Li-Ni-Mn-O系锂离子电池正极材料纳米化及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池在电子系统、军事、航天和电动汽车等领域有着广泛的应用。正极材料的研制是锂离子电池技术的关键技术之一。虽然LiCoO_2由于容量高,可逆性和倍率性好成为商业化锂离子电池的主要正极材料,但其成本高,Co有毒,人们努力寻找一种可替换材料。
     材料的纳米化呈现了多种新型物理特性。纳米电极材料在晶体结构、颗粒形貌及电化学性能等方面均表现出特殊的行为,也引起了各国学者的广泛关注。基于对锂离子电池正极材料纳米化可能出现的物理现象的认识和剖析为目的,本文以LiNi_(0.5)Mn_(0.5)O_2为体系对象,采用柠檬酸辅助溶胶-凝胶法制备纳米锂离子电池正极材料,优化最佳制备工艺,并采用多种测试表征手段对其结构性能进行研究,深入探讨电极材料纳米化对电化学性能的影响。
     因此,本论文开展的研究内容包括:纳米结构形成方法与工艺、组成变化对结构和性能的影响。尝试通过将正极材料纳米化以后,在保持其具有较高容量及循环性能的基础上,通过细化晶粒,进而缩短锂离子在其内部的扩散路径,增大比表面积降低大电流下有效电流密度,从而提高材料的大电流倍率性能。实验在考察了不同的Li的掺入量,煅烧温度,保温时间等合成条件后,结果表明:初始原料中Li/(Mn+Ni)摩尔比为1.05,在900℃下煅烧10h所制得样品结构与电化学性能最佳。产物颗粒均匀,粒径在80nm左右。在2.5~4.5V之间,20mA/g的电流放电,体现出极佳的容量及循环保持率。与微米级材料相比,所合成纳米LiNi_(0.5)Mn_(0.5)O_2电极材料的大电流倍率性能有较大的改善。
     采用电势阶跃法测量所合成纳米LiNi_(0.5)Mn_(0.5)O_2电极中的表观锂离子扩散系数,从理论上验证了纳米化后晶粒尺寸减小对增大锂离子扩散系数的促进作用。由于实验中测得的具有最大表观扩散系数的材料并非粒子尺寸最小的材料,于是本文在校正了尺度这一单纯几何因素对扩散系数的影响后,进一步探讨了纳米化后晶粒减小对材料本征扩散系数的影响。分析表明,材料的表观扩散能力同时受材料粒子的尺寸因素以及本征扩散能力因素两者共同影响,其变化规律是它们加合的结果。因此,在纳米材料的制备过程中不能片面的强调小尺度,在降低尺度的同时还需兼顾小尺寸对材料的离子扩散和容量性能的影响,只有在尺度和性能两者之间找到平衡点才可能真正的提升电极的实际性能。
Lithium-ion batteries are widely applied in electronic system, space technique, electric vehicle and military field. The positive electrode material is one of the most important technologies for lithium-ion battery. LiCoO_2 is being used as the cathode material in the majority of commercial lithium-ion batteries with good capacity, reversibility and rate capability, but it suffers from relatively high cost and the toxicity of cobalt. Lots of efforts have been made to develop possible alternatives as cathode.
     Nanomaterials exhibit various new kinds of physical properties. Nanostructured electrodes have showed special properties in interior structure, morphology and electrochemical performance, which attract much attention by researchers all over the world. Based on purposes of realizing and analyzing the possible physical phenomena about nanostructured cathode of lithium-ion batteries, this thesis focus on LiNi_(0.5)Mn_(0.5)O_2 system and adopt citric acid assisted sol-gel method for synthesizing. The best synthesis techniques are optimized, the structure and properties of obtained sample is systematic studied by several characterization instruments. And the influence of nanostructured electrode toward the electrochemical performance is deeply explored.
     Hence, this thesis involves the contents as follows: Formation method and technique about nanostructured materials; Influence of components variety toward structure and property. We attempt to synthesize nanostructured cathode which have fine capacity and cycle performance initially, then improve its high rate performance through both shorten diffusion path of Li~+ in grains and enhance specific surface area to decrease effective current density. The experiment contrast synthesis factors such as initial addition amount of Li, sintering temperature and time. The experiment results show that the sample of LiNi_(0.5)Mn_(0.5)O_2 which was sintered for 10h at 900℃from Li/(Ni+Mn)=1.05 in start material exhibits the best interior structure and electrochemical performance. The particles are uniform with size of about 80 nm and exhibit fine capacity and cycling retention in the voltage range of 2.5-4.5V at a specific current of 20mA/g. Comparing with micro-sized cathode material, this nanostructured LiNi_(0.5)Mn_(0.5)O_2 has improved performance at high rate charge-discharge.
     The apparent diffusion coefficient of Li~+ in synthesized nanostructured LiNi_(0.5)Mn_(0.5)O_2 cathode was measured by potential step method. The promoting effect of decreased size of nano-crystallite toward the improvement of Li~+ diffusion coefficient is theoretically confirmed. Because the sample which has the highest apparent diffusion coefficient is not the minimum-sized one, this thesis correct the influence from size, which is geometrical factor, toward the apparent diffusion coefficient, then further discuss how decreased crystallite size influence intrinsic diffusion coefficient. Analysis shows that the apparent diffusion of materials is determined by both crystallite size factor and intrinsic diffusion factor. Its change law is the addition of those two factors. As a result, it is not optimum to unilaterally emphasize small crystallite size. The influence from small size toward ion diffusion and capacity of materials should also be considered during the synthesizing process. The improved practical performance of electrode would balance both crystallite size and property.
引文
[1]李景虹.先进电池材料.北京:化学工业出版社,2004.219
    
