用户名: 密码: 验证码:
LiFePO_4/C正极材料的溶胶凝胶制备及其结构与性能的关键影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石结构LiFePO_4因低廉的价格、无污染且循环性能、安全性能优良等优点而成为极具开发和应用潜力的新一代锂离子电池用正极材料。但该材料较低的电导率及锂离子扩散能力使其在动力型电池用正极材料上受到极大限制,因而改善LiFePO_4的大电流放电能力是目前锂离子电池研究领域的热点之一,也是实现LiFePO_4在动力电池上实用化的关键。本文采用溶胶凝胶法合成LiFePO_4/C材料,采用XRD/Rietveld、SEM、TEM、元素分析、BET、Raman光谱等材料分析方法以及恒电流充放电、循环伏安(CV)、电化学阻抗谱(EIS)、等电化学测试技术,对合成过程中采用的铁源(Fe~(3+)和Fe~(2+))、络合剂及碳源(柠檬酸和乙二醇)、溶胶pH值、干凝胶的预处理、烧结的温度、烧结时间和烧结气氛(氮氢混合气中氢气含量)等关键工艺参数对LiFePO_4/C材料结构和电化学性能的影响进行了系统研究,获得了高性能LiFePO_4/C材料的制备工艺和参数,揭示了LiFePO_4/C材料的结构和倍率性能的关系及LiFePO_4/C材料的结构和电化学性能(尤其是高倍率性能)的关键影响因素。
     研究结果表明,本文溶胶凝胶法的制备工艺及参数能成功制备适量碳包覆的LiFePO_4/C正极材料,材料的结构和形貌可通过改变相应制备工艺和参数进行调节和优化。通过调节和控制制备工艺,可获得原位碳包覆量较少(~2 wt.%)、颗粒细小和具有适量高电导率的铁磷化合物含量的LiFePO_4/C材料。研究获得的LiFePO_4/C正极材料其0.1 C、1 C、5 C和10 C容量可分别达到157、124、92和70 mAh/g。
     本文研究的LiFePO_4/C正极材料均具有良好的循环稳定性,但其倍率性能受材料中LiFePO_4活性物质的含量、颗粒尺寸及其分散程度、铁磷化合物含量和LiFePO_4的结晶完整性等因素的影响,各因素的作用程度还与材料的放电倍率有关。在较低的放电倍率下,LiFePO_4的含量、结晶的完整性和颗粒尺寸对其容量起到关键作用,LiFePO_4结晶完整、颗粒尺寸较细小及较高的活性物含量是LiFePO_4/C材料具有较高容量的关键。随着放电倍率的增加,适量高电导率的铁磷化合物相可显著提高LiFePO_4的利用率,对提高其倍率性能起到关键作用。在LiFePO_4/C具有较小颗粒尺寸的条件下,少量的Fe_2P相(~2wt.%)即可明显提高材料的高倍率性能。即使在样品颗粒尺寸相对较大时,适量的Fe_2P也能较明显地改善材料的高倍率性能。在一定范围内,Fe_2P相含量的增加有利于提高LiFePO_4的倍率性能,但Fe_2P含量过高,降低了有效活性物质的质量,使材料的容量降低,其含量宜低于10 wt.%。交流阻抗谱及循环伏安测试结果显示,材料的动力学性能也随LiFePO_4/C颗粒的细化和原位铁磷化合物相的适量增加而明显提高,与其较高放电倍率下的容量特性相一致。
Olivine structured LiFePO_4 is a promising cathode material for the next generation of lithium ion batteries for its low cost,environmental benign,good cycling performance and safety,etc.However,its intrinsic poor electrical conductivity and diffusion capability of lithium ion greatly hinder its application in the high power rechargeable battery.The improvement of its high-rate performance is key important to realize the application in high power rechargeable batteries.In this thesis,a sol-gel method was used to synthesize carbon coated LiFePO_4(LiFePO_4/C) materials.The effects of the synthesis technique and parameters, including the valence of the iron source(Fe~(3+) and Fe~(2+)),chelating agents and carbon sources (citric acid and ethylene glycol),the pH value of the sol,pre-treatment of the dried gel,the sintering temperature,time and atmosphere(N_2 with different content of H_2) on the structure and electrochemical properties of the LiFePO_4/C were systematically investigated by means of XRD/Rietveld,SEM,TEM,elemental analysis,etc.and galvanostatic charge-discharge, EIS,CV etc.The relationships between the structure and electrochemical properties of LiFePO_4/C materials,and the key factors that influence the structure and the rate capability, especially the high-rate capability of LiFePO_4/C,have been revealed.
     The results of the investigation show that LiFePO_4/C materials can be successfully prepared by the present synthesis parameters,and the structure and morphology of the materials have been optimized by modifying the synthesis parameters.LiFePO_4/C materials with low amount of carbon coating(2 wt%),small particle size and suitable amount of high electrical conductive phases of iron phosphides have been obtained,showing capacities of 157、124、92 and 70 mAh/g at 0.1 C,1 C,5 C and 10 C,respectively.
