用户名: 密码: 验证码:
红海榄脱水素基因的克隆及转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林生长于热带、亚热带陆海交汇的海湾河口潮间带,长期生长在高盐、高渗透压下的海水环境中,已进化出一套有别于陆生植物或淡水生植物的耐盐机制,属于真正的盐生植物。红海榄(Rhizophora stylosa)是这类植物中比较典型的一种,它属于红树科(Rhizophoraceae)红树属(Rhizophora),耐盐优势明显,是研究植物耐盐机制的理想材料。为了克隆红海榄的耐盐相关基因,本实验室在前期试验中构建了红海榄cDNA文库,然后将红海榄幼苗分别进行淡栽和盐栽处理,通过基因芯片分析在其根部差异表达基因,找到了一些有明显差异表达的cDNA片段。本文采用RT-PCR和cDNA末端快速扩增(RACE)技术,克隆了其中一个差异表达片段的全长cDNA序列,该序列包括146 bp的5’端非编码区,43bp的3’端非编码区和一个编码241个氨基酸的开放阅读框。该cDNA编码的蛋白具有植物脱水素蛋白的特征性结构,属于SKn类脱水素蛋白,我们将之命名为RsDHN1,与其它植物的SKn类脱水素蛋白具有43-55%的氨基酸序列同源性,序列存在较大差异。半定量RT-PCR分析表明,盐胁迫对RsDHNl的表达有明显上调作用。
     为了深入研究这些基因的功能,我们构建了红海榄耐盐相关基因RsDHNl和RsGLP基因的植物表达载体并进行植物转化,通过抗生素抗性筛选,得到了RsDHNl基因的烟草转化植株和RsGLP基因的水稻转化植株。两基因转化植株的耐盐性状将在后续试验中鉴定。在RsGLP护基因的GFP融合表达转基因植株的荧光细胞定位分析中,发现RsGL基因在细胞中分布在细胞壁位置。这些研究结果为鉴定红树耐盐基因和理解红树耐盐机理做了初步探讨,并为红树耐盐基因在培育耐盐作物品种的研究打下了良好的基础。
Mangroves grow in estuarine or intertidal zone of tropical and subtropical area. Due to growth in marine environment with high-salt and long-term endurance of high osmotic pressure, mangroves have evolved a set of salt-tolerant mechanism, which differs from that of terrestrial plants or other aquatic plants.Mangroves are referred as true halophytes.
     Rhizophora stylosa is one species of mangrove and belongs to Rhizophoraceae, Rhizophora. Rhizophora stylosa is a good target to study mechanism of plant salt-tolerance. In order to clone salt-tolerant-related genes of Rhizophora stylosa, a cDNA library has been constructed. Furthermore, Rhizophora stylosa were grown in fresh water or in saline respectively, differentially expressed genes at its roots under two different growth conditions were analysed by macroarray, some salt-tolerant related ESTs (expression sequence tag) were identified.
     Full-length sequence of a EST was identified by RT-PCR and RACE technology (rapid amplification of cDNA ends). It contained a 146bp 5'-UTR (untranslation region), a 43-bp 3'-UTR and an open reading frame encoding a protein of 241 amino acid. The deduced protein showed typical domain of plant dehydrin proteins contained conserved S and K segments, belonged to SKn class of plant dehydrin and was termed as RsDHNl.RsDHNl shared 43-55% homology with the SKn dehydrins of other plant species. Semi-quantative RT-PCR analysis showed that salt treatment significantly upregulated the expression of RsDHNl.
     Finally, RsDHNl expression vector was constructed and successfully transformed it into tobacco (Nicotiana tabacum). Additionally, an expression vector containing another salt-tolerant related gene, germin like proteins (RsGLP), was also constructed and successfully transformed it into tobacco and rice (Oryza sativa). RsGLP-GFP fusion expression shows that the protein locates in cell wall. The trangenic plants would be investigated in the late study. These results provide a preliminary explore to identify the salt-tolerance-related genes from Rhizophora stylosa for understanding the mechanism of mangrove, which lays a good foundation for characterization of mangrove salt-related genes and breeding salt-tolerant crops.