    [2]吴宇平,万春容,姜长印.锂离子二次电池.北京:化学工业出版社,2002.1
    
    [3] Wakinara, Yamamoto. Lithium ion batteries fundamentals and performance. Tokyo: Kodansha Ltd., 1998,1-125
    
    [4]吕鸣祥,黄长保,宋玉谨.化学电源.天津:天津大学出版社,1992.3060
    
    [5] P. W. Atkins, J. Beran. Chemie-einfach alles. Weiheim: Wiley-VCH, 1996. 54
    
    [6] T. Nagaura, 4~(th) International Rechargeable Batt. Seminar, Florida: 1990. 83
    
    [7]吴宇平,戴晓兵,马军旗.锂离子电池-应用与实践.北京:化学工业社,2004,74
    
    [8]温兆银.锂二次电池的现状与展望.电池工业,2003(10):45
    
    [9]解晶莹.电源技术,1997.5(21):1851
    
    [10]雷永泉.新能源材料.天津:天津大学出版社,2000:131-143
    
    [11]张胜利,余仲宝,韩周群.锂离子电池的研究与进展.电池工业,1999,4(1):26-28
    
    [12]钟俊辉.锂离子电池的正极材料.电源技术,1992,21(4):174-177
    
    [13]雷永泉,万群,石永康等.新能源材料[M].天津:天津大学出版社,2000,23
    
    [14]郭炳昆,徐徽,王友先等。锂离子电池[M].长沙:中南工业大学出版社,2002,2
    
    [15] Yoshio Nishi. Lithium ion secondary batteries-past 10 years and future. J. of Power Sources, 2001(100): 101-106
    
    [16]周恒辉,慈云航,刘吕炎.锂离子电池电极材料研究进展.化学进展,1998,14(1):85-94
    
    [17] Wang GX., Chen Y, Konstantinov K. Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources. 2002, 109(1): 142-147
    
    [18] T.Ohzuku, A. Ueda, Nagayama. Synthesis and charge-discharge properties of Li_(1+x)Ni_(1-x-y)Co_yO_(2-z)F_z. J. Electrochem. Soc, 1993, 140(2):2490
    
    [19] R.J. Gummow, A. Kock, M.M. Thackeray. Improved capacity rention in rechargeable 4V lithium manganese oxide (spinel) cells. Solid State Ionics, 1994,69:59-62
    
    [20] Andersson A.S., Kalska. B, Thomas. Lithium extraction/insertion in LiFePO: an X-ray diffraction and mossbauer spectroscopy study. Solid State Ionics, 2000, 130(1-2):41-52
    
    [21] K. Kang, Y. S. Meng, G Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 2006, 311: 977-980
    
    [22] Yoon W.S., Balasubramanian. Soft X-ray absorption spectroscopic study of a LiNi_(1/2)Mn_(1/2)O_2 cathode during charge. J. Electrochem. Soc, 2004,2(151): A246-A251
    
    [23] Reimers J.N., Rossen E., Joners C.D., et al. Novel gel-like process for synthesizing submicron Li_aNi_(8/10)Co_(2/10)O_2 powders used in lithium ion batteries. Solid State Ionics, 1993,(61):335
    
