面向通信的视频编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘 要
    视频压缩编码技术是多媒体通信中的关键技术之一。传统的视频压缩技术主
    要解决的问题是如何提高压缩编码效率,面向通信的视频编码除了对编码效率
    提出了更高的要求外,还要求压缩后的视频流能够适应网络带宽的变化和容忍
    传输错误(如互联网的丢包和无线网络的突发及随机错误等)。在视频通信应用
    中,视频编码的目标从面向存储转到了面向传输,编码的目的从产生适合存储
    的固定尺寸的码流发展到产生适合一定的传输码率的可伸缩性码流。因此面向
    通信的视频压缩编码技术成为视频通信应用中急需解决的关键问题,对其进行
    的研究必将具有重要的理论与现实意义。本文对于面向通信的视频编码技术进
    行了深入系统的研究,具体内容主要包括:
    (1) 对 MPEG-4 的精细可伸缩视频编码方案编码效率低的问题,归纳总结了
    基于 FGS 的可伸缩视频编码方案的一般性原理框架,并在这个一般性
    的原理框架指导之下,根据漏预测编码技术,提出了一种基于宏块的漏
    预测精细可伸缩视频编码方案,称作 MB-based FGS-LP。在该方案中,
    首先提出了用于增强层宏块编码的漏预测帧间编码模式,该模式以牺牲
    少量编码效率为代价,来提高编码方案的鲁棒性。同时给出了一个简单
    的算法用于最优地确定每个增强层宏块的编码模式及漏预测因子的数
    值。实验结果显示,本文所提出的方案不仅在编码效率上比 MB-based
    PFGS 视频编码方案有了进一步提高,而且保留了 MB-based PFGS 的误
    差恢复能力; 
    (2) 为了提高 FGS 编码方案的增强层编码效率,本文把用于静止图像的子带
    编码方法引入到 FGS 的增强层编码之中,提出了基于 DCT的嵌入块编
    码(EBC_DCT)方法。在 EBC_DCT中,首先根据 DCT系数的特性定
    义上下文,然后对每一个子块进行基于位平面的上下文算术编码。
    EBC_DCT 编码方法不但保留了原方法的可伸缩性,而且有效地提高了
    增强层的编码效率; 
    (3) 针对 FGS 的码流特点,本文对基于 FGS 的抗误码方法进行了系统的研究,
    提出了分层前向纠错信道编码方法(LFEC)和先进的 FGS 增强层错误隐
    藏方法(AEC),实验结果表明,在高误码环境下的视频通信中,采用以
    上的抗误码方法,有效地提高了码流的抗误码能力; 
    (4) 三维小波视频编码方案是面向通信的视频编码应用中另一种有效的解决
    方案,本文针对现有三维小波视频编码的不足,提出了一种基于提升的
    
    
    面向通信的视频编码技术研究
     运动补偿三维小波编码方案,称作 MCL-3DWT,在该方案中,利用运
     动补偿和小波提升技术实现运动补偿时域滤波,编码效率因为多参考帧
     和子像素(subpixel)运动补偿的使用而大大提高。实验结果证明本文
     的视频编码方案不仅保留了信噪比、时域和空域可伸缩的特性,而且编
     码性能好于 MC-EZBC 等经典的运动补偿三维小波编码方案; 
    (5) 小波提升方案是继多分辨分析之后,另一种非常有效的构造小波滤波器
     的方法。本文从一般的 9-7 小波提升方案出发,给出了一种新的更适于
     硬件实现的提升 9-7 小波滤波器(称为 D97 滤波器),该滤波器的图像
     压缩性能与 CDF97 相当,但其计算复杂度由于引人了大量的移位运算
     而大大降低,非常适于 ASIC 实现。并把 D97 滤波器应用于本文提出的
     MCL-3DWT编码方案之中,证明了其在压缩性能上的有效性; 
    (6) 运动估计是视频编码方案中的关键技术之一,在本文的两种可伸缩视频
     编码方案中,运动估计是其中的核心算法之一,决定了整个视频编码方
     案的编码效率和编码复杂度。在运动估计算法中,MVFAST算法是最为
     有效的块匹配运动估计算法,该算法已被 MEPG-4 标准接受为运动估计
     的核心算法,本文针对 MVFAST 算法的不足,提出了一种新的块匹配
     运动估计算法,称为预测线性菱形搜索算法(PLDS)。在 PLDS 算法中,
     第一次引入了运动估计的线性搜索策略,算法首先根据运动的时间相关
     性判断块是否为静止块,然后通过对块的分类来决定搜索起始点并根据
     搜索起点的信息来进行线性搜索,最后通过线性菱形搜索策略确定最终
     的运动矢量。实验结果证明,与 MVFAST相比,PLDS 算法不仅减小了
     运动估计的计算复杂度,而且提高了运动估计的精度。
Video Coding is one of the key technologies of multimedia communication. The
    major task of the video coding technologies for storage-based applications is how to
    improve the coding efficiency. However, for video communication applications,
    besides the requirements on higher coding efficiency, the generated bitstreams have
    to adapt to network bandwidth variations and tolerate transmitted errors (such as
    packet losses in the Internet network and random or burst errors in wireless network).