引文
[1]范吉星,邓用川,黄惜,et al.红海榄根部盐胁迫反应的比较蛋白质组学分析[J].Chinese Journal of Biochemistry and Molecular Biology,2009,1:72-77.
    [2]茹巧美,郑海雷,肖强.红树植物耐盐机理研究进展Ξ[J].云南植物研究,2006,28(1):78~84.
    [3]范吉星,邓用川,黄惜,et al.红海榄根部总蛋白质提取方法的改进和双向电泳体系的建立[J].湖南农业大学学报:自然科学版,2008,34(005):549-553.
    [4]肖岗,李聪.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(008):741~745.
    [5]Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning[J]. Proceedings of the National Academy of Sciences of the United States of America,1997, 94(7):3454.
    [6]Kishitani S, Takanami T, Suzuki M, et al. Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley[J]. Plant, Cell & Environment,2001,23(1):107~114.
    [7]Lilius G, Holmberg N, B L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase[J].Nature Biotechnology,1996,14(2):177~180.
    [8]Zhang J, Tan W, Yang X H, et al. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco[J].Plant cell reports,2008,27(6): 1113-1124.
    [9]Yang X, Liang Z, Wen X, et al. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants[J].Plant Molecular Biology, 2008,66(1):73~86.
    [10]Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis[J]. The Plant Journal,1997,12(3):557~569.
    [11]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for Δ 1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L.[J].Plant molecular biology,1997,33(5):857-865.
    [12]Verbruggen N, Villarroel R, Van M M. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana[J]. Plant physiology,1993,103(3):771.
    [13]Kishor P B, Hong Z, Miao G H, et al. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology,1995, 108(4):1387.
    [14]Thomas J C, Sepahi M, Arendall B, et al. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana[J]. Plant, Cell & Environment,2006,18(7): 801-806.
    [15]Sheveleva E V, Marquez S, Chmara W, et al. Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. High amounts of sorbitol lead to necrotic lesions[J].Plant physiology,1998,117(3):831.
    [16]Tarczynski M C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol[J].Science,1993,259(5094):508.
    [17]Tang W, Peng X, Newton R J.Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase[J].Plant Physiology and Biochemistry,2005,43(2):139~146.
    [18]Vernon D M, Tarczynski M C,Jensen R G, et al. Cyclitol production in transgenic tobacco[J].The Plant Journal,2002,4(1):199-205.
    [19]Sheveleva E, Chmara W, Bohnert H J, et al. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L[J].Plant Physiology,1997,115(3):1211.
    [20]董云洲,沈波.耐盐性ImT1基因表达载体的构建及其在酵母中的高效表达[J].中国农业科学,1997,30(004):50~55.
    [21]董云洲,王雪艳.转肌醇甲基转移酶基因烟草的耐盐性及其遗传分析[J].农业生物技术学报,2000,8(001):53-55.
    [22]Vogel G, Aeschbacher R A, M J, et al. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant[J].The Plant Journal,2002, 13(5):673-683.
    [23]Ge L F, Chao D Y, Shi M, et al. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J].Planta, 2008,228(1):191-201.
    [24]Jang I.C, Oh S J, Seo J S, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J].Plant physiology,2003, 131(2):516.
    [25]Cortina C, Culi M F. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis[J].Plant Science,2005,169(1):75-82.
    [26]Golldack D, Dietz K J. Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific[J].Plant physiology,2001,125(4):1643.
    [27]Gaxiola R A, Li J, Undurraga S, et al. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump[J].Proceedings of the National Academy of Sciences of the United States of America, 2001,98(20):11444.
    [28]Shi H, Zhu J K. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid[J]. Plant molecular biology,2002,50(3):543~550.
    [29]Fukuda A, Tanaka Y. Effects ofaABA, auxin, andagibberellin onatheaexpression ofagenes foravacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, andaNa+/H+ antiporter inabarley[J]. Plant Physiology and Biochemistry,2006,44(5-6):351~358.