    [24] Naghash A.R. Lee J.Y. Lithium nickel oxyfluoride and lithium magnesium nickel oxide cathodes for lithium rechargeable batteries. Electrochimica Acta, 2001,(46):941-945
    
    [25] Shlyskhtin. O.A., Yoon. Y.S., Choi. S.H., et al. Freeze drying synthesis of LiNi_(1/2)Mn_(1/2)O_2 cathode materials. Electrochimica Acta, 2004, (50):505-509
    
    [26] Sun. Y.K., Yoon C.S., Lee YS. Electrochemical properties and structural characterization of layered LiNi_(1/2)Mn_(1/2)O_2 cathode material. Electrochimica Acta, 2003,(48):2589-2592
    
    [27] Wang X, Zhou F, Zhao X, et al. Farbrication and characterization of nanosized single-crystalline LiNi_(1/2)Mn_(1/2)O_2. Journal of Crystal Growth, 2004, (267): 184-187
    
    [28] Yang X.Q., Mcbreen. J, Yoon W.S., et al. Crystal structure changes of LiNi_(1/2)Mn_(1/2)O_2 cathode materials during charge and discharge studies by synchrotron based in situ XRD. Electrochemistry Communication, 2002,4(8):649-654
    
    [29] Na S.H.,Kim H.S., Moon S.I. A new synthetic route of LiNi_(1/2)Mn_(1/2)O_2 as the cathode material of secondary lithium batteries. Electrochimica Acta, 2004,(50):449-452
    
    [30] Shlyakhtin O.A., Yoon Y.S., Choi S.H., et al. Freeze drying synthesis of LiNi_(1/2)Mn_(1/2)O_2 cathode materials. Electrochimica Acta, 2004,(50):505-509
    
    [31]钟辉,许惠,汪文成等.层状LiNi_(1/2)Mn_(1/2)O_2正极材料的合成与电性能研究.化学学报, 2004,62(12):1123-1127
    
    [32] M.Yoshio, Y. Todorov, K. Yamato, et al. Preparation of LiyMnxNi1-xO2 as a cathode for lithium-ion batteries. J. Power Sources, 1998, 74(1):46-53
    
    [33] W.S. Yoon, YPaik, X.Q.Yang, et al. Investigation of the local structure of the LiNi_(0.5)Mn_(0.5)O_2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem. Solid-State Lett, 2002,5(11): A263-A266
    
    [34] Z. Lu,D.D. MacNeil, J.R. Dahn. Layered cathode materials Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_2 for lithium-ion batteries. Electrochem. And Solid-State Lett., 2001,4(11):A191-A194
    
    [35]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002:45-58
    
    [36]李飞,胡克鳌,李建林等.凝胶燃烧法合成LiCoO2超细粉体的研究.金属学报, 2002,38(2):140-144
    
    [37] Yoshiom M, Noguchih H, Migashita T. et al., 3 V or 4 V Li-Mn composite as cathode in lithium batteries prepared by LiNO3 method as lithium source [J]. J Power Sources, 1995, 54(2): 483-487.
    
    [38]夏熙,努丽燕娜,郭再萍.溶胶凝胶法制备纳米LiCoO_2.应用化学,1999,16(4):66-69
    
    [39]梁宏莹,邱新平,何志奇等.一种锂过渡金属氧化物的制备方法.第二十六届全国化学与 物理电源学术年会论文集.厦门,2004:A09
    
    [40]唐新村,何莉萍,陈宗璋等.低热固相反应法制备锂离子电池正极材料LiCoO_2.功能材料, 2002,33(2):190-192
    
    [41] Lazzari M, Scrosati B, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem Soc, 1980,127:773
    
    [42]李阳兴,姜长印,万春荣等.喷雾干燥法制备LiCoO_2超细粉.无机材料学报,1999,14 (4):657-660
    
    [43] Y.X. Li, C.R Wan, Y P Wu, et al. Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method. J. Power Sources, 2000 ,85 :294~298
    
    [44] K. Konstantinov, J. Wang, S. Bewlay, et al. Spray pyrolysis technique for fabrication of nano-sized spherical agglomerated oxide powders for batteries. Journal of Metastable and Nanocrystalline Materials, 2003,15216 :325-3301
    
