HIV膜融合抑制剂HR212表达、免疫原性检测及与5-helix病毒融合抑制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病是由人免疫缺陷病毒(HIV)引起的人类免疫缺陷综合症。目前FDA批准的用于临床的抗HIV的药物只是逆转录酶抑制剂和蛋白酶抑制剂,这两类药物在艾滋病的治疗方面已经取得了巨大的进展。但由于病毒基因的变异,导致了耐药株的出现,导致常规治疗方案失效。因此研究新的抑制剂对于抑制HIV病毒在体内的复制具有重要意义。
     HR212是由本实验室构建的一种膜融合抑制剂,前期研究证实此蛋白能够有效的抑制HIV-1假病毒感染细胞,并且其结构稳定,能耐受蛋白酶酶切作用。此蛋白具有和T20相似的抗病毒活性,且能够对T20耐药株也具有良好的抑制效果。HR212除了能够抑制HIV-1外,还对HIV-2具有部分抑制效果。前期HR212是以融合表达的形式进行表达的,由于其氨基端存在非目的片段,故不能正确表明其膜融合性质。为向将来的药物临床应用提供资料,我们拟非融合表达了HR212,同时也检测HR212的免疫原性。将HR212基因连接于pBV220上,经诱导表达、纯化后免疫小鼠。经间接ELISA验证HR212按照传统方法免疫能够得到抗体滴度,而以10倍治疗剂量按照治疗程序多次注射时,却仅在1/1000时检测到抗体滴度,此结果为下一步降低其免疫原性的方法探讨具有重要意义。此外,为了研制治疗性疫苗,我们构建了HR212的腺病毒表达体系。通过将HR212连接到穿梭质粒pDC315上,然后与骨架质粒共转染239细胞,经过7天后获得具有复制缺陷的重组腺病毒rAd-TPA-HR212。经Western Blot验证,成功得到了13.3 kd的目的蛋白。经假病毒抑制试验证实,经腺病毒表达的HR212能有效的抑制假病毒介导的膜融合过程。为下一步研究奠定了基础。
     人工构建的五螺旋蛋白(5-helix)能够抑制HIV介导的膜融合过程中发卡三聚体的形成,从而抑制病毒感染靶细胞。但5-helix基因在原核细胞中直接表达时易形成包涵体,复性困难,给研究带来不便。通过同源建模,模拟了5-helix在pGEX-6P-1载体及pET44b载体上的融合蛋白形成的最有可能的两种构象。通过对比发现,其在pET44b载体中与NusA的融和蛋白的溶剂化能远大于在pGEX-6P-1中的GST蛋白,并且酶切位点位于蛋白表面。因此我们将HR212连接于pET44b上,构建重组载体pET44b-PSP-5Helix,经转化、诱导、纯化后,经HIV假病毒抑制试验证明,此蛋白具有明显的抑制HIV假病毒的活性。
Acquired immune deficiency syndrome is human immudeficiency syndrome induced by human immunodeficiency virus. Currently, most approved anti-HIV drugs target two viral enzymes: reverse transcriptase and protease. Although clinically effective when used in combination, none of the existing drugs represent ideal therapies due to the long term toxic effects, and the ascendance of drug-resistant mutants. It is very important to research new inhibitors to inhibit virus reproduction in vivo.
     HR212 constructed by our laboratory is a kind of membrane fusion inhibitor , which can effectively inhibit HIV-1 pseudotype virus infecting cells and can endure the enzyme digestion because of its stable structure. Further studies indicates that it have similar antivirus activity with T20 and it has better effect to T20-persister virus. Otherwises, it can also inhibit HIV-2. Virus fusion inhibition experiments can not completely confirm its activity because there are no aim fragment in its N-terminus with fusion expression. In order to afford information for clinical utilization , we expressed HR212 with direct expression and detected its immunogenicity. Gene HR212 was linked to pBV220, and induced to express at 42℃. HR212 was then purified and immunized mice.Results of indirect ELISA show that it can get antibody titer at 1/4000 according to the traditional immunization method, whereas it can get can get antibody titer at 1/1000 when immunized at 10 times of therapy does ,which will lay the foundation to future study. In order to deplore remedial vaccine, we constructed adenovirus expression system of HR212. we linked HR212 to pDC315 to form pDC315-HR212, and then cotransfect cells with bone plasmid. After 7 days recombinant adenovirus rAd-TPA-HR212 was obverted. The result of Western blot shows that it successfully expresses 13.3 kd aim protein , and pseudotype virus inhibition research proved that HR212 expressed by adenovirus can effectively inhibit virus fusion , which will lay the foundation for further study.
