华北东、西板块的古元古代拼合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北中央造山带是一条陆-陆碰撞造山带,由华北东部和西部两个陆块在古元古代碰撞形成,并沿华北中央造山带拼合形成华北克拉通的古老基底。然而,迄今为止,华北东、西陆块拼合的时代仍然没有得到精确的限定。因此我们在华北中央造山带北段的怀安地区,选择六块代表性岩石样品进行了锆石U-Pb年龄和锆石微区微量元素的分析,其中包括五块高级变质岩样品和一块伟晶岩脉样品。TTG片麻岩样品和高压基性麻粒岩样品中原岩岩浆锆石核的分析点给出的207Pb/206Pb年龄分别为2503±17和1964±38 Ma,应分别代表了TTG片麻岩和高压基性麻粒岩的原岩形成年龄。两块变沉积岩样品中岩浆继承锆石核的分析点给出的年龄在2683±22到1964±13 Ma之间变化,表明变沉积岩原岩物质除少部分来源于华北克拉通的太古宙陆壳岩石,大部分来自于华北中央造山带。TTG片麻岩样品和两块变沉积岩样品中的变质锆石重稀土相对亏损,在球粒陨石标准化图解上呈现从中稀土到重稀土分异较小的稀土配分模式,并可见明显的Eu负异常,表明此类锆石应形成于与石榴石和长石共生的麻粒岩相变质阶段。高压基性麻粒岩样品和TTG片麻岩淡色体样品中,变质锆石重稀土含量也相对较低,从中稀土到重稀土没有明显分异,表明这些锆石也形成于麻粒岩相条件下,但它们的Eu负异常较弱或无Eu负异常,可能与其寄主岩石的原岩组成有关。锆石Ti温度计显示所有这些变质锆石的形成温度在702到749℃之间,与区域内高压麻粒岩的峰期变质温度相近。这些锆石的U-Pb年龄在误差范围内一致,约为1845 Ma,此年龄应代表了怀安杂岩中麻粒岩相峰期变质作用时代的最佳估计值。这一结果也进一步证实了前人提出的华北东部、西部两个陆块在古元古代沿华北中央造山带发生碰撞拼合的模型。此外,在TTG片麻岩淡色体样品中,有部分变质锆石的阴极发光图像显示出面状到扇状分带特征,U,Th含量和Th/U比值较高,REE含量高,在球粒陨石标准化图解上呈现从中稀土到重稀土逐步富集明显的变化趋势,表明这些锆石可能形成于折返过程中有大量石榴石分解和部分熔融发生的阶段,此类锆石给出的加权平均年龄结果为1819±13 Ma,这可能代表了该地区退变质作用发生的时代。结合前人已经发表的有关华北中央造山带高级变质岩中变质锆石的年龄数据分析,明显可见三个不同的年龄峰值,分别为1876±6,1849±2,和1814±4 Ma,这一发现表明在华北中央造山带可能存在一个长期的多阶段变质事件,或者存在至少三期不同的变质作用。此外,穿插高压基性麻粒岩叶理的伟晶岩脉样品中岩浆锆石分析点给出的年龄为1806±15 Ma,此年龄应代表了伟晶岩脉的侵位年龄,表明在怀安地区,华北东部、西部两个陆块的碰撞拼合至此时已经结束。
The Trans-North China Orogen (TNCO) is interpreted as a continent-continent collisional belt along which the discrete Archean Eastern and Western Blocks amalgamated to form the basement of the North China Craton. The timing of its formation is still inconclusive. Six samples, including five high-grade metamorphic rocks and a pegmatite dyke, from the Huai'an complex in the northern segment of the TNCO were selected for zircon U-Pb dating and trace element analysis. A TTG gneiss sample and a HP mafic granulite sample contain magmatic zircon cores, yielding protolith formation ages of 2503±17 and 1964±38 Ma, respectively. Detrital zircon of a magmatic origin in two metasedimentary rocks show concordant or moderately discordant U-Pb ages of 1964±13 to 2683±22 Ma, indicating that they were mainly derived from the TNCO with few from the Archean basement of the North China Craton. Metamorphic zircons in the TTG gneiss and two metasedimentary rocks exhibit low HREE contents, flat HREE pattern and a distinct Eu anomaly, implying their formation coeval with garnet and feldspar, and thus under grannulite-facies conditions. Metamorphic zircons in a HP mafic granulite and a leucosome sample also have depleted HREE contents, flat HREE patterns, but a slight negative Eu anomaly, which may also Were formed under granulite-facies condition, whereas the insignificant Eu anomaly may be due to the whole-rock composition. All these metamorphic zircons have formation temperatures of 702 to 749℃, approaching the peak metamorphic temperatures of HP granulite rocks in this area. They have identical~1845 Ma (2σ) within analytical errors, which is the best age estimate age for HP granulite-facies metamorphism of the Huai'an complex. These results confirm previous models proposing late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton along the TNCO. On the other hand, some metamorphic zircons in the leucosome sample show planar or polygonal zoning, high Th, U contents and high Th/U ratios, high REE contents and a steep HREE patterns, indicating that they crystallized during partial melting with