    [45] Pietro B D, Patriarca M, Scrosati B, et al. On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries[J]. J. Power Sources, 1982, 8:289-299
    
    [46] Y K Zhou, C M Shen, H L Li. Synthesis of high-ordered LiCoO_2 nanowire arrays by AAO template. Solid State Ionics, 2002,146:81-86
    
    [47]刘埃琳,刘云飞,汪英杰等.一种锂离子电池纳米正极材料LiCoO_2的制备方法.中国 专利:00134039,2000
    
    [48] P P Prosini, M Carewska, S Scaccia, et al. Long-term cyclability of nanostructured LiFePO_4. Electrochemica Acta, 2003,48:4205-4211
    
    [49]郑绵平,文衍宣.一种制备磷酸铁锂的湿化学方法.中国专利:03102665,2003
    
    [50] Meng Y S., Wu Y W, Hwang B J, Li Y, Ceder G Combining Ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi_(1/3)Fe_(1/6)Co_(1/6)Mn_(1/3)O_2 [J]. J Eelectrochem Soc, 2004,151(8): A1134-A1140.
    
    [51]张中太,卢俊彪,唐子龙等.反相插锂法制备多晶LiFePO_4纳米粉体材料.中国专 利:03147761,2003
    
    [52]黄穗阳,徐瑞松.锂电池正极材料及其制备方法.中国专利:03113934,2003
    
    [53] A. K. Padhi, K. S. Naanjundaswamy, C. Masquelier et al. Effect of Structure on the Fe~(3+)/Fe~(2+) Redox Couple in Iron Phosphates. J. Electrochemical Soc.1997, 144(5):1609-1613
    
    [54]尤金跨,杨勇,舒东等.锂离子蓄电池纳米电极材料研究.电化学,1998,4(1):94-100
    
    [55] Y.K. Sun. Synthesis and electrochemical studies of spinel Li_(1.03)Mn_2O_4 cathode materials prepared by a sol-gel method for lithium secondary batteries. Solid State Ionics, 1997:115
    
    [56] Y M Hon ,S P Lin , K Z Funga et al. Synthesis and characterization of nano-LiMn_2O_4 powder by tartaric acid gel process. Journal of the European Ceramic Society, 2002,22(5):653~660
    
    [57] M. Nishizawa, K. Mukai, S. Kuwabata, et al. Template synthesis of polypyrrole-coated spinel LiMn_2O_4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc., 1997,144:1923-1927
    
    [58] J. Zhao, Q.Y. Gao, Y. Yang. Template Synthesis of nanostructured electrode materials and its electrochemical performance. Electrochem., 2000, 6(4):393-398
    
    [59] Y K Zhou, C M Shen, J Huang. Synthesis of high-ordered LiMn_2O_4 nanowire arrays by AAO template and its structural properties. Mater. Sci. & Eng.,2002,B95 :77-82
    
    [60]卫敏,张杰,杨文胜等.纳米尖晶石LiMn_2O_4的制备与电化学性能表征.无机化学学 报,2002,18(7):713-717
    
    [61]杨书廷,张焰峰,吕庆章等.纳米级LiMn_2O_4尖晶石合成及电化学性能研究.无机材料学 报,2000,15(2):309-314
    
    [62] Dudney. Nanocrystalline Li_xMn_(2-y)O_4 cathodes for solid-state thin-film rechargeable lithium batteries. J. Electrochem. Soc., 1999,146(7):2455-2464
    
    [63] M Q Wu, A Chen, R Q Xu, et al. Low temperature hydrothermally synthesized nanocrystalline orthorhombic LiMnO_2 cathode material for lithium-ion cells. Microelectronic Engineering, 2003,66(1-4):180-185
    
    [64] D. Im, A. Manthiram. Nanostructured Lithium Manganese Oxide Cathodes Obtained by Reducing Lithium Permanganate with Methanol. J. Electrochem. Soc, 2002,149(8):A1001-A10071
    
    [65] D Im,A Manthiram. Nanostructured Lithium Manganese Oxide Cathodes Obtained by a Reduction of Aqueous Lithium Permanganate with Hydrogen. J. Electrochem. Soc.,2003 ,150(6) :A742-A746
    
    [66] Y C Zhang, H Wang, B Wang, et al. Low temperature synthesis of nanocrystalline Li_4Mn_5O_(12) by a hydrothermal method. Materials Research Bulletin, 2002 ,37 (8):1411-1417
    