     The artificial constructed 5-helix can inhibit the formation of trimer during the course of HIV-directed membrane fusion ,therefore it can inhibit virus infecting aim cells. However, 5-helix is apt to be expressed as inclusion body when directly expressed in prokaryocyte and is difficult to renature , which cause inconvenience to future research. By homology modeling ,we simulated the most possible two conformations of 5-Helix in vectors pGEX-6P-1 and pET44b. The contrast of conformations showed that the energy of salvation of its fusion protein with NusA in vector pET44b was higher than its fusion protein with glutathione-S-transferase(GST) in pGEX-6P-1 and its restriction site lay on the surface of its fusion protein in vector pET44b. Therefore HR212 was linked topET44b to construct recombinant vector pET44b-PSP-5Helix.When transformed ,induced and purified ,5-helix was used to detect its inhibition activity of HIV pseudotype virus .The results showed that it can obviously inhibit HIV pseudotype virus.
引文
[1]胡光.恩曲他滨的药理和临床应用.中国乡村医药杂志,2006,13(4):412-421.
    [2]蒋卫民.艾滋病的抗病毒治疗进展.国外医学微生物分册,2000,23(1):215.
    [3]历胜,陈本川.艾滋病治疗药司他夫定.国外医药合成药,生化药,制剂分册,1993,17(2):112-113.
    [4]王睿睿。西夫韦肽和盐肤木提取物体外抗HIV活性及机制研究。中国科学院博士学位研究生学位论文,2007年5月。
    [5]鑫荣,曾思群.艾滋病治疗药扎西他宾.国外医药合成药。生化药,制剂分册,1994,15(I):50-51.
    [6]云雯,陈芬儿.去羟肌苷的化学合成路线图解.中国医药工业杂志,2002,33(6):3lO-312.
    [7]Aloia RC, Jensen FC, Curtain CC, et al. Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sci USA, 1988, 85(3):900-904.
    [8]António M. T. Martins Do Canto, A. J. Palace Carvalho, J. P. Prates Ramalho, Luís M. S et al. T20 and T-1249 HIV fusion inhibitors' structure and conformation in solution: a molecular dynamics study. J Pept Sci, 2008,14(4):442-7.
    [9]Balzarini J.Effect of anitmetabolite drugs of nucleotide metabohsm on the anti-human immunodeficiency virus activity of nucleoside,Pharmacology&Therapeutics 2000,87:175—187.
    [10]Berman HM, Westbrook J,Feng Z, et al. The protein data bank. Nucleic Acids Research, 2000, 28(1): 235-242.
    [11]Bewley C A , Louis J M , Ghirlando R , and .Clore G NI, Design of a novel Peptide inhibitor of H IV fusion that disrupts the internal trimeric coiled-coil of gp41 ,J Biol Chem 2002,277:14238-14245
    [12]Bewley CA,LOUIS JM,GHIRIANDO R,et a1.Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimerit coiled-coil of gp41[J].J Biol Chem,2002,277(16):l4238—14245.
    [13]Blundell TL, Sibanda BL, Sternberg MJE. Knowledge-based prediction of protein structures and the design of novel molecules. Nature, 1987, 326(6111): 347-349.
    [14]Bowie j, Luthy R, Eisenberg DA. Method to identify protein sequences that fold intoa known three-dimensional structure. Science, 1991, 253(5016): 164-170.
    [15]Briz V, Poveda E, Soriano V. HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother, 2006, 57(4):619-27.
    [16]Bruce CB,Akrigg A,Sharpe SA, et al。Replication -deficient recombinant adenovirus expressing the human immunodeficiency virus Env antigen can induce both humoral and CTL immune responses in mice.J Gen Virol,1999,80(pt10):2621-2628.
    [17]Buge, S.L., Richardson, E., Alipanah, S,et al , An adenovirus-simian immunodeficiency virus env vaccine elicits humoral, cellular, and mucosal immune responses in rhesus macaques and decreases viral burden following vaginal challenge. J. Virol.,1997,71(11):8531–8541.