abundant garnet decomposition. They yielded a weighted mean age of 1819±13 Ma, which we interpret to register the time of exhumation. Combined with previously published data, there are three age peaks at 1876±6, 1849±2, and, 1814±4 Ma for metamorphic zircons from high-grade metamorphic rocks in the TNCO, which may correspond to prograde, peak, and retrograde metamorphism, respectively. The age of 1849±2 Ma may be regarded as the best estimate for peak metamorphism in the TNCO. A pegmatite dyke cutting the foliation of a mafic granulite boudin was dated at 1806±15 Ma, which signifies termination of collision between the Eastern and Western Blocks.
引文
[1]翟明国.华北克拉通的形成演化与成矿作用.矿床地质,2010,29(1):24-36
    [2]Zhao G C, Sun M, Wilde S A, et al. Assembly, accretion and breakup of the Paleo-proterozoic Columbia supercontinent:Records in the North China craton. Gondwana Research, 2003, 6:417-434
    [3]Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Palaeoproterozoic Supercontinent. Gondwana Res,2002, 5:85-94
    [4]Lu S N, Zhao G C, Wang H C, et al. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 2008, 160:77-93
    [5]Santosh M, Tsunogae T, Ohyama H, et al. Carbonic metamorphism at ultrahigh-temperatures: Evidence from North China Craton. Earth Planetary Science Letters, 2008, 266:149-165
    [6]翟明国.华北克拉通2100~1700 Ma地质事件群的分解和构造意义探讨.岩石学报,2004,20:1343-1354
    [7]倪志耀,翟明国,王仁民,等.华北古陆块北缘中段发现晚古生代退变榴辉岩.科学通报,2004,6:73-79
    [8]Zhang S H, Zhao Y, Song B, et al. Craboniferous granitic plutons from the northern margin of the NorthChina Block: Implications for a Late Paleozoic active continental margin. J. Geol. Soc. London, 2007, 164:451-463
    [9]Kusky T M, Windley B F, Zhai M G. Tectonic evolution of the North China Block: from orogen to craton to orogen. In:Zhai M G, Windley B F, Kusky T, Meng Q R,eds.Mesozoic Sub-Continental Thinning Beneath Eastern North China. London :Geological Society Special Publication. 2007, 280, 1-34
    [10]Lee J S. The Geology of China. London. Thomas Murby Co. 1939, 1-70
    [11]赵宗溥.中朝准地台前寒武纪地壳演化.北京.科学出版社.1993,389-390
    [12]白谨,黄学元,戴凤岩,等.中国早前寒武纪地壳演化.北京.地质出版社.1993,36-38
    [13]翟明国,彭澎.华北克拉通古元古代构造事件.岩石学报,2007,23:2665-2682
    [14]Kusky T M, Li J H. Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Science, 2003, 22:383-39
    [15]Kusky T M, Li J H, Tucker R D. The Archean Dongwanzi ophiolite complex, North China Craton: 2. 505-billion-year-old oceanic crust and mantle. Science, 2001, 292:1142-1145
    [16]Li J H, Kusky T M. A late Archean foreland fold and thrust belt in the North China Craton: implications for early collisional tectonics. Gondwana Research, 2007, 12:47-66
    [17]翟明国.华北克拉通2100-1700 Ma地质事件群的分解和构造意义探讨.岩石学报,2004,20:1343-1354
    [18]Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 1998, 40:706-721
    [19]Zhao, G C, Sun, M, Wilde, S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 2005, 136:177-202
    [20]Zhao G C, Wilde S A, Sun M, et al. SHRIMPU-Pbzircon ages of granitoid rocks in the L uliang Complex: implicationsfor the accretion and evolution of the Trans-North China Orogen. Precam. Res, 2008,160:213-226
    [21]Zhao G C, Wilde S A, Sun M, et al. SHRIMP U-Pb zircon geochronology of the Huai' an complex: constraints on lateArchean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. Am. J. Sci, 2008, 308:270-303.