    [67] J. Kim, A. Manthiram. Synthesis and Lithium Intercalation Properties of Nanocrystalline Lithium Iron Oxides. J. Electrochem. Soc.,1999 ,146 (12) :4371-4374
    
    [68] Y S Lee, S Sato, Y K Sun, et al . Synthesis of nano-crystalline LiFeO_2 material with advanced battery performance. Electrochem. Commun. ,2002 ,4(9) :727-7311
    
    [69] Y S Lee, S Sato, Y K Sun, et al. A new type of orthorhombic LiFeO_2 with advanced battery performance and its structural change during cycling. J. Power Sources ,2003 ,119-121 :285-2891
    
    [70] Y S Lee, S Sato, Y K Sun, et al. Structural change and capacity loss mechanism in orthorhombic Li/LiFeO_2 system during cycling. Electrochem. Commun., 2003 ,5(7) :549-5541
    
    [71] Y T Lee, Y S Lee, Y Sato, et al. Bioelectrocatalysis, powerful means of connecting electrochemistry to biochemistry and biotechnology. Electrochemistry, 2003 ,71 (2) :1042-10451
    
    [72] Ohzuku T,Veda A and Nagayama M.Electrochemistry and structural chemistry of LiNiO2(R3m) for 4V secondary lithium cells[J]. J. Electrochem. Soc. 1996, 140(7): 1862-1869.
    
    [73] Y K Zhou, J Huang, C M Shen, et al. Synthesis of highly ordered LiNiO_2 nanowire arrays in AAO templates and their structural properties. Mater. Sci.&Eng. A ,2002 ,335 (122) :260-2671
    
    [74] M Q Wu ,A Chen ,R Q Xu, et al . Densification of combustion/micropyretic synthesized products by heating treatment of green compacts. Mater. Sci. & Eng. ,2003 ,B99(1-3) :336-339.
    
    [75] Naoaki Kumagai, Takayuki Fujiwara, Kazuo Tanno, et al. Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1996. 143(3): 1007-1013
    
    [76] Tsutomu Ohzuku, Takayuki Yanagawa, Masaru Koughchi, et al. Innovative insertion material of LiAI_(1/4)Ni_(3/4)O_2(R3m) for lithium Ion (shuttle clock) batteries. J. Power Sources, 1997, 68:131
    
    [77]孙峰,袁中直,李伟善.低温固相反应法在纳米电极材料合成中的应用.辽宁化工, 2003,32(3):122-1251
    
    [78] MBenaissa, MJoseyacaman, T D Xiao, et al. Microstructural study of hollandite-type MnO_2 nano-fibers. Appl. Phys. Lett. ,1997 ,70 :2120-21221
    
    [79]尤金跨,杨勇,舒东等.锂离子电池新型正极材料——二氧化锰纳米纤维嵌锂行为的研究. 电源技术,1999,23(3):155-1571
    
    [80] Demlasc, Peres J P, Rougier A., et al. On the behavior of the LiNiO_2 system: an Electrochemical and structural overview. J. Power Sources, 1997, 68:120
    
    [81] Gummow R J, LilesD C, Thackeray M M.Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel[J]..Mater Res Bull, 1993,28:1249-1256.
    
    [82]李亚栋,王训.一种合成不同晶型二氧化锰一维单晶纳米线的方法.中国专 利:02100707,20021
    
    [83] W C West, N V Myung, J F Whitacre, et al. Electrodeposited amorphous manganese oxide nanowire arrays for high energy and power density electrodes. J. Power Sources ,2004 ,126 (122) :203-2061
    
    [84] C J Patrissi, C R Martin. Nanocomposites of V_2O_5 Aerogel and RuO_2 as Cathode Materials for Lithium Intercalation. J. Electrochem. Soc, 1999 , 146 :3176~3180.
    
    [85] Liu Z L, Yu A S, Lee J Y. Cycle life improvement of LiMn_2O_4 cathode in rechargeable lithium batteries, J. Power Sources, 1998, 74 (2):228-233
    
    [86] S Nordlinder, K Edstroem, T Gustafsson. Magnetic Properties of Fe- and Mn-Implanted SiC. Electrochemical Solid&State Letters, 2001 ,4 :1291
    
    [87] A N Mansour, P H Smith, WMBaker, et al. Lateral Ionic Conduction in Planar Array Fuel Cells. J. Electrochem. Soc, 2003 ,150 (4) :A403-A4131
    
    [88] MMalta, GLouarn, N Errien, et al. Nanofibers composite vanadium oxide/polyaniline: synthesis and characterization of an electroactive anisotropic structure. Electrochem. Commun. ,2003 ,5(12):1011-10151
    
    [89] Prado G, Rougier A, Fournes L, Delmas C, Electrochemical Behavior of Iron-Substituted Lithium Nickelate [J]. J. Electrochem Soc. 2000, 147(8): 2880-2887.
    