    [18]C.T. Wild, D.C. Shugars, T.K. Greenwell et al, Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection, Proc. Natl. Acad. Sci. USA ,1994 ,91(21):9770–9774.
    [19]Caffrey M, Cai M, Kaufman J, et al. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J, 1998, 17(16):4572-4584.
    [20]Cao J, Bergeron L, Helseth E, et al. Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. J Virol, 1993, 67(5):2747-2755.
    [21]Catanzaro, AT., Koup, RA., Roederer, M,et al。. Phase I safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect.Dis, 2006,194(12):1638–1649.
    [22]Chambers P, Pringle CR, Easton AJ. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol, 1990, 71 ( Pt 12):3075-80.
    [23]Chan DC, Chutkowski CT, Kim PS. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci USA, 1998, 95(26):15613-15617.
    [24]Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2):263-73.
    [25]Chan DC, Kim PS. HIV entry and its inhibition. Cell, 1998, 93(5):681-684.
    [26]Charloteaux B, Lorin A, Crowet JM, et al. The N-terminal 12 residue long peptide of HIV gp41 is the minimal peptide sufficient to induce significant T-cell-like membrane destabilization in vitro. J Mol Biol, 2006, 359(3):597-609.
    [27]Charloteaux B, Lorin A, Crowet JM, et al. The N-terminal 12 residue long peptide of HIV gp41 is the minimal peptide sufficient to induce significant T-cell-like membrane destabilization in vitro. J Mol Biol, 2006, 359(3):597-609.
    [28]Chen SS, Lee CN, Lee WR, et al. Mutational analysis of the leucine zipper-like motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein. J Virol, 1993, 67(6):3615-3619.
    [29]Courcot B,Firley D,Fraisse B,et a1.Crystal and electronic structures of magnesium(II),copper(II),and mixed magnesium(II) copper(II) complexes of the quinoliue half of styrylquinollne-type HIV—l integrase inhibitors.J Phys Chem B,2007,111(21):6042—6050
    [30]Debnath AK, Radigan L, Jiang S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem, 1999, 42(17):3203-9.
    [31]Delahunty MD, Rhee I, Freed EO, et al. Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology, 1996, 218(1):94-102.
    [32]Deng HK, Unutmaz D, KewalRamani VN, et al. Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature, 1997, 388 (6639): 296-300.
    [33]Dimitrov DS. Cell biology of virus entry. Cell, 2000 Jun23;101(7):697-702.
    [34]Doms RW.Viral entry denied[J].N Engl J Med,2004,351(8):743—744.
    [35]Dwyer JJ, Wilson KL, Davison DK, et al. Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA, 2007, 104(31):12772-7.
    [36]Eckert D M , Malashkevich V N, Hong L H , Carr P A , and Kim P S , Inhibiting HIV-1 entry: di scovery of D–peptide inhibitors that target the gp41 coiled -c oil pocket, Cell 99 ( 1999)103-115.
    [37]Eckert DM, Kim PS. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc Natl Acad Sci USA, 2001 98(20):11187-92
    [38]Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem , 2001, 70: 777-810.
    [39]Eckert DM, Malashkevich VN, Hong LH, et al. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell, 1999, 99(1):103-15.
    [40]Erickson JW.HIV-1protease as aa target for AIDStherapy[A].Ogden RC,Flexner CW. Protease inhibitors in AIDS Therapy[M].New York:Marcel Dekker,2001.1-25.
    [41]Erik DC.Antiretroviral Therapy[M].Washington DC:HSM Press,2001.148-150. Esnouf R M, Ren J ,Ross C ,et al .Mechanism of inhibition of H IV-1 reverse transcriptase by non-nucleoside inhibitors[J].Struct Biol, 1995 ,2 :303-309.
    [42]EstéJA, Telenti A. HIV entry inhibitors. Lancet, 2007, 370(9581):81-88.
    [43]Freed EO, Delwart EL, Buchschacher GL Jr, et al. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci USA, 1992, 89(1):70-74.
    [44]Freed EO, Martin MA. The role of human immunodeficiency virus type 1 Envelope glycoproteins in virus infection. J Biol Che, 1995, 270 (41): 23883-23886.