    The goals of the video coding were changed from the storage to the transmission, and
    from the fixed bitstreams to the scalable bitstreams. The video coding technologies
    for communication applications are the key question for video communication
    applications. It is important to research these technologies for the video coding
    theories and the engineering applications. The thesis systematically researches the
    video coding technologies for communications. The main work is as follows:
    (1) In order to solve the low coding efficiency problem of the fine granularity
     scalable (FGS) coding in MPEG-4 standard, a universal scalable coding
     framework based on FGS is induced, and on the basis of this framework, a
     macroblcok-based fine granularity scalable video coding with leaky
     prediction (MB-based FGS-LP) is presented. A leaky prediction INTER
     mode is first proposed for the enhancement-layer macroblock coding. Then,
     a decision-making mechanism is developed to choose the coding mode and
     the optimal leaky factor for each enhancement layer macroblock. Our
     simulation results demonstrate the proposed scheme can provide further
     coding efficiency improvement over the MB-based PFGS scheme, yet still
     keeps the property of the error recovery.
    (2) In this paper, a new method based on the JPEG2000 bit-plane coding idea is
     proposed for the enhancement layer coding of FGS, referred to as
     Embedded Block Coding Based on DCT (EBC_DCT). In EBC_DCT, the
     data redundancies between the residual DCT coefficients are eliminated by
     context-based arithmetic coding Experimental results show the proposed
     method is higher coding efficiency than that of the original FGS
     enhancement layer in MPEG-4.
    (3) Based on the properties of the FGS bitstreams, a layered FEC framework is
     presented. To reduce the use of the bandwidth, the FEC data is separated
    
    
    面向通信的视频编码技术研究
     two or more layer. The sender decides how many layers are sent according
     to the feedback statistics after a period of time. Moreover, an adaptive error
     concealment method is applied to the enhancement layer of the FGS in the
     decoder. Our experimental results show that the error resilience ability of the
     FGS bit-streams is obviously improved in the bit error environment.
    (4) Three-dimensional (3-D) wavelet coding using a motion compensated
     temporal filter (MCTF) is emerging as a very effective structure for highly
     scalable video coding. This paper describes a video coding system based on
     motion compensated 3-D wavelet coding, referred as MCL-3DWT. In the
     new system, the motion compensated temporal-filtering process is achieved
     in terms of the concept of lifting filters. The coding efficiency is improved
     due to the use of multiple-reference and subpixel accurate motion
     compensation. The proposed video system is applied to several test video
     clips. Its performance exceeds that of MC-EZBC while maintaining SNR,
     temporal, and spatial scalability.
    (5) Lifting Scheme is an efficient method for construction of wavelet after
     multiresolution. This paper constructs a kind of lifting 9-7-tap wavelet filter
     for hardware implementation, called D97, which not only have excellent
     compression performances but also are very suitable for the implementation
     of ASIC. The computational complexity of the new lifting wavelet filter is
     enormously reduced because of the introduction of the s
引文
[1] H.Li, A Lundmark and R. Forchheimer. Image Sequence Coding at Very Low
     Bitrates:AReview.IEEE Trans. On Image Proc. 3(5),1994, pp:589-608
    [2] K.Aizawa, H. Harashima, T.Saito. Model-based analysis-synthesis image coding
     system for a person’s face. Signal Proc. Image Communication. 1(2), 1989,
     pp:139~152
    [3] H.Musmann M.Hotter, J. Ostermann. Object-object analysis-synthesis coding for
     moving image. Signal Proc. Image Communication. 1(2), 1989, pp:117~138.