    [90] D Larcher, C Masquelier, D Bonnin, et al. Effect of Particle Size on Lithium Intercalation into a-Fe_2O_3. J. Electrochem. Soc, 2003,150(1):A133-A1391
    
    [91] TMatsumura, N Sonoyama, R Kanno. Lithiation mechanism of new electrode material for lithium ion cells-the a-Fe_2O_3-SnO_2 binary system. Solid State Ionics, 2003, 158:253
    
    [92] C C Han, H S Kim, M S Soung. Electrochemical properties of NiS as a cathode material for rechargeable lithium batteries prepared by mechanical alloying. J. Alloys &Compounds, 2003,349:290
    
    [93]李泓,李晶泽,师丽红等.锂离子电池纳米材料研究.电化学,2000,6(2):131-1451
    
    [94] K Kanamura, H sakaebe, Z Takehara. Application of FeOCl derivatives as cathode materials for secondary lithium battery: Ⅱ. Comparison of the discharge and charge characteristics of γ-FeOOH prepared from the intercalation compound of FeOCl and 4-aminopyridine with those of FeOOH intercalated with aniline (a-FeOOH(AN)). J. Power Sources, 1992,40:2911
    
    [95] KAmine, H Yasuda, M yamachi. β-FeOOH, a new positive electrode material for lithium secondary batteries. J. Power Sources, 1999,81282 :2211
    
    [96] GJain, C J Capozzi, J J Xu. Nanosized Amorphous Iron Oxyhydroxide for Reversible Lithium Intercalation. J. Electrochem. Soc, 2003,150:A806-8101
    
    [97]秦启宗,傅正文,储艳秋等.一种用于锂离子电池的纳米阳极材料及其制备方法.中国专 利:02136299,20021
    
    [98] Q. Wu, X.L. Li, M. Yan, et al. Electrochemical properties of submicro-sized layered LiNi_(0.5)Mn_(0.5)O_2. Electrochemistry Communications, 2002, 5: 878-882
    
    [99] Boris Markovsky, Daniela Kovacheva, Yosef Talyosef, et al, studies of nanosized LiNi_(0.5)Mn_(0.5)O_2-layered compounds produced by self-combustion reaction as cathodes for lithium-ion batteries, Electrochemical and Solid-State Letters, 2006, 9(10):A449-A453
    
    [100] J.B. Bates, N.J. Dudney, B.J. Neudecker, et al. Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147 (1) (2000) 59-70.
    
    [101] K. Amine, H. Tukamoto, H. Yasuda, et al. A new three-volt spinel Li_(1-x)Mn_(1.5)Ni_(0.5)O_2 for secondary lithium batteries. J. Electrochemical Soc, 1996, 143(5):1607~1613
    
    [102] K.M. Shaju, G. V. Subba Rao, B.V.R. Chowdari. X-ray photoelectron spectroscopy and electrochemical behavior of 4V cathode Li(Ni_(1/2)Mn_(1/2))O_2. Electrochimica Acta, 2003, 48(11): 1505-1514
    
    [103] S.H. Rang, J. Kim, M.E. Stall, et al. Layered Li(Ni_(0.5-x)Mn_(0.5-x)M_(2x))O_2 (M=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources, 2002, 112(1):41-48
    
    [104] K.M. Shaju, G.V. Subba Rao, B.V.R. Chwdari. Performance of layered Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode for Li-ion batteries. Electrochimica Acta, 2002, 48(2):145-151
    
    [105] K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari. Spinel Phases, LiM_(1/6)Mn_(1/6)O_4 (M=Co,CoAl, CoCr, CrAl), as cathodes for lithium-ion batteries. Solid State Ionics, 2002, 148(3-4): 343-350
    
    [106] M. E. Spahr, P. Novak, B. Sehnyder, et al. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J. Electrochemical Soc, 1998,145(4):1113-1121
    