    [45]Frey G, Rits-Volloch S, Zhang XQ, et al. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc Natl Acad Sci USA, 2006, 103(38):13938-43.
    [46]Furuta R A , Wild C T, Weng Y,and C .D .W eiss,Capture of a nearly fusion-a ctive conformation of H IV-1 gp41,Nat Struct Biol 5( 1998)276-279.
    [47]Furuta RA, Wild CT, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol, 1998, 5(4):276-279.
    [48]Furuta RA, Wild CT, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol, 1998, 5(4):276-279.
    [49]Gallaher WR, Ball JM, Garry RF, et al. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses, 1989, 5(4):431-440.
    [50]Gerber D, Pritsker M, Gunther-Ausborn S, et al. Inhibition of HIV-1 envelope glycoprotein-mediated cell fusion by a DL-amino acid-containing fusion peptide: possiblerecognition of the fusion complex. J Biol Chem, 2004, 279(46):48224-30.
    [51]Gilbert PB, Peterson ML,Follmann D,et al.Correlation btween immunologic responses to a rocombinant glycoprotein 120 vaccine and incidence of HIV-I infection in a phase 3 HIV-I preventive vaccine trial[J].J Infeet Dis,2005,191(5):666—677.
    [52]Gordon CA, Hodges NA, Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother, 1988, 22(5):667-674.
    [53]Goulder PJ,Walker BD.The great escape_一AJDS virtlses and immune control [J].Nature Med,1999,5(11):1233-1235.
    [54]Greenberg M, Cammack N, Salgo M, et al. HIV fusion and its inhibition in antiretroviral therapy. Rev Med Viro, 2004, 14(5): 321-337.
    [55]Gustchina E, Louis JM, Bewley CA, et al. Synergistic inhibition of HIV-1 envelope-mediated membrane fusion by inhibitors targeting the N and C-terminal heptad repeats of gp41. J Mol Biol, 2006, 364(3):283-9.
    [56]He Y, Liu S, Jing W, et al. Conserved residue Lys574 in the cavity of HIV-1 Gp41 coiled-coil domain is critical for six-helix bundle stability and virus entry. J Biol Chem, 2007, 282(35):25631-25639.
    [57]He Y, Xiao Y, Song H, et al. Design and evaluation of sifuvirtide: a novel HIV-1 fusion inhibitor. J Biol Chem, 2008 ,283(17):11126-11134.
    [58]Jiang S, Lin K, Lu M.A. Conformation-specific monoclonal antibody reacting with fusion-active gp41 from the human immunodeficiency virus type 1 envelope glycoprotein. J Virol, 1998, 72(12):10213-10217.
    [59]Jiang S, Lin K, Strick N, et al. HIV-1 inhibition by a peptide. Nature, 1993a, 365(6442):113. Jiang S, Lin K, Strick N, et al. Inhibition of HIV-1 infection by a fusion domain binding peptide from the HIV-1 envelope glycoprotein GP41. Biochem Biophys Res Commun, 1993b,195(2):533-8.
    [60]Jiang S,Lin K,Strick N,Neurath AR.HIV-1 inhibition by a peptide, Nature,1993,365 (6442):113.
    [61]Jones P L, Korte T , and Blumenthal R,Conformational changes in cell surface HIV-1 Envelop eglycoproteins are triggered by cooperation between cell surface CD4 and co-receptors, J Biol Chem 273( 1998)4 04-409.
    [62]Jones PL, Korte T, Blumenthal R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem, 1998, 273(1):404-409.
    [63]Jones PL, Korte T, Blumenthal R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem, 1998, 273(1):404-409.
    [64]Jung M .,and Zagorski W,The genome of HIV( HTLV-Ⅲ,L AV),the human immuno deficiency virus, Postepy Biochem 33( 1987)399-423.
    [65]Kilgore NR ,SALZW EDEL K,REDDICK M ,et a1. Direct evidence that C-Peptide inhibitors of human immun0deficiency virus type 1 entry bind to the gp41 N--helical domain in receptor--activated viral envelope[J].J Virol,2003,77(13):7669—7672.