    [22]郭敬辉,翟明国,张毅刚,等.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征.岩石学和同位素年代学.岩石学报,1993,9(4):329-341
    [23]Guo J H, Sun M, Zhai M G. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision. Journal of Asian Earth Science, 2005, 24: 629-642
    [24]Zhai M G., Guo J H, Yan Y H, et al. Discovery of high-pressure basic granulite terrain in North China Archaean Craton and preliminary study. Science in China (B), 1993, 36: 1402-1408
    [25]Zhai M G., Guo J H, Li J H, et al. Retrograded eclogites in the Archaean North China craton and their geological implication. Chinese Science Bulletin, 1996, 41:315-326
    [26]李江海,翟明国,钱祥麟,等.华北中北部太古代高压麻粒岩的地质产状及其出露机制.岩石学报,1998,14(2):176-189
    [27]Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 2001, 107:45-73
    [28]Guo J H, O'Brien P J, Zhai M G. High-pressure granulites in the Sangan area, North China Craton: metamorphic evolution, P-T paths and geotectonic significance. Journal of metamorphic Geology, 2002, 20:741-756
    [29]O'Brien P J, Otzler J R. High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. Journal of metamorphic Geology, 2003, 21:3-20
    [30]Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China: evidence from zircon U-Pb age, trace element and Hf isotope composition. Contributions to Mineralogy and Petrology, 2008, 155:123-133
    [31]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 1999, 134:380-404
    [32]Miller C, Mundil R, Thoni M, et al. Refining the timing of eclogite metamorphism: a geochemical, petrological, Sm-Nd and U-Pb case study from the Pohorje Mountains, Slovenia (Eastern Alps). Contributions to Mineralogy and Petrology, 2005, 150:70-84
    [33]Wu, Y B, Zheng, Y F, Zhao, Z F, et al. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 2006, 70:3743-3761
    [34]Wu Y B, Zheng Y F, Gao S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 2008, 101:308-322
    [35]Fraser G., Ellis D, Eggins S. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology., 1997, 25:607-610
    [36]Roberts M P, Finger F. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 1997, 25:319-322
    [37]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 2000, 18:423-439
    [38]Moller A, O'Brien P J, Kennedy A, et al. Linking growth episodes of zircon andmetamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland. (SW Norway). In: Geochronology.: Linking the Isotopic Recordwith Petrology and Textures (eds Vance, D., Muller, W., Villa, I.M.). Geological Society ofLondon Special Publication, London, 2003, 65-81
    [39]Whitehouse M J, Platt J P. Dating high-grade metamorphism-constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 2003, 145: 61-74
    [40]Baldwin A, Brown M. Age and duration of ultrahigh-temperature metamorphism in the Anapolis-Itaucu Complex, Southern Brasilia Belt, central Brazil -constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry. Journal of metamorphic Geology, 2008, 26:213-233
    [41]Schaltegger U, Fanning M, Gunther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 1999, 134:186-201
    [42]Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism.Chemical Geology, 2002, 184: 123-138
    [43]Rubatto D, Hermann J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 2003, 67:2173-2187
    [44]Rubatto D, Hermann J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 2007, 241, 38-61
    [45]Bingen B, Austrheim H, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contributions to Mineralogy and Petrology, 2004, 147:671-683
    [46]Kelly N M, Harley S L. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contributions to Mineralogy and Petrology, 2005, 149:57-84