    [30]Gaxiola R A, Rao R, Sherman A, et al. The Arabidopsis thaliana proton transporters, AtNhxl and Avpl,can function in cation detoxification in yeast[J]. Proceedings of the National Academy of Sciences, 1999,96(4):1480.
    [31]Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science,1999,285(5431):1256.
    [32]Zhang H X, Hodson J N, Williams J P, et al. Engineering salt-tolerant Brassica plants:characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(22):12832.
    [33]Zhao J, Zhi D, Xue Z, et al. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis[J].Journal of plant physiology, 2007,164(10):1377-1383.
    [34]Chen L H, Zhang B,Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)[J].Transgenic research, 2008,17(1):121-132.
    [35]Wang J, Zuo K, Wu W, et al. Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants[J].Biologia Plantarum,2004,48(4):509~515.
    [36]Uddin M I, Qi Y, Yamada S, et al. Overexpression of a new rice [Oryza sativa] vacuolar antiporter regulating protein OsARP improves salt tolerance in tobacco [Nicotiana tabacum][J].Plant and Cell Physiology (Japan),2008,:.
    [37]Qiao W H, Zhao X Y, Li W, et al. Overexpression of AeNHXl,a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants[J].Plant cell reports,2007,26(9):1663-1672.
    [38]Zhou S, Chen X, Zhang X, et al. Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1[J].Biotechnology letters, 2008,30(2):369-376.
    [39]Brini F, Hanin M, Mezghani I, et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants[J]. Journal of experimental botany,2007,58(2):301.
    [40]Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS 1 encodes a putative Na+/H+ antiporter[J].Proceedings of the National Academy of Sciences of the United States of America, 2000,97(12):6896.
    [41]Niu X, Damsz B, Kononowicz A K, et al. NaCl-induced alterations in both cell structure and tissue-specific plasma membrane H+-ATPase gene expression[J].Plant physiology,1996,111(3):679.
    [42]Wang B, Luttge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa[J].Journal of Experimental Botany,2001,52(365):2355.
    [43]Ghars M A, Parre E, Debez A, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+selectivity and proline accumulation[J]. Journal of plant physiology,2008,165(6):588~599.
    [44]Huang S, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Naxl,a gene for salt tolerance in durum wheat[J].Plant physiology,2006,142(4):1718.
    [45]Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J].1994,:.
    [46]Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics,2005,37(10):1141~1146.
    [47]Kasukabe N, Watanabe-Sugimoto M, Matsuoka K, et al. Expression and Ca2+dependency of plasma membrane K+ channels of tobacco suspension cells adapted to salt stress[J]. Plant and cell physiology,2006, 47(12):1674.
    [48]Su H, Golldack D, Zhao C, et al. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant[J].Plant physiology,2002,129(4):1482.
    [49]Espinosa-Ruiz A, Bell J M, Serrano R, et al. Arabidopsis thaliana AtHAL3:a flavoprotein related to salt and osmotic tolerance and plant growth[J].The Plant Journal,2002,20(5):529~539.
    [50]Obata T, Kitamoto H K, Nakamura A, et al.Rice shaker potassium channel OsKAT 1 confers tolerance to salinity stress on yeast and rice cells[J].Plant physiology,2007,144(4):1978.
    [51]Gupta A S, Heinen J L, Holaday A S,et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase[J].Proceedings of the National Academy of Sciences,1993,90(4):1629.
    [52]Van C W, Capiau K, Van M M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J].Plant Physiology,1996,112(4):1703.
    [53]Tsugane K, Kobayashi K, Niwa Y, et al. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification[J].The Plant Cell Online, 1999,11(7):1195.
    [54]赵凤云,郭善利,王增兰,et al.耐盐转基因植物研究进展[J].植物生理与分子生物学学报,2003,29(003):171-178.
    [55]Ushimaru T, Nakagawa T, Fujioka Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress[J].Journal of plant physiology,2006,163(11): 1179-1184.