    [66]Klavinskis LS,BergmeierLA,GaoL,et al.mucosal or targeted lymph node immunization of macaques with a particulate SIVp27 protein elicits virus specific CTL in the genito—rectal mucosa and draining lymph nodes[J].J lmmunol,1996.157(6):252 1—2
    [67]Kliger Y, Aharoni A, Rapaport D, et al. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem, 1997, 272(21):13496-505.
    [68]Kliger Y, Gallo SA, Peisajovich SG, et al. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem, 2001, 276(2):1391-7.
    [69]Kliger Y, Shai Y. Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol , 2000, 295 (2000): 163-168.
    [70]Koshiba T, Chan DC. The Prefusogenic intermediate of HIV-1 gp41 contains exposed c-peptide regions. JBC, 2003, 278(9): 7573-7579.
    [71]Kramer RA,Schaber MD,Skalla AM,et al.HTLV-Ⅲgag protein is prooessed in yeast cells by the virus polprotease[J]. science, 1986, 231(4745): 1580-1584.
    [72]Letvin, N.L., Huang, Y., Chakrabarti, B.K,et al。Heterologous envelopeimmunogens contribute to AIDSvaccine protection in rhesus monkeys. J. Virol, 2004,78(14):7490–7497.
    [73]Lev N, Shai Y. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins. J Mol Biol, 2007, 374(1):220-30.
    [74]Liang, X., Casimiro, D.R., Schleif, W.A, et al。Vectored Gag and Env but not Tat show efficacy against simian–human immunodeficiency virus 89.6P challenge in Mamu-A01-negative rhesus monkeys. J. Virol.,2005. 79(19):12321–12331.
    [75]Liu S, Jing W, Cheung B, et al. HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides. J Biol Chem, 2007, 282(13):9612-20.
    [76]Liu S, Lu H, Niu J, et al. Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem, 2005, 280(12):11259-73.
    [77]Louis JM, Bewley CA, Clore GM. Design and properties of N(CCG)-gp41, a chimeric gp41 molecule with nanomolar HIV fusion inhibitory activity. J Biol Chem, 2001, 276(31): 29485-29489.
    [78]Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol, 1995, 2(12):1075-1082.
    [79]Lu M, Ji H, Shen S. Subdomain folding and biological activity of the core structure from human immunodeficiency virus type 1 gp41: implications for viral membrane fusion. J Virol, 1999, 73(5):4433-4438.
    [80]Lu M, Kim PS. A trimeric structural subdomain of the HIV-1 transmembrane glycoprotein. J Biomol Struct Dyn, 1997, 15 (3): 465-471.
    [81]Malashkevich VN, Chan DC, Chutkowski CT, et al. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci USA, 1998, 95(16):9134-9139.
    [82]Malkevitch, N.V., Patterson, L.J., Aldrich, M.K., et al .Durable protection of rhesus macaques immunized with a replicating adenovirus-SIV multigene prime/protein boostvaccine regimen against a second SIV(mac251) rectal challenge: Role of SIV-specific CD8+T cell responses. Virology 2006,353(1):83–98.
    [83]Mascola JR,Stiegler G,VanCott TC。et 01.Protection of macaques against vagihal transmission of a pathogenic HIV-I / SIV chimeric virus by passive infusion of neutralizing antibodies[J].Nat Med,2000,6(2):207—210.
    [84]Mobley PW, Curtain CC, Kirkpatrick A, et al. The amino-terminal peptide of HIV-1 glycoprotein 41 lyses human erythrocytes and CD4+ lymphocytes. Biochim Biophys Acta, 1992, 1139(4):251-256
    [85]Mobley PW, Lee HF, Curtain CC, et al. The amino-terminal peptide of HIV-1 glycoprotein 41 fuses human erythrocytes. Biochim Biophys Acta, 1995, 1271(2-3):304-314.
    [86]Münch J, St?ndker L, Adermann K, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell, 2007, 129(2):263-75.
    [87]Ni L, Gao GF, Tien P. Rational design of highly potent HIV-1 fusion inhibitory proteins: Implication for developing antiviral therapeutics. Biochem Biophys Commun, 2005, 332(3): 831-836.
    [88]Ni L, Zhu J, Zhang J, et al. Design of recombinant protein-based SARS-CoV entry inhibitors targeting the heptad-repeat regions of the spike protein S2 domain. Biochem Biophys Res Commun, 2005, 330(1):39-45.