    [107] N. Treuil, C. Labrugere, M. Menetrier, et al. Relationship between chemical bonding nature and electrochemical property of LiMn_2O_4 spinel oxides with various particle sizes: "Electrochemical Grafting" concept. J. Physical Chemistry B, 1999,103(2):2100-2106
    
    [108] E. Regan, T. Groutso, J.B. Metson, et al. Surface and bulk composition of lithium manganese oxides. Surface and Interface Analysis, 1999, 27(12): 1064-1068
    
    [109] K.M. Shaju, GV. Subba Rao, B.V.R. Chowdari. Lithiated O2 phase, Li_((2/3)+x)(Co_(0.15)Mn_(0.85))O_2 as cathode for Li-ion batteries. Solid State Ionics, 2002, 152-153:69-81
    
    [110] T. Triksson, T. Gustafsson, J.O. Thomas. Surface structure of LiMn_2O_4 electrodes. Electrochemical and Solid-State Letters, 2002, 5(2):A35-A38
    
    [111] L. Hernan, J. Morales, L. Sanchez, et al. Sol-gel derived Li-V-Mn-O spinels as cathodes for rechargeable lithium batteries. Solid State Ionics, 2000, 133(3): 179-188
    
    [112] Sang-Ho Park, Seung-Taek Myung, Sung-Woo Oh, et al, Ultrasonic spray pyrolysis of nano crystalline spinel LiMn_2O_4 showing good cycling performance in the 3 V range, Electrochimica Acta, 2006, 51:4089-4095
    
    [113] Arico. A.S., Bruce. P, Scrosati. B, et al, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, 2005,4:366
    
    [114]潘春跃,金乐,江文辉等.容量间歇滴定法测定LiCoO_2中Li~+的固相扩散系数.中南大 学学报(自然科学版),2006.37(9):54
    
    [115]金乐,唐新村,潘春跃等.LiCoO_2中锂离子固相扩散系数随循环次数的变化.无机化学 学报,2007.23:1238
    
    [116]曲涛,田彦文,翟玉春.采用PITT与EIS技术测定锂离子电池正极材料LiFePO_4中 锂离子扩散系数.中国有色金属学报,2007.17:1255
    
    [117]杨赛,黄可龙,刘素琴等.LiFePO_4在饱和LiNO_3溶液中的锂化行为.无机化学学报, 2007.23:141
    
    [118]刘素琴,李世彩,黄可龙.Li_3V_2(PO4)_3电极过程及其锂离子脱嵌动力学研究(Ⅰ).化学学 报,2007.65:10
    
    [119] Hong J., Wang C. S. and Kasavajjula U., Kinetic behavior of LiFeMgPO_4 cathode material for Li-ion batteries, J. Power Sources, 2006, 162:1289
    
    [120] Ojczyk W., Marzec J., Dygas J., et al, Structural and transport properties of LiFe_(0.45)Mn_(0.55)PO_4 as a cathode material in Li-ion batteries, Materials Science-Poland, 2006, 24:103
    
    [121] Nobili F., Dsoke S., Croce F., et al, An ac impedance spectroscopic study of Mg-doped LiCoO_2 at different temperatures: electronic and ionic transport properties, Electrochim Acta, 2005,50:2307
    
    [122] I. Uchida, H. Fujiyoshi and S. Waki, Microvoltammetic studies on single particles of battery active materials, J. Power Sources, 1997, 68:139
    
    [123] K. Dokko, M. Umeda, T. Itoh, et al, Microvoltammetry of lithium nickel oxide single particles: deterioration of the redox behavior by water molecules, Electrochemistry communications, 2000, 2:717
    
    [124] K. Dokko, S. Horikoshi, T. Itoh, et al, Microvoltammetry for cathode materials at elevated temperatures: electrochemical stability of single particles, J. Power Sources, 2000,90:109
    [125] K. Dokko, M. Nishizawa, S. Horikoshi, et al, In situ observation of LiNiO_2 single-particles fracture during Li-ion extraction and insertion, Electrochemical and Solid-State Letters, 2000,3:125
    
    [126] K. Dokko, M. Mohamedi, Y. Fujita, et al, Kinetic characterization of single particles of LiCoO_2 by ac impedance and potential step methods, J. Electrochem. Soc, 2001, 148:A422
    
    [127] H. S. Carslaw, J. C. Jaeger, Conduction of heat in Solid, 2nd ed.; Clarendon Press., Oxford, England, 1986, 233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700