    [56]Eltayeb A E, Kawano N, Badawi G H, et al. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol[J].Physiologia plantarum,2006, 127(1):57-65.
    [57]Eltayeb A E, Kawano N, Badawi G H, et al. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses[J].Planta, 2007,225(5):1255~1264.
    [58]Lee Y P, Kim S H, Bang J W, et al. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts[J].Plant Cell Reports,2007,26(5):591~598.
    [59]Roxas V P, Lodhi S A, Garrett D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant and Cell Physiology,2000,41(11): 1229.
    [60]Veena V S, Sopory S K. Glyoxalase I fromBrassica juncea:molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress[J].The Plant Journal,2002,17(4): 385-395.
    [61]卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志,2000,17(004):9-11.
    [62]Dure I I, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J].Biochemistry,1981,20(14):4162-4168.
    [63]Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1,from barley confers tolerance to water deficit and salt stress in transgenic rice[J].Plant physiology,1996,110(1): 249.
    [64]Kim H S, Lee J H,Kim J J, et al. Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum[J]. Gene,2005,344:115~123.
    [65]Han L M, Yu J N, Ju W F. Salt and drought tolerance of transgenic salvia miltiorrhiza Bunge with the TaLEAl gene.[J].Zhi wu sheng li yu fen zi sheng wu xue xue bao= Journal of plant physiology and molecular biology,2007,33(2):109.
    [66]Daniels M J, Mirkov T E, Chrispeels M J.The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP[J].Plant Physiology,1994,106(4):1325.
    [67]Kammerloher W, Fischer U, Piechottka G P, et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system[J].The Plant Journal,2003,6(2): 187-199.
    [68]Yamada S, Katsuhara M, Kelly W B,et al. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant[J].The Plant Cell Online,1995,7(8):1129.
    [69]Liu Q, Umeda M, Uchimiya H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein[J].Plant molecular biology,1994,26(6):2003~2007.
    [70]Johansson I, Karlsson M, Shukla V K, et al. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation[J].The Plant Cell Online,1998,10(3):451.
    [71]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J].Journal of Experimental Botany,2007,58(2):221.
    [72]Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J].Journal of Biological Chemistry,2000,275(3):1723.
    [73]王希庆,陈柏君,印莉萍.植物中的MYB转录因子[J].生物技术通报,2003,(002):22~25.
    [74]Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. The Plant Cell Online,1997,9(10):1859.
    [75]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J].The Plant Cell Online,2003,15(1):63.
    [76]Villalobos M A, Bartels D, Iturriaga G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB 10 transcription factor gene[J]. Plant physiology,2004,135(1):309.
    [77]S E, Hjellstr M, Fahleson J, et al. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions[J]. Plant molecular biology,1999, 40(6):1073-1083.
    [78]Frank W, Phillips J, Salamini F, et al. Two dehydration-inducible transcripts from the resurrection plantCraterostigma plantagineumencode interacting homeodomain-leucine zipper proteins[J]. The Plant Journal,2002,15(3):413-421.
    [79]Ohta M, Matsui K, Hiratsu K, et al. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression[J]. The Plant Cell Online,2001,13(8):1959.
    [80]Jung J, Won S Y, Suh S C, et al. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis[J].Planta,2007,225(3):575~588.
    [81]LU Y, LIU P, XU Z S, et al. Overexpression of W6 Gene Increases Salt Tolerance in Transgenic Tobacco Plants[J]. Acta Agronomica Sinica,2008,34(6):984~990.
    [82]Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. The Plant Cell Online,2001,13(5):1035.
    [83]Gao S, Zhang H, Tian Y, et al. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity[J].Plant cell reports,2008,27(11):1787~1795.
    [84]Liu Q, Umeda M, Uchimiya H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein[J]. Plant molecular biology,1994,26(6):2003~2007.
    [85]Kasuga M,Liu Q, Miura S, et al.Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Nature biotechnology,1999,17(3):287~291.