    [89]Ni L,Gao GF,Tie P. Rational design of highly potent HIV-1 fusion inhibitory proteins: implication for developing antiviral therapeutics.Biochem Biophys Res Commun, 2005 332(3):831-836.
    [90]Otaka A, Nakamura M, Nameki D, et al. Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 with target cells. Angew Chem Int Ed Engl, 2002, 41(16):2937-40.
    [91]Owens RJ, Tanner CC, Mulligan MJ, et al. Oligopeptide inhibitors of HIV-induced syncytium formation. AIDS Res Hum Retroviruses, 1990, 6(11):1289-1296.
    [92]Pang W, Wang RR, Yang LM, et al. Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro. Virology, 2008, 377(1):80-87.
    [93]Patten PW,Marx PA,Hessell AJ,et a1.Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeftciency virus at sernm level$giving complete neutralization in vitro[J].J Virol,2001.75(17):8340—8347.
    [94]Pritsker M, Rucker J, Hoffman TL, et al. Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Biochemistry, 1999, 38(35):11359-11371.
    [95]Rather L,Haseltine W,Patarca R,et a1.Complete nucleotide sequence of the AIDS virus,HTLV一III。Nature,1985,313(6000):277-284.
    [96]Ray N, Harrison JE, Blackburn LA, et al. Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors. J Virol, 2007, 81(7):3240-50.
    [97]Reeves JD, Lee FH, Miamidian JL, et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol, 2005, 79(8):4991-9.
    [98]Root M J, M .S .Kay, and P .S. Kim, Protein design of an HIV-1 entry inhibitor,Science 291 (2001)884-888.
    [99]Root M J,HAMER DH.Targeting therapeutics to an exposed and conserved binding element of the HIV一1 fusion protein[J].Proc Natl Acad Sci USA ,2003,100(9):5016—5021.
    [100]Root MJ, Kay MS, Kim PS. Protein design of an HIV-1 entry inhibitor. Science, 2001, 291 (5505): 884-888.
    [101]Schaal H, Klein M, Gehrmann P, et al. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type 1-mediated cell fusion. J Virol, 1995, 69(6):3308-3314.
    [102]Shibata R,lgarashi T.Haigwoed N,et a1.Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys[J].Nat Med,1999.5(2):204-210.
    [103]Tantillo C ,Ding J ,Jacobo-molina A ,et al. Locations of antimension structuer of H IV-1 reverse transcriptase: implication form echanism of drug inhibition and resistance [J].J Mol Biol,1994,243:369-378.
    [104]Wang LX, Song H, Liu S, et al. Chemoenzymatic synthesis of HIV-1 gp41 glycopeptides: effects of glycosylation on the anti-HIV activity and alpha-helix bundle-forming ability of peptide C34. Chembiochem, 2005, 6(6):1068-74.
    [105]Weaver EA,Lu Z,Camacho ZT, et al.Cross-subtype T—cell immune responses induced by a human immunodeficiency virus type l group M consensus env immunogens[J].J Virol.2006,80(14):6745--6756.
    [106]Weissenhorn W, Dessen A, Harrison SC, et al. Atomic structure of the ectodomain from HIV-1 gp41. Nature, 1997, 387(6631):426-430.
    [107]Whitney JB,Ruprecht RM.Live attenuated HIV vaccines:pitfalls and prospects[J].Curr Opin Infect Dis。2004,17(1):17—26.
    [108]Wild C, Oas T, McDanal C, et al. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA, 1992, 89(21):10537-41.
    [109]Wild CT, Shugars DC, Greenwell TK, et al. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA, 1994, 91(21):9770-4.
    [110]Wlodawer A,Guschina A.Structural and biochemical studies of retroviral proteases[J].Biochim Biophys Acta,2000,1477(1-2):16-34
    [111]Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998, 280(5371):1884-8.
    [112]Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998, 280(5371):1884-1888.
    [113]Zhao, J., Pinczewski, J., Gomez-Roman, V.R,et al。Improved protection of rhesus macaques against intrarectal simian immunodeficiency virus SIV(mac251)challenge by a replication-competent Ad5hr-SIVenv/rev and Ad5hr-SIVgag recombinant priming/gp120 boosting regimen. J. Virol.2003, 77(15):8354–8365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700