金属—有机骨架材料激发态下氢键的行为效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机骨架(Metal Organic Framework, MOFs)材料是由有机配体与金属离子(簇)通过配位键构筑而成,它的有机配体含有丰富的O-H和N-H键,配体之间和配体之内的氢键在这些超分子晶体结构的构建中起到非常重要的作用,会对整个分子的结构、性质,尤其是激发态下的性质产生显著影响。研究激发态的能量转移、电子转移、和电荷转移;研究辐射跃迁和非辐射跃迁的竞争,进而得到氢键作用与发光性能的关系。揭示激发态下氢键的本质。
     受研究条件所限,人们在过去的几十年中主要的研究内容都是关于氢键成键本质以及氢键基态性质等方面的问题。为了更深刻的了解激发态氢键的行为效应,人们采用了许多实验和理论方法来研究激发态氢键。飞秒分辨的时间光谱技术是当前实验上研究激发态氢键的主要手段,量子化学计算则主要通过含时密度泛函理论来研究激发态氢键。
     我们对2种不同氢键体系进行了理论研究,深入研究了氢键在激发态的变化以及激发态氢键变化它对体系性质产生的影响。对于[Cu(ipt)(dap)H20]n·nH20体系,通过比较各个氢键在不同电子态下的氢键键长、参与形成氢键基团的键长、以及参与形成氢键基团的红外伸缩振动峰值,我们认为:氢键复合物[Cu(ipt)(dap)H2O]n·nH2O中的氢键1:O1=H……C=02和氢键2:04.H……C=03在激发态都发生了加强。我们的理论计算结果不仅支持了赵广久等人提出的激发态氢键加强机理,而且丰富了激发态氢键理论研究的结果。
     对于Cu(H2BTC)(2,2-bipy)的氢键复合物体系,我们发现两氢键的协同作用促进了激发时,电荷密度由配体向金属转移。这样一个协同过程在氢键激发态动力学的研究中是首次被讨论。同时,本体系的结合能在激发态明显高于基态,两个单体分子间的相互作用加强,很好的解释非定域现象的发生。另外,两个氢键在激发态的动态变化,会导致氢键复合物在激发态能级相对未形成氢键前有所降低,进而降低辐射失活过程发生概率,增加非辐射失活的过程,即影响发光途径。
Metal Organic Frameworks material is constructed by organic linkers and metal ions(clusters) via coordinated-bond,which has plenty of O-H and N-H bonds, the inter-Ligand and intra-ligand hydrogen bond play a vital role of the constructions within these supramolecular crystal structure, what's more, have a great influential effect of the entire molecular structure and properties in the excited state.We do the research of energy transfer, electron transfer, and charge transfer of excited state; competitions between radiative transition and nonradiative transitions, to aim at realizing the relationship between Hydrogen bonds effect and luminescence properties, revealing the natural truth of excited state hydrogen bond.
     In the past years, most of the researches have been done on the hydrogen bond in the ground state. With the development of the experimental technology, the hydrogen bond in the excited state has become more and more interested by the scientists. To get better understand of the in the electronically excited state, diverse experimental and theoretical methods has been performed. Femtosecond time-resolved vibrational spectroscopy has shown potential to give a good insight into the microscopic dynamics and provided information on local structures. Time-dependent density functional theory (TDDFT) method has also been confirmed as a reliable method to investigate the hydrogen bond in the electronically excited state.
     In our work, the hydrogen bond and its effects in the excited state of hydrogen bonded complex molecular systems have been investigated by time-dependent density functional theory (TDDFT). For the [Cu(ipt)(dap)H2O]n·nH2O system, The calculated hydrogen bond lengths, the spectra shift of the stretching mode of the C=O and O-H group and the lengths of functional groups which form the hydrogen bonds in different electronic states confirmed the mechanism of the hydrogen bond strengthening in the electronically excited state,that means hydrogen bond 1:O1=H……C=O2 and hydrogen bond 2:O4-H……C=O3 are strengthened in the electronically excited state.Our theoretical study support the mechanism of the hydrogen bond strengthening made by Zhao et al.