    [86]Gilmour S J, Sebolt A M, Salazar M P,et al.Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J].Plant Physiology,2000, 124(4):1854.
    [87]周涵韬,林鹏.盐胁迫下红树植物蛋白质的比较分析[J].海洋科学,2002,26(4):5-7.
    [88]周涵韬,林鹏.利用mRNA差别显示技术分离盐胁迫下红树植物白骨壤耐盐相关cDNA[J].生物工程学报,2002,18(001):51-54.
    [89]Sugihara K, Hanagata N, Dubinsky Z, et al.Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza[J].Plant and cell physiology,2000,41(11):1279.
    [90]熊玲媛,林涛.红树植物拟海桑钙调蛋白基因的克隆及分析[J].台湾海峡,2002,21(002):193-198.
    [91]Fu X, Huang Y, Deng S, et al. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts[J].Plant Science,2005,169(1):147~154.
    [92]Waditee R, Hibino T, Tanaka Y, et al. Functional characterization of betaine/proline transporters in betaine-accumulating mangrove[J].Journal of Biological Chemistry,2002,277(21):18373.
    [93]Hibino T, Meng Y L, Kawamitsu Y, et al. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh.[J]. Plant Molecular Biology,2001,45(3):353-363.
    [94]Takemura T, Hanagata N, Dubinsky Z, et al. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza[J]. Trees-Structure and Function,2002,16(2):94~99.
    [95]黄薇,方孝东,林栖凤,et al.红树植物秋茄中液泡膜内在蛋白(TIP)全长cDNA的克隆和表达分析[J].生物工程学报,2003,19(002):147-152.
    [96]祝艺懿.红树植物木榄BgPIP2基因的克隆和表达分析[J].2007,
    [97]Yamada A, Saitoh T, Mimura T; et al. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells[J]. Plant and Cell Physiology,2002,43(8):903.
    [98]张文惠,林涛,张红心,et al.红树林耐盐相关基因转化水稻的研究[J].西北植物学报,2006,26(006):1105-1109.
    [99]Zhou H, Lin Q, Pan W, et al. Transformation of the salt-tolerant gene of Avicennia marina into tobacco plants and cultivation of salt-tolerant lines[J], Chinese Science Bulletin,2004,49(5):456~461.
    [100]吴霞,焦改丽.棉花农杆菌介导法转化机理及研究进展[J].山西农业科学,2001,29(001):27-30.
    [101]徐春晖,夏光敏.农杆菌转化系统研究进展[J].生命科学,2002,14(004):223-225.
    [102]程振东,卫志明,许智宏.根癌农杆菌对甘蓝型油菜的转化及转基因植株的再生[J].植物学报,1994,36(9):657-663.
    [103]周玲艳,姜大刚,吴豪,et a1.潮霉素和PPT对水稻愈伤组织筛选效果的比较[J].仲恺农业技术学院学报,2003,16(002):10-15.
    [1041王劲,杜世章,刘君蓉.植物耐盐机制中的渗透调节[J].绵阳师范学院学报,2006,25(005):56-61.
    [105]王树耀,陈其军,王文龙,et al.转OsNHX1基因耐盐84K杨的培育[J].科学通报,2005,50(002):140-144.
    [106]徐远峰.红树cDNA文库的建立和红树耐盐相关基因的克隆.[D]海口:海南大学,2009.
    [107]Miyama M, Tada Y. Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress[J].Plant Molecular Biology,2008,68(1):119~129.
    [108]李永华, 尚玉萍,杨芳绒,et al.小麦甜菜碱醛脱氢酶基因在烟草中的转化及表达[J].河南农业大学学报,2007,41(001):12-14.
    [109]Toki S, Hara N, Ono K, et al.Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice[J].Plant Journal,2006,47(6):969-976.
    [110]Allagulova C R, Gimalov F R, Shakirova F M, et al. The plant dehydrins:structure and putative functions[J].Biochemistry (Moscow),2003,68(9):945-951.