    [4] K.M. Uz, M. Vetterli, and D. LeGall. Interpolative multiresolution coding of
     advanced television with compatible subchannels. IEEE Trans. On Circuits and
     Systems for Video Technology, vol.1, Mar. 1991. pp.85~99
    [5] International Telecommunication Union. Video Coding for Low Bit Rate
     Communication. ITU-T Recommendation H.263, July 1995
    [6] ISO/IEC. IS 14496: Information technology— coding of audio-visual objects—
     part2: Visual, 1999. (MPEG-4 Video).
    [7] ISO/IEC. Very low bitrate video codec. Public document, ISO/IEC MPEG96/
     M0637, Munich, January 1996. (MPEG-4 VM).
    [8] 阎蓉. 精细可伸缩性视频编码中关键技术的研究. 北京理工大学博士论文.
     2001, 10.
    [9] A Said and W.A Pearlman. A new, fast and efficient image codec based on set
     partitioning in hierarchical trees. IEEE Trans. Circuits and Systems for Video
     Technology. 6(6), 1996. pp:243~250.
    [10]MPEG Video Group. MPEG-4 Video Verification Model Version 17.0.
     ISO/IEC/JTC1/SC29/WG11 N3515, Beijing, July 2000.
    [11]W. Li. Fine granularity scalability in MPEG-4 for streaming video. ISCAS 2000,
     Geneva, Switzerland, May 28-31, 2000.
    [12]W.Li and Y.Chen. Experiment result on fine granularity scalability. ISO/IEC
     JTC1/SC29/WG11, MPEG99/M4473, Mar. 1999.
    [13]W.Li, F.Ling, and X.Chen. Comparison of FGS with simulcast. ISO/IEC
     JTC1/SC29/WG11, MPEG99/M5083, Sept. 1999.
    [14]M.van der Schaar, H.Radha. Motion compensation based fine-granular scalability
    
    
    参考文献 127
     for wireless multimedia. in Proc. IEEE Workshop Multimedia Signal Processing,
     vol.10, Oct. 2001, pp.453-458
    [15]F. Wu, S. Li and Y.-Q. Zhang. A framework for efficient progressive fine
     granularity scalable video coding. IEEE Trans. Circuit and systems for video
     technology, vol.11, Mar. 2001 , pp. 332-344.
    [16]F. Wu, S. Li, X. Y. Sun, and Y-Q Zhang. Macroblock-based progressive fine
     granularity scalable coding. ISO/IEC JTC1/SC29/WG11, MPEG01/M6779,
     Jan.2001.
    [17]X. Sun, F. Wu, S. Li, W. Gao and Y.-Q. Zhang. Macroblock-based progressive fine
     granularity scalable video coding. IEEE International Conference on Multimedia
     and Expo (ICME), Tokyo, August, 2001.
    [18]B. Oliver, J. Pierce, and C. Shannon. The philosophy of PCM. Proc. Of IRE,
     vol.36, no.11,pp:1324~1331,1948.
    [19]章毓晋. 图像工程(上册),清华大学出版社.
    [20]ISO/IEC 10918, Information Technology— Digital Compression and Coding of
     Continuous- Tone Still Images,1994
    [21]ISO/IEC JTC1/SC29/WG1. FCD 15444-1: Information technology— JPEG2000
     image coding system. March 2000.
    [22]ITU-T Rec , H.261 ,Video Codec for Audiovisual Services at P*64kbit/s ,Rev.2,
     1993
    [23]ISO/IEC JTC1/SC29/WG11, ISO/IEC. MPEG-1 Committee Draft”, CD11172:
     Information Technology. Dec.1991
    [24]ITU-T Rec , H.262 ISO/IEC 13828-2,Information Technology-Generic Coding of
     Moving Pictures and Audio Information , Part 2: Video, 1995.
    [25]ITU-T. H.26L test model long term number 8 (TML-8) draft0. Q.6/SG16 (VCEG),
     June 28, 2001.
    [26]C. I. Podilchuk, N. S. Jayant, and N. Farvardin. Three-dimensational subband
     coding of video. IEEE Trnas. Image Processing. Vol.4, pp.125-139, Feb. 1995
    [27]钟玉琢, 王琪, 赵黎等. MPEG-2 运动图像压缩编码国际标准及 MPEG 的新进
     展. 清华大学出版社, 2002 年 3 月.
    [28]J.Kovacevic, Bell Laboratories, http://cm.bell-labs.com/who/jelena/.