    [47]Miller C, Mundil R, Thoni M, et al. Refining the timing of eclogite metamorphism: a geochemical, petrological, Sm-Nd and U-Pb case study from the Pohorje Mountains, Slovenia (Eastern Alps). Contributions to Mineralogy and Petrology, 2005, 150:70-84
    [48]Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 2005, 308:841-844
    [49]Ferry, J M, Watson, E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 2007, 154:429-437
    [50]Wu Y B, Gao S, Gomg H J, et al. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 2009, 27: 461-477
    [51]张福勤,刘建中,欧阳自远.华北克拉通基底绿岩的岩石大地构造研究[J].地球物理学报,1998,41:99-107
    [52]伍家善,耿元生,沈其韩,等.中朝古大陆太古宙地质特征及构造演化.北京.地质出版社.1998
    [53]翟明国,卞爱国,赵太平.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(D辑),2000,30:129-137
    [54]赵国春.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报,2009, 25(08): 1772-1792
    [55]Wan Y S, Song B, Liu D Y, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res, 2006, 149: 249-271
    [56]董春艳,刘敦一,李俊建,等.华北克拉通西部孔兹岩带形成时代新证据:巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成.科学通报,2007,8,52(16):1913-1922
    [57]Li S Z, Hao D F, Zhao G C, et al. Geochemical features and origin of Dandong granite. Acta Petrologica Sinica, 2004, 20:1417-1423
    [58]Li, S Z, Zhao, G C, Sun, M, et al. Deformational history of the Paleoproterozoic Liaohe Group in the Eastern Block of the North China Craton. Journal of Asian Earth Science, 2005, 24:654-669
    [59]Li S Z, Zhao G C, Sun M, et al. Are the South and North Liaohe Groups of the North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 2006,9:198-208
    [60]Luo Y, Sun M, Zhao G C, et al. LAICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt.Precambrian Research, 2004, 134:349-371
    [61]Luo Y, Sun M, Zhao G C, et al. A comparison of U-Pb and Hf isotropic compositions of detrital zircons from the North and South Liaohe Groups: constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 2008, 163:279-306
    [62]O'Brien P J, Walte N, Li J H. The petrology of two distinct granulite types in the Hengshan Mts,China, and tectonic implications: Journal of Asian Earth Sciences, 2005, 24:615-627
    [63]KronerA, Wilde S A, Li J H, et al. Age and evolution of a late Archaean to early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Science, 2005, 24:577-595
    [64]Kroner A, Wilde S A, O'Brien P J, et al. Feild relationships, geochemistry, zircon ages and evolution of a late Archean to Paleoproterozoic lower crustal section in the Hengshan Terrain of Northern China. Acta Petrologica Sinica, 2005, 79:605-629
    [65]Kroner A, Wilde S A, Zhao G C, et al. Zircon geochronology of mafic dykes in the Hengshan Complex of northern China: evidence for late Palaeoproterozoic rifting and subsequent high-pressure event in the North China Craton. Precambrian Research, 2006, 146:45-67
    [66]Zhang J, Zhao G C, Sun M, et al. High-pressure mafic granulites in the Trans-North China Orogen: Tectonic significance and age. Gondwana Research, 2006, 9:349-362
    [67]Zong K Q, Liu Y S, Gao C G, et al.. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chem. Geol., 2010.269 (3-4): 237-251
    [68]Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Cbemical Geology, 2002, 192:59-79
    [69]Ludwig K R. Users Manual for Isoplot/Ex (rev. 2.49). Ageochronological toolkit for microsoft excel Berkeley Geochronology Center, Special Publication, 2001, No 1a:55pp
    [70]Sun S -S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, Geol. Soc. Spec. Publ. 1989, 42: 313-345.