     We found that the synergistic effect of the two hydrogen bonds of the Cu(H2BTC)(2,2-bipy) system contributed to stimulate the charge density transfer from the ligand to the metal in the excited state, which has been firstly proposed in the excited state dynamics of hydrogen bond. Meanwhile, the binding energy of the system in the excited state is significantly higher than the one in the ground state, indicating that the interaction between two monomers is strengthened, could well explain the non-local excited phenomenon. In addition, the dynamic changes of the two hydrogen bonds in the excited state will lead to the decrease of the hydrogen-bond energy levels in the excited state relative to the former Monomers, thereby reducing the probability of radiative inactivation and increasing non-radiative deactivation process. Therefore, we speculate that this hydrogen-bond Collaborative effect may facilitate the occurrence of the fluorescence quenching phenomenon,and there could be some relationships between the quenching phenomenon and the charge transfer from ligand to metal..
引文
[1]. Rosi N, Eckert J, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science,2003,300 (5662):1127-1129
    [2]. Ferey G. Hybrid porous solids:past, present, future. Chem. Soc. Rev.,2008,37,191-214
    [3]. Wang B, Cote A P, Furukawa H, O'Keeffe M, Yaghi O M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature,2008,453:207-211
    [4]. Rahul Banerjee, Anh Phan,Bo Wang, Carolyn Knobler, Hiroyasu Furukawa, Michael O'Keeffe, Omar M. Yaghi. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture.Science,2008,319:939-943
    [5]. Karin Barthelet, Jerome Marrot, Didier Riou, and Gerard Ferey. A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angew. Chem. Int. Ed.2002,41 (2):281-284
    [6]. Susumu Kitagawa, Ryo Kitaura, and Shin-ichiro Noro. Functional Porous Coordination Polymers.Angew.Chem.Int.Ed.2004,43,2334-2375.
    [7]. Christoph Janiak. Engineering coordination polymers towards applications.Dalton Trans,2003, 2781-2804
    [8]. Daniel Maspoch, Daniel Ruiz-Molinaa and Jaume Veciana. Old materials with new tricks: multifunctional open-framework materials. Chem Soc Rev.,2007,36,770—818
    [9], Myunghyun Paik Suh, Young Eun Cheon, Eun Young Lee.Syntheses and functions of porous metallosupramolecular networks. Coordination Chemistry Reviews 252 (2008) 1007-1026
    [10]. Christopher L. Cahill,Daniel T. de Lill and Mark Frisch. Homo-and heterometallic coordination polymers from the f elements. CrystEngComm,2007,9,15-26
    [11].Christina,A.Bauer,TatianaV.Timofeeva,Thomas.B.Settersten,Brian,D.Patterson, Vincent H.Liu,Blake A. Simmons,and Mark D. Allendorf. Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks. J.Am. Chem. Soc.2007,129, 7136-7144
    [12]. Eun Young Lee, Seung Yeon Jang, and Myunghyun Paik Suh. Multifunctionality and Crystal Dynamics of a Highly Stable,Porous Metal-Organic Framework [Zn4O(NTB)2]
    [13]. Gregory J. McManus, John J. Perry IV, Mark Perry, Brian D. Wagner, and Michael J. Zaworotko. Exciplex Fluorescence as a Diagnostic Probe of Structure in Coordination Polymers of Zn2+and 4,4'-Bipyridine Containing Intercalated Pyrene and Enclathrated Aromatic Solvent. J.Am. Chem. Soc.2007,129,9094-9101
    [14]. Yan Bai, Guang-jie He, Yong-gang Zhao, Chun-ying Duan, Dong-bin Dang and Qing-jin Meng. Porous material for absorption and luminescent detection of aromatic molecules in water. Chem. Commun.,2006,1530-1532
    [15]. Banglin Chen, Liangbo Wang, Fatima Zapata, Guodong Qian, and Emil B. Lobkovsky. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions. J.Am. Chem. Soc.2008,130,6718-6719.