    [29]Youn J, Xin J, Sun M T. Fast video transcoding architectures for networked
     multimedia applications. In: Proceedings of the IEEE International Symposium on
     Circuits and Systems, Geneva, 2000, 4:25-28.
    [30]Zhu Q F, Kerofsky L, Garrison M B. Low-delay, Low-complexity rate reduction
    
    
    128 面向通信的视频编码技术研究
     and continuous presence for multipoint video conferencing. IEEE Tran. on
     Circuits and System for Video Technology,1999, 9(4): 666-676.
    [31]Furht B, Westwater R, Ice J. Multimedia broadcasting over the Internet. II. Video
     compression. IEEE Multimedia, 1999, 6(1): 85-89.
    [32]Lippman A. Video coding for multiple target audiences. In: Proceedings of the
     SPIE, Visual Com munications and Image Processing’99, 1999,3653: 780-782.
    [33]Lu J. Signal processing for internet video streaming : A review. In; Proceedings of
     the SPIE, Image and Video Communication and Processing, 2000, 3974: 246-259.
    [34]B.-J. Kim and W. A. Pearlman. An embedded wavelet video coder using
     three-dimensional set partitioning hierarchical trees (SPIHT). In Proc. Data
     Compression Conference, Snowbird, UT, March 1997, IEEE Computer Society,
     pp:251-260.
    [35]B. Schuster. Fine Granular Scalability with wavelets coding. ISO/IEC JTC1/SC29/
     WG11, MPEG98/M4021, Oct. 1998.
    [36]S. –C. S. Cheung and A. Zakhor. Matching pursuit coding for fine granular video
     scalability. ISO/IEC JTC1/SC29/WG11, MPEG98/M3991, Oct. 1998.
    [37]M. Benetiere and C. Dufour. Matching pursuits residual coding for video fine
     granular scalability. ISO/IEC JTC1/SC29/WG11, MPEG98/M400, Oct. 1998.
    [38]FGS Experiments, ISO/IEC JTC1/SC29/WG11, MPEG00/N3316, Mar.2000.
    [39]D.Taubman. High Performance Scalable Image Compression With EBCOT. Proc.
     IEEE Int. Conference Image Processing, Vol.III, pp. 343-348, Kobe, Japan,
     October 1999.
    [40]Huifang Sun, Joel W Zdepski et al. Error concealment algorithms for robust
     decoding of MPEG compressed video. Signal Processing: Image Comm., Issue
     4,1997, pp 249-268.
    [41]Wang Yao, Zhu Qin-Fan. Error control and concealment for video communication:
     A review. In: Proceedings of the IEEE, Vol. 86, Issue 5 Part 1, 1998, pp 974-977.
    [42]Huifang Sun, Joel W Zdepski et al. Error concealment algorithms for robust
     decoding of MPEG compressed video. Signal Processing: Image Comm., Issue
     4,1997, pp 249-268.
    [43]Wang Yao, Zhu Qin-Fan. Error control and concealment for video communication:
     A review. In: Proceedings of the IEEE, Vol. 86, Issue 5 Part 1, 1998, pp 974-977.
    [44]M.Ghanbari. Cell-loss concealment in ATM video codec. IEEE Trans. On Circuits
     and Systems for Video Technology, June 93, pp.238~247.
    [45]S.Aign and K. Fazel. Temporal and spatial error concealment techniques for
    
    
    参考文献 129
     hierarchical MPEG-2 video codec. IEEE International Conference on Comm.,
     Vol.3, 1995, pp:1778~1783.
    [46]W.Kwok and H. Sun. Multi-Direction interpolation for spatial error concealment.
     IEEE Trans. On Consumer Electronics, vol.39, Aug. 1993
    [47]Jian Feng, et al. Error concealment for MPEG transmissions. IEEE Trans.
     Consumer Electronics, May 1997, pp:183~187.
    [48]Lam W M., Reibmant A R., Liu B. Recovery of lost or erroneous recived motion
     vector. ICASSP’93, vol.5, pp.417~420.
    [49]Mei-Juan Chen, et al. Error concealment of lost motion vectors with overlapped
     motion compensation. IEEE Trans. On Circuits and Systems for Video Technology,
     June 1997, pp.560~563.
    [50]J. R. Yee, E. J. Weldon. Evaluation of the performance of error correcting codes on
     a Gilbert channel . IEEE Trans. Comm., 43 (8), 1995, pp 2316-2323.