    [111]Caramelo J J, Iusem N D. When cells lose water:Lessons from biophysics and molecular biology[J]. Progress in biophysics and molecular biology,2009,99(1):1~6.
    [112]Close T J. Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins[J]. Physiologia Plantarum,2006,97(4):795~803.
    [113]孙歆,雷韬,袁澍,et a1.脱水素研究进展[J].武汉植物学研究,2005,23(003):299~304.
    [114]Danyluk J, Perron A, Houde M, et al. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J].The Plant Cell Online,1998,10(4):623.
    [115]Choi D W, Zhu B, Close T J. The barley (Hordeum vulgare L.) dehydrin multigene family:sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo[J]. TAG Theoretical and Applied Genetics,1999,98(8):1234-1247.
    [116]Richard S, Morency M J, Drevet C, et al. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses[J].Plant Molecular Biology,2000,43(1):1~10.
    [117]Galvez A F, Gulick P J, Dvorak J. Characterization of the early stages of genetic salt-stress responses in salt-tolerant Lophopyrum elongatum, salt-sensitive wheat, and their amphiploid[J].Plant physiology, 1993,103(1):257.
    [118]Saavedra L, Svensson J, Carballo V, et al. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance[J].The Plant Journal,2005,45(2):237~249.
    [119]Thompson E W, Lane B G. Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos.[J]. Journal of Biological Chemistry, 1980,255(12):5965.
    [120]Lane B G, Bernier F, Dratewka-Kos E, et al. Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain Physarum spherulins.[J]. Journal of Biological Chemistry,1991,266(16):10461.
    [121]Lane B G, Dunwell J M, Ray J A, et al. Germin, a protein marker of early plant development, is an oxalate oxidase.[J].Journal of Biological Chemistry,1993,268(17):12239.
    [122]Junying C, Fuxi W, Xinjian C. Nucleotide sequence of promoter of triticum aestivum germin-like protein 3 (AY864922);小麦类发芽素蛋白3启动子序列(登录号:AY864922)[J].Molecular Plant Breeding,2005,:.
    [123]Andolfatto P, Bornhouser A, Bohnert H J, et al. Transformed hairy roots of Mesembryantemum crystallinum:gene expression patterns upon salt stress[J].Physiologia Plantarum,2006,90(4):708~714.
    [124]Michalowski C B, Bohnert H J. Nucleotide sequence of a root-specific transcript encoding a germin-like protein from the halophyte Mesembryanthemum crystallinum[J].Plant physiology,1992,100(1): 537.
    [125]彭琦,阮颖,张源,et al.小麦Germin蛋白的研究现状[J].作物研究,2006,20(005):568-571.
    [126]Dunwell J M, Purvis A, Khuri S.Cupins:the most functionally diverse protein superfamily?[J]. Phytochemistry,2004,65(1):7-17.
    [127]Dunwell J M, Khuri S, Gane P J. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily[J]. Microbiology and Molecular Biology Reviews,2000,64(1):153.
    [128]Bernier F, Berna A. Germins and germin-like proteins:plant do-all proteins. But what do they do exactly?[J].Plant physiology and biochemistry,2001,39(7-8):545-554.
    [129]Carter C, Thornburg R W. Germin-like proteins:structure, phylogeny, and function[J].Journal of Plant Biology,1999,42(2):97-108.
    [130]Lou Y, Baldwin I T. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores[J].Plant physiology,2006,140(3):1126.
    [131]Swart S, Logman T J, Smit G, et al. Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae[J], Plant molecular biology,1994,24(1):171-183.
    [132]Ono M, Sage-Ono K, Inoue M, et al. Transient increase in the level of mRNA for a germin-like protein in leaves of the short-day plant Pharbitis nil during the photoperiodic induction of flowering[J].Plant and Cell Physiology,1996,37(6):855.
    [133]Hurkman W J, Tanaka C K. Effect of salt stress on germin gene expression in barley roots[J].Plant Physiology,1996,110(3):971.
    [134]Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme[J].Plant molecular biology,1999,39(3):539~549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700