    [16]. Weisheng Liu, Tianquan Jiao, Yizhi Li, Quanzhong Liu, Minyu Tan, Hong Wang, and Liufang Wang. Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence. J.Am. Chem. Soc.2004,126,2280-2281
    [17]. Yongcai Qiu,Zhihui Liu,Yinghua Li,Hong Deng,Ronghua Zeng, and Matthias Zeller. Reversible Anion Exchange and Sensing in Large Porous Materials Built from 4,4'-Bipyridine via π···π and H-Bonding Interactions. Inorganic Chemistry, Vol.47, No.12,2008
    [18]. Theresa M. Reineke, Mohamed Eddaoudi, Michael Fehr, Douglas Kelley, and O. M.Yaghi. From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. J.Am. Chem. Soc.1999,121,1651-1657
    [19]. Bin Zhao, Xiao-Yan Chen, Peng Cheng,* Dai-Zheng Liao, Shi-Ping Yan, and Zong-Hui Jiang. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. J.Am. Chem. Soc.2004,126,15394-15395
    [20]. Shuai Zhang, Zhen Wang, Hanhui Zhang, Yanning Cao, Yanxiang Sun, Yiping Chen, Changcang Huang, Xiaohong Yu. Self-assembly of two fluorescent supramolecular frameworks constructed from unsymmetrical benzene tricarboxylate and bipyridin. Inorganica Chimica Acta 360(2007)2704-2710
    [21]. Ling Xua, Bing Liua, Fa-Kun Zhenga, Guo-Cong Guoa, Jin-Shun Huang. Blue fluorescence of three metal-organic zinc polymers containing tetrazinc units and asymmetric ligand of btc. Journal of Solid State Chemistry 178 (2005) 3396-3404
    [22]. M.D.Allendorf, C.A.Bauer, R.K.Bhakta and R.J.T.Houk. Luminescent metal-organic frameworks. Chem. Soc. Rev.,2009,38,1330-1352
    [23]Fang Q R, Zhu G S, Jin Z, Wang Y. Mesoporous metal-organic frameworks with rare etb topology for hydrogen storage and dye assembly.Angew.Chem.Int.Ed.,2007,46(35):6638-6642
    [24]Sun J Y, Weng L H, Zhou Y M, Zhao D Y. QMOF-1 and QMOF-2:three-dimensional metal-organic open frameworks with a quartz-llike topology. Angew.Chem Int.Ed.,2002,41 (23):4471-4473
    [25]Zhou Y F, Hong M C, Wu X T. Lanthanide-transition metal coordination polymers based on multiple N-and O-donor ligands.Chem.Comm.,2006,2:135-143
    [26]Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic framesworks:Angew.Chem.Int.Ed.,2006,45(10):1557-1559
    [27]Wells C H J. Introduction to Molecular Photochemistry [M].London:Chapman and Hall,1972.
    [28]Bernardi F, Olivucci M, Robb M A. Potential energy surface crossings in organic photochemistry [J].Chem Soc Rev,1990,25:321-328.
    [29]Fleming I. Frontier Orbitals and Organic Chemical Reactions [M].London:Wiley,1978.
    [30]Mack J, Bolton J R. Photochemistry of nitrite and nitrate in aqueous solution:a review [J].J Photochem Photobiol A:Chem,1999,128:1-3.
    [31]Han K-L, He G-Z. Photochemistry of aryl halides:Photodissociation dynamics [J].J Photochem Photobiol C:Photochem Rev,2007,8:55-66.
    [32]Bitterwolf T E. Organometallic photochemistry at the end of its first century [J].J Organomet Chem,2004,689:3939-3952.
    [33]Vaida V. Review article:Sunlight initiated atmospheric photochemical reactions, [J].Int J Photoenergy,2005,7:61-70.
    [34]Garavelli M. Computational organic photochemistry:strategy, achievements and perspectives [J].Theor Chem Acc,2006,116:87-105.
    [35]Macpherson A N, Gillbro T. Solvent dependence of ultrafast S2-S1 internal conversion rate of carotene [J].J Phys Chem A,1998,102:5049-5058.