    [51]张宗平, 刘贵忠. 基于小波的视频图像压缩编码研究进展. 电子学报. 30(6),
     2002, pp:883~889.
    [52]S. A. Martucci, I Sodagar, T Chiang. A zerotree wavelet video coder. IEEE Trans.
     On Circuits and Systems for Video Technology, 7(1), 1997, pp:109~118.
    [53]D Marpe, H L Cycon. Very low bit-rate video coding using wavelet-based
     techniques. IEEE Trans. On Circuits and Systems for Video Technology, 9(1), 1999,
     pp:85~94.
    [54]J Vass, B-B Chai, K Palaniappan, X Zhang. Significance-linked connected
     component analysis for low bit-rate wavelet video coding. IEEE Trans. On
     Circuits and Systems for Video Technology, 9(4), 1999, pp:630~647
    [55]Y-Q Zhang, S Zafar. Motion-compensated wavelet transform coding for color
     video compression. IEEE Trans. On Circuits and Systems for Video Technology,
     2(3), 1992, pp:285~296.
    [56]H –W Park, H –S Kim. Motion estimation using low-band-shift method for
     wavelet-based moving-picture coding. IEEE Trans. On Circuits and Systems for
     Video Technology, 9(4), 2000, pp:577~587.
    [57]X Yang, K Ramchandram. Scalable wavelet video coding using alisasing-reduced
     hierarchical motion compensation. IEEE Trans. on Image Processing, 9(5), 2000,
     pp:778~791.
    [58]D Taubman, A Zakhor. Multirate 3-D subband coding of video. IEEE Trans. on
     Image Processing, 3(5),1994, pp:572~588.
    [59]Lewis A S., et al. Video compression using 3D wavlet transforms [J]. Electronics
    
    
    130 面向通信的视频编码技术研究
     Letters, 26 (6): 396-398 , 1990
    [60]C. I. Podilchuk, N. S. Jayant, and N. Farvardin. Three-dimensational subband
     coding of video. IEEE Trnas. Image Processing. Vol.4, pp.125-139, Feb. 1995
    [61]J. –R. Ohm. Three-dimensional subband coding with motion compensation. IEEE
     Trans. Image Processing, Vol.3, pp.559-571, Sept. 1994
    [62]S. –J. Choi and J. W. Woods. Motion-compensation 3-D subband coding of video.
     IEEE Trans. On Image Processing, Vol. 8, pp. 155-167, Feb. 1999
    [63]B. Pesquet-Popescu and V. Bottreau. Three-dimensional lifting schemes for
     motion compensated video compression. Proc. ICASSP, pp.1793-1796, May 2001
    [64]B.-J. Kim, Z. Xiong, and W. A Pearlman. Very low bitrateembedded video coding
     with 3-D set partitioning in hierarchical trees (3-D SPIHT). IEEE Trans.Circuits
     and Systems for video Technology, 2000.
    [65]Seongman K, Seunghyeon R. Interframe coding using two-stage variable
     block-size multiresolution motion estimation and wavelet decomposition. IEEE
     Trans. Circuits and System for Video Technology, 1998, 8(4): 399~409.
    [66]Mandal M, Chen X Q. Multiresolution motion estimation technique for video
     compression [J]. Optical Engineering, 1996, 35(1): 128~135.
    [67]Wei J, Li Z. An enhancement to MRMC scheme in video compression. IEEE
     Trans. Circuits and Systems for Video Technology, 1997, 7(3): 564~568.
    [68]Shen K, Delp E J. Wavelet based rate scalable video comression. IEEE Trans.
     Circuits and Systems for Video Technology, 1999, 9(1): 109~122.
    [69]W.Sweldens. The lifting scheme: A construction of second generation wavelets.
     SIAM J.Math.Anal., 1997,29(2):511-546.
    [70]I.Dqubechies, W. Sweldens. Factoring wavelet transform into lifting steps.
     J.Fourier Annal. Appl., 1998,4(3):245~267.
    [71]王国秋, 袁卫卫. 一般的 9-7 小波滤波器及其图象压缩性能研究. 电子学报.
     2001, 29(1), pp:130~132.
    [72]A.Islam and W.A.Pearlman. An embedded and efficient low-complexity
     hierarchical image coder. Proc. SPIE Visual Comm. And Image Processing,
     Vol.3653, San Jose, CA, 1999:294-305.
