杂志,8(3):302-305,1992
    124.韩辉、徐冠珠等,聚丙烯纤维固定化青霉素酰化酶性质的研究,微生物学报,38(3)204-207,1998
    125.徐慧显、李民勤、何炳林。高分子载体固定化酵母脂肪酶的研究,生物化学杂志,12(2):201-205,1996
    126. 张军、徐家立。固定化假丝酵母1619 脂肪酶催化油酸油醇酯的合成,生物工程学报,11(4):325-331,1995
    127.张雪峥、乐英红、高滋,PW/ SBA-15 负载型催化剂的性能研究, 高等学校化学学报,2001,22,1169
    128.Kyriacou K,Garrett J R. Mitochondrial staining with lead capture techniques in rabbit submandibular glands. Histochemical Journal,1980 ,12,609-61 4.
    129.Peschke T,Augsten K,Sasama F,Gabert A. Dermination of gold capture reagented surface receptors on single by X-ray microanalysis. Journal of Microscopy. 1989,156,191 -199.
    130.Suumakki A,Heijnesson A,Buchert J,etal. Localization of xylanase and mannanase action in cellubose pulpfibers. JPulp Pap Sci,1996,22 (3 ),78-83 .
    131.小川和郎,酶组织细胞化学技术。上海:上海医科大学出版社,1989, 2 -3
    132.张树政,酶制剂工业,下册[M].北京:科学出版社,1984,719-740 .
    133.姚子华,黄永章,仇满德等,固定化青霉素G 酰化酶活性的X 射线微分析,河北大学学报(自然科学版),2000,4(20),383
    134.Novella I. S., Fargues C., Grevillot G.., Biotechnol. Bioeng. 1994, 44,379
    135.Zhao D. Y., Huo Q. S., Feng J. L., Chmelka B. F., Stucky G.. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 1998,120,6024
    136.Yamane T., Biotechol.Bioeng. 1989,34,838
    137.A. M. Klibanov, Acc. Chem. Res. 23 (1990) 114
    138.熊振平等, 酶工程, 北京化学工业出版社, 1989, 18.
    139.Joseh A. A,Kris J.S, David L.K, J. polym. Sci: PartA: PolymChem, 1991, (29): 1561~1574.
    140.Madhu S.A, Knneth A.M, Macromolecules, 1995,2 8:5192~5197.
    141. Premachandran R.S, Banerjee S, Wu X. K, Macromolecules,1996,2 9:6452.
    142.Kobayashi S. JpolymSci: PartA: PolymChem,1999,3 7:3041.
    143.PeichuanW, Srinivasan B, PolymerPreprints, 2000, 41(2 ):1361~1362.
    144.Durand A, Lalot T, Brigodiot M, Polymer, 2000, 41: 8183~8192.
    145.Bhanu K, Richard A.G., PolymerPreprints, 2000, 41 (2) :1935~1396.
    146.Kobayashi S, Wen X, Shoda S, Macromolecules,1996, 2 9:2698~2700.
    147.Shoda S, Kobayashi S, TrendsPolymSci,1997, 5:109~115.
    148.Josephine L.K.H, PolymerPreprints, 2000, 41 (2 ):1875~1876.
    149.Kamat S.V, Beckman E.J, JAmChemSoc,1993 ,115:8845~8846 .
    150.Renee T, Macromolecules,1995,2 8:73~87.
    151.ugenia M.B, Dianela Y, JpolymSci: PartA: PolymChem,1995, 3 3:89~95.
    152.Binns F, Harffey P, Robert S.M, JpolymSci: PartA: PolymChem,1998, 3 6 :2069.
    153.Liu X.C, Dordick J.S, JAmChemSoc,1999,121: 466~467.
    154.Wu, C.; Bein, T. Conduction polyaniline filaments in mesoporous channel host, Science 1994, 264, 1757~1758.
    155.Donrd W, Jay R. Photoinduced Oxidation of Microperoxidase-8:Generation of Ferryl and Cation-Rad-ical Porphyrins[J]. J Am Chem Soc,1996,116, 117
    156.Haesun K,Harold E. Elementary Steps in the Formation of Horseradish

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700