    [36]Zewail A H. Femtochemistry:atomic-scale dynamics of the chemical bond [J].J Phys Chem A,2002,104:5660-5694.
    [37]Pecourt J M L, Peon J, Kohler B. DNA Excited-state dynamics:ultrafast internal conversion and vibrational cooling in a series of nucleosides [J].J Am Chem Soc,2001,123:10370-10378.
    [38]Rondonuwu F S, Watanabe Y, Zhang J P, et al. Internal-conversion and radiative-transition processes among the 1Bu+, 1Bu- and 2Ag- states of all-trans-neurosporene as revealed by subpicosecond time-resolved Raman spectroscopy [J].Chem Phys Lett,2002,357:376-384.
    [39]Shi Y, Liu J-Y, Han K-L. Investigation of the internal conversion time of the chlorophyll a from S3, S2 to S1 [J].Chem Phys Lett,2005,410:260-263.
    [40]Wasielewski M R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis [J].Chem Rev,1992,92:435-461.
    [41]Weaver M J. Dynamical solvent effects on activated electron-transfer reactions:principles, pitfalls, and progress [J].Chem Rev,1992,92:463-480.
    [42]Marcus R A. Electron transfer reactions in chemistry:theory and experiment [J].Rev Mod Phys,1993,65:599-610.
    [43]Bissell R A, de Silva A P, Gunaratne H Q N, et al. Fluorescent PET (photoinduced electron transfer) sensors [J].Top Curr Chem,1993,168:223-264.
    [44]Barbara P F, Meyer T J, Ratner M A. Contemporary issues in electron transfer research [J].J Phys Chem,1996,100:13148-13168.
    [45]Gray H B, Winkler J R. Electron transfer in proteins [J].Annu Rev Biochem,1996, 65:537-561.
    [46]Piotrowiak P. Photoinduced electron transfer in molecular systems:recent developments [J].Chem Soc Rev,1999,28:143-150.
    [47]Chu T-S, Zhang Y, Han K-L. The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions [J].Int Rev Phys Chem,2006,25:201-235.
    [48]Zhao G-J, Liu J-Y, Zhou L-C, et al. Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding:a new fluorescence quenching mechanism [J].J Phys Chem B,2007,111:8940-8945.
    [49]Zhao G-J, Han K-L. Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents:theoretical study [J].J Phys Chem A,2007,111:2469-2474.
    [50]Zhao G-J, Han K-L. Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching [J].J Phys Chem A,2007,111:9218-9223.
    [51]Zhou L-C, Liu J-Y, Zhao G-J, et al. The ultrafast dynamics of near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents [J].Chem Phys,2007,333:179-185.
    [52]Liu J-Y, Fan W-H, Han K-L, et al. Ultrafast vibrational and thermal relaxation of dye molecules in solutions [J].J Phys Chem A,2003,107:10857-10861.
    [53]Owrutsky J C, Raftery D, Hochstrasser R M. Vibrational relaxation dynamics in solutions [J].Annu Rev Phys Chem,1994,45:519-555.
    [54]Nesbitt D J, Field R W. Vibrational energy flow in highly excited molecules:Role of intramolecular vibrational redistribution [J].J Phys Chem,1996,100:12735-12756.
    [55].Chen R-K, Zhao G-J, Yang X-C, et al. Photoinduced intramolecular charge-transfer state in thiophene-π-conjugated donor-acceptor molecules [J].J Mol Struct,2008,876:102-109.
    [56].Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques [J].Int J Quant Chem,1981,20:1067-1071.
    [57]Foresman J B, Head-Gordon M, Pople J A. Toward a systematic molecular orbital theory for excited states [J].J Phys Chem,1992,96:135-149.
    [58]Krishnan R, Schlegel H B, Pople J A. Derivative studies in configuration- interaction theory [J].J Chem Phys,1980,72:4654-4655.
    [59]Brooks B R, Laidig W D, Saxe P, Goddard J D, Yamaguchi Y. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J].J Chem Phys,1980,72:4652-4653.
    [60]Salter E A, Trucks G W, Bartlett R J. Analytic energy derivatives in many-body methods.I.First derivatives [J]. J Chem Phys,1989,90:1752-1766.