    [73]Jizheng Xu, Zixiang Xiong, Shipeng Li. Three-Dimensional Embedded Subband
     Codingwith Optimized Truncation (3-D ESCOT). Applied and Computational
     Harmonic Analysis 10, 290–315 (2001), available online at http://www.
     idealibrary.com.
    [74]Li R, Zeng B, Liou M L. A new three-step search algorithm for block motion
    
    
    参考文献 131
     estimation[J]. IEEE Trans Circuits Systems for Video Technology, 1994,4(4):
     438~442.
    [75]Po M L, Ma C W. A novel four-step search algorithm for fast block motion
     estimation[J]. IEEE Trans Circuits Systems for Video Technology, 1996
     6(6):313~317.
    [76]Jain J, Jain A. Displacement measurement and its application in interframe image
     coding[J]. IEEE Trans Communication, 1981, 29(12):1799~1808.
    [77]L K Liu, E Feig. A block-based gradient descent search algorithm for block motion
     estimation in video coding[J]. IEEE Trans Circuits Systems for Video Technology,
     1996, 6(8):419~423.
    [78]Ghanbari M. The cross-search algorithm for motion estimation[J]. IEEE Trans
     Communication, 1990, 38(7):950~953.
    [79]Zhu S, Ma K K. A new diamond search algorithm for fast block-matching motion
     estimation[J]. IEEE Trans Image Processing, 2000, 9(2): 287~290.
    [80]Tham Y J, Ranganath S, Ranganath M, et al. A novel unrestricted center-biased
     diamond search algorithm for block motion estimation[J]. IEEE Trans Circuits
     Systems for Video Technology, 1998, 8(8):369~377.
    [81]Ma K K, Hosur P I. Performance report of motion vecotor field adaptive search
     technique (MVFAST). in: ISO/IEC JTC1/SC29/WG11 MPEG99/m5851, Noord
     wijkerhout, NL, Mar. 2000.
    [82]Ce Zhu, Xiao Lin, and Lap-Pui Chau. Hexagon-Based Search Pattern for Fast
     Block Motion Estimation. IEEE Trans. Circuits System Video Technology, vol.12,
     pp:349-355, May 2002.
    [83]MPEG-4 Optimization Model Version10. In: ISO/IEC JTC1/SC29/WG22
     MPEG2000/N3324, Noordwijkerhout, NL, Mar. 2000.
    [84] Fukunaga S, Nakaya Y, Son S H, Nagumo T. MPEG-4 video verification model
     version 14.0[J]. in: ISO/IEC JTC1/SC29/WG11 MPEG99/N2932, Victoria,
     Australia, Oct. 1999
    [85]ITU-T Rec. H.264/ISO/IEC 11496-10(2002), Advanced Video Coding[S].
    [86]S.-J. Choi and J. W. Woods. Motion-compensated 3-D subband coding of video.
     IEEE Trans. on Image Processing. 8(2), Feb. 1999, pp: 155~167.
    [87]B. Pesquet-Popescu and V. Bottreau. Three-dimensional lifting schemes for
     motion compensated video compression. Proc. ICASSP, pp:1793~1796, May
     2001.
    [88]J. W. Woods and P. Chen. Improved MC-EZBC with quarter-pixel motion vectors.
    
    
    132 面向通信的视频编码技术研究
     ISO/IEC JTC1/SC29/WG11, MEPG2022/8366, Fairfax, May 2002.
    [89]A. Secker and D. Taubman. Motion-compensated highly scalable video
     compression using an adaptive 3-D wavelet transform based on lifting. Proc. ICIP,
     Oct.2001.
    [90]M. Ghanbari and V. Seferidis. Efficient H.261-based two-layer video codecs for
     ATM networks. IEEE Trans. Circuits System Video Technology, vol.5, pp:171-175,
     Apr. 1995.
    [91]A. Fuldseth and T. A. Ramstad. Robust subband video coding with leaky
     prediction. In Proc. DSP Workshop, Loen, Norway, Sept.1996, pp:57~60.
    [92]Weiping Li. Overview of Fine Gruanularity Scalability in MPEG-4 Video Standard.
     IEEE Trans. Circuits System Video Technology, 11(3) pp:301~317, March 2001.
    [93]Hsiang-Chun Huang, Chung-Neng Wang, and Tihao Chiang. A Robust Fine
     Granularity Scalability Using Trellis-based Predictive Leak. IEEE Trans. Circuit
     Syst. Video Technol., 12(6), pp. 372-385, June 2002.