    [71]corfu F, Hanchar J M, Hoskin P W O, et al. Altas of zircon textures. Reviews in Mineralogy and Geochemistry, 2003, 53:469-500
    [72]Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 2004, 49:1554-I569
    [73]Grant M L, Wilde S A, Wu F Y, et al. The application of zircon cathodoluminescenceimaging, Th- U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem. Geol. 2009, 261:154-170
    [74]Watson E B, Wark D A, Thomas, J B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 2006, 151:413-433
    [75]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 2000, 18:423-439
    [76]Zhao G C, Wilde S A, Cawood, P A, et al. SHRIMP U-Pb zircon ages of the Fuping Complex: implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton. Am. J. Sci, 2002, 302:191-226
    [77]Hermann J, Rubatto D, Korsakov A. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 2001, 141:66-82
    [78]Peng P, Zhai M G, Zhang H F, et al. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 2005, 47, 492-508
    [79]Keay S, Lister G, Buick I. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 200, 342:275-312
    [80]Wu Y B, Zheng Y F, Zhang S B, et al. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Journal of Metamorphic Geology, 2007, 25:991-1009
    [81]Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 2009, 155, DOI 10.1007/s00410-009-0406-5
    [82]Buick I S, Storkey A, Williams I S. Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra-plate Alice Springs Orogeny, central Australia. Journal of metamorphic Geology, 2008, 26:915-936
    [83]Zhao G C., Liu S W, Sun, M, et al. What happened in the Trans-North China Orogen in the period 2560-1850 Ma? Acta Petrologica Sinica, 2006, 80:790-806
    [84]Zhao G., Sun M, Wilde S A, et al. Composite nature of the North China Granulite-Facies Belt: Tectonothermal and geochronological constraints. Gondwana Research, 2006, 9: 337-348
    [85]Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 2009, 73:2660-2673
    [86]Xia X P, Sun M, Zhao, G C, et al. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 2006, 144:199-212
    [87]Xia X P., Sun M., Zhao G C, et al. U-Pb and Hf isotope study of detrital zircons from the Wanzi Supercrustals: constraints on the tectonic setting andevolution of the Fuping Complex, Trans-North China Orogen. Acta Geologica Sinica, 2006, 80:844-63
    [88]Xia X P, Sun M, Zhao G C, et al. U-Pb and Hf isotopic study of detrital zircons from the Luliang khondalite, North China Craton, and their tectonic implications. GeologicalMagazine,2009,5:701-716
    [89]刘敦一,耿元生,宋彪,冀西北地区晚太古代大陆地壳的增生和再造-同位素年代学证据。地球学报,1997,18(3),26-232
    [90]Guan H., Sun M, Wilde S A., et al. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton. Precambrian Research, 2002, 113, 1-18
    [91]Wilde S A., Zhao G C.. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Science, 2005, 24:519-522
    [92]Li J H., Zhai M G., Qian X L, et al. The geological occurrence, regional tectonic setting and exhumation of late Archaean high-pressure granulite with the high-grade metamorphic terranes, north to central portion of North China Craton. Acta Petrologica Sinica, 1998, 14: 176-189 (in Chinese with English abstract)
    [93]Polat A, Kusky, T M., Li J H, et al. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in theWutaishan greenstone belt; central orogenic belt, North China Craton: implications for geodynamic setting and continental growth. Bulletin Geological Society of American, 2005, 117:1387-1399
    [94]Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Utaishan area: implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 2007, 156: 85-106
    [95]Faure M, Trap P, Lin W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Luliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 2007, 30:1-12
    [96]Zhang J, Zhao G C, Li S Z, et al. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb zircon ages and tectonic implications. Journal of Structure Geology, 2009, 31:177-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700