    [61]Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques [J].Int J Quant Chem,1981,20:1067-1071.
    [62]Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. a general technique for determining electron correlation energies [J].J Chem Phys,1987,87:5968-5975.
    [63]Kohn W, Sham L J. Self-consistent equations including exehange and correlation effects [J].PhysRev,1965,140:A1133-A1138.
    [64]Thomas L S. The calculation of atomic fields [J].Proe Cambridge Philos Soc, 1927,23:542-548.
    [65]Femi E. Eine statistische begrundung zur bestimmung einiger eigenschaften des atoms und ihre anwendungen auf die theorie des periodischen systems der elemente [J]-Z Phys,1928,48:73-79.
    [66]Perdew J P, Schmidt K. In density functional theory and its applications to materials [M].American Institute of Physics,2001.
    [67]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J].Phys Rev A,1988,38:3098-3100.
    [68]Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electronliquid correlation energies for local spin density calculation:a critical analysis [J].Can J Phys,1980,58:1200-1211.
    [69]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J].Phys Rev B,1988,37:785-789.
    [70]Schreckenbach G, Ziegler T. Calculation of NMR shielding tensors using gauge-including atomic orbitalsand modern density functional theory [J].J Phys Chem,1998,99:606-611.
    [71]Runge E, Gross E K U. Density-functional theory for time-dependent systems [J].Phys Rev Lett,1984,52:997-1000.
    [72]Petersilka M, Gossmann U J, Gross E K U. Excitation energies from time-dependent density-functional theory [J].Phys Rev Lett,1996,76:1212-1215.
    [73]Bauernschmitt R, Ahlrichs R, Hennrich F H, Kappes M M. Experiment versus time dependent density functional theory prediction of fullerene electronic absorption [J].J Am Chem Soc,1998,120:5052-5059.
    [74]Beck T L. Real-space mesh techniques in density-functional theory [J]. Rev Mod Phys,2000,72:1041-1080.
    [75]Onida G, Reining L, Rubio L. Electronic excitations:density-functional versus many-body Green's-function approaches [J].Rev Mod Phys,2002,74:601-659.
    [76]Castro A, Marques M A L, Alonso J A, Bertsch G F, Rubio A. Excited states dynamics in time-dependent density functional theory [J].Eur Phys J D,2004,28:211-218.
    [77]Wijewardane H O, Ullrich C A. Time-dependent Kohn-Sham theory with memory [J]. Phys Rev Lett,2005,95:1-4.
    [78]Verdozzi C, Stefanucci G, Almbladh C O. Classical nuclear motion in quantum transport [J].Phys Rev Lett,2006,97:1-4.
    [79]Casida M E. Propagator corrections to adiabatic time-dependent density-functional theory linear response theory [J].J Chem Phys,2005,122:1-9.
    [80]Tapavicza E, Tavernelli I, Rothlisberger U. Trajectory surface hopping within linear response time-dependent density-functional theory [J].Phys Rev Lett,2007,98:1-4.
    [81]Laarmann T, Shchatsinin I, Stalmashonak A. Control of giant breathing motion in C60 with temporally shaped laser pulses [J].Phys Rev Lett,2007,98:1-4.
    [82]M. Padmanabhan et al. Inorganica Chimica Acta 360 (2007) 2583-2588
    [83]S. Zhang et al./Inorganica Chimica Acta 360 (2007) 2704-2710
    [84]Zhang H, Smith S C. Calculation of HO2 Density of States on Three Potential Energy Surfaces [J].J Theo Compu Chem,2007,6:789-802.
    [85]Samant V, Singh A K, Ghanty T K, et al. Ultrafast Intermolecular Hydrogen Bond Dynamics in the Excited State of Fluorenone [J].J Phys Chem A,2005,109:8693-8704.
    [86]Chudoba C E, Nibbering E T J, Elsaesser T. Site-specific excited-state solute-solvent interactions probed by femtosecond vibrational spectroscopy [J].Phys Rev Let.,1998,81: 3010-3013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700