    [94]Y.Chen, H. Radha, and R. A. Cohen. Results of experiment on fine granular
     scalability with wavelet encoding of residuals. ISO/IEC JTC1/SC29/WG11,
     MPEG98/M3988, Oct. 1998.
    [95]F.Ling and X. Chen. Report on fine granularity scalability using bitplane coding.
     ISO/IEC JTC1/SC29/WG11, M4311, Nov.1998.
    [96]M. van der Schaar and H. Radha. Adaptive Motion-Compensation
     Fine-Granular-Scalability (AMC-FGS) for Wireless Video. IEEE Trans. Circuits
     System Video Technology, 12(6) pp:360~371, June 2002.
    [97]吴枫, 李世鹏, 张亚勤. 渐进、精细的可伸性视频编码. 计算机学报, Vol.23,
     No.12, 2000, pp:1~7.
    [98]孙晓艳, 高文, 吴枫等. 基于宏块的具有时域和 SNR 精细可伸缩性的视频编
     码. 计算机学报. Vol.26, No.3. Mar. 2003, pp:1~8.
    [99]R. Yan, F. Wu, S. Li and Y. –Q Zhang. Error resilience methods in the FGS
     enhancement bitstream. ISO/IEC JTC1/SC29/WG11, MPEG00/M6207, July 2000.
    [100] Chun-Ho Cheung and Lai-Man Po. A Novel Cross-Diamond Search
     Algorithm for Fast Block Motion Estimation. IEEE Trans. Circuits System Video
     Technology, 12(12) pp:1168~1177, Dec. 2002.
    [101] V.Parthasarathy, J. Modestino, and Vastola. Design of a transport coding
     scheme for high-quality video over ATM networks. IEEE Trans. Circuits System
     Video Technology, 7(4) pp:358~367, Apr. 1997.
    [102] M. Walker and M. Nilsson. A study of the efficiency of layer coding using
    
    
    参考文献 133
     H.263. in Proc. Packet Video’99, New York, Apr. 1999.
    [103] Michael Gallant and Faouzi Kossentini. Rate-Distortion Optimized Layered
     Coding with Unequal Error Protection for Robust Internet Video. IEEE Trans.
     Circuits System Video Technology, 11(3) pp:357~372, Mar. 2001.
    [104] JiZheng Xu, Zixiang Xiong, Shipeng Li, and Y. –Q Zhang.
     Memory-Contrained 3-D Wavelet Transform for Video Coding Without Boundary
     Effects. IEEE Trans. Circuits System Video Technology, 12(9) pp:812~818, Sep.
     2002.
    [105] J. C. Choi, S. –W. Lee, and S. –D Kim, Spatio-temporal video segmentation using a joint
     similarity measure. IEEE Trans. Circuits System Video Technology, 7(4) pp:279~286,
     Apr. 1997.
    [106] P. Salembier and F. Marques. Region-based representations of image and
     video: Segmentation tools for multimedia services. IEEE Trans. Circuits System
     Video Technology, 9(12) pp:1147~1169, Dec. 1999.
    [107] Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen. Efficient Moving Object
     Segmentation Algorithm Using Background Registration Technique. IEEE Trans.
     Circuits System Video Technology, 12(7) pp:577~586, July. 2002.
    [108] Hua Cai, Guobin Shen, Shipeng Li and Bing Zeng, “Optimal rate allocation
     for macroblock- based progressive fine granularity scalable video coding”,
     Proceedings, ICIP, 2002.
    [109] Sweldens W. The lifting scheme: A custom-design construction of
     biorthogonal wavelets. Appl.Comut.Harmon.Appl.,1996,3(2):186-200.
    [110] Kovacevic J. and Sweldens W. Wavelet families of increasing order in arbitray
     dimensions. IEEE Trans.on Image Processing,2000.3,9(3):480-496.
    [111] L. Luo, J. Li, S. Li, Z. Zhuang, and Y.-Q. Zhang, “Motion compensated lifting
     wavelet and its application in video coding”, IEEE International Conference on
     Multimedia and Expo (ICME 2001), Tokyo, Japan, Aug. 2001.
    [112] Peisong Chen. Fully Scalable Subband/Wavelet Coding. A Doctoral Thesis
     Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute. Rensselaer
     Polytechinc Institute Troy, New York. May, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700