     The LiFePO_4/C materials in the present work all display good cycling performance.The rate capacities are affected by the content,the crystallization,the particle size and its distribution of LiFePO_4,and the content of iron phosphides.However,the above factors act differently on the LiFePO_4/C materials at various discharge rates.At the low discharge rate, the content,crystallization and the particle size of LiFePO_4 play key effect on the capacity. High content,well crystallization and small particle size of LiFePO_4 lead to the high capacity. But with the discharge rate increasing,certain amount of high electronic-conductive iron phosphides becomes key important on the improvement of the high rate capability.Iron phosphides can greatly enhance the utilization of LiFePO_4 at high discharge rate.Combing with the small size of LiFePO_4/C,low amount of Fe_2P of 2 wt%can obviously increase the rate capability.Even when the particle size of LiFePO_4 is a bit larger,certain content of Fe_2P can also improve the high rate performance pronouncedly.The high rate capability of LiFePO_4/C material increases with the increase of the Fe_2P content within a certain range. However,too much Fe_2P decreases the capacity due to the decrease of the fraction of the active material of intercalation/deintercalation of lithium ion.EIS and CV studies confirm that the kinetic property of LiFePO_4/C is obviously improved by the reduction of the particle size and the proper amount of iron phosphides,which is consistent with the high rate performance of LiFePO_4/C.
引文
[1]Y.Nishi.Lithium ion secondary batteries;past 10 years and the future.Journal of Power Sources,2001,100(1-2):101-106.
    [2]M.Winter,R.J.Brodd.What are batteries,fuel cells,and supercapacitors? Chemical Reviews,2004,104(10):4245-4269.
    [3]N.Amdouni,H.Zarrouk,F.Soulette,C.Julien.LiAl_yCo_(1-y)O_2(0.0<=y<=0.3)intercalation compounds synthesized from the citrate precursors.Materials Chemistry and Physics,2003,80(1):205-214.
    [4]M.S.Whittingham.Electrical energy storage and intercalation chemistry.Science,1976,192:1126-1127.
    [5]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践.北京:化学工业出版社,2004.
    [6]K.Mizushima,K.C.Jones,P.J.Wiseman,J.B.Goodenough.Li_xCoO_2(0<x<1):A new cathode material for batteries of high energy density.Materials Research Bulletin,1980,15:783.
    [7]J.M.Paulsen,J.R.Muller-Nehaus,J.R.Dahn.Layered LiCoO_2 with a different oxygen stacking(O_2 structure) as a cathode material for rechargeable lithium batteries.Journal of the Electrochemical Society,2000,147(2):508-516.
    [8]Y.K.Sun,H.I.Oh,S.A.Hong.Synthesis of ultrafine LiCoO_2 powders by the sol-gel method.Journal of Materials Science,1996,31:3617.
    [9]L.Predoana,A.Barau,M.Zaharescu,H.Vassilchina,N.Velinova,B.Banov,A.Momchilov.Electrochemical properties of the LiCoO_2 powder obtained by sol-gel method.Journal of the European Ceramic Society,2007,27(2-3):1137-1142.
    [10]K.Y.Choi,K.D.K.Kim,J.W.Yang.Optimization of the synthesis conditions of LiCoO_2for lithium secondary battery by ultrasonic spray pyrolysis process.Journal of Materials Processing Technology,2006,171(1):118-124.
    [11]Y.X.Li,C.R.Wan,Y.P.Wu,C.Y.Jiang,Y.J.Zhu.Synthesis and characterization of ultrafine LiCoO_2 power by a spray-drying method.Journal of Power Sources,2000,85:294.
    [12]Z.S.Peng,C.R.Wan,C.Y.Jiang.Synthesis by sol-gel process and characterization of LiCoO_2 cathode materials.Journal of Power Sources,1998,72(2):215-220.
    [13].T.K.Fey,K.S.Chen,B.J.Hwang,Y.L.Lin.High-resolution images of ultrafine LiCoO_2powders synthesized by a sol-gel process.Journal of Power Sources,1997,68(2):519-523.
    [14]D.Huang.Solid solution:new cathodes for next generation lithium-ion batreries.Advarnced Battery Technology,1998,11:23-27.
    [15]H.S.Kim,T.K.Ko,B.K.Na,W.I.Cho,B.W.Chao.Electrochemical properties of LiM_xCo_(1-x)O_2[M=Mg,Zr]prepared by sol-gel process.Journal of Power Sources,2004,138(1-2):232-239.
    [16]S.Castro-Garcia,A.Castro-Couceiro,M.A.Senaris-Rodriguez,F.Soulette,C.Julien.Influence of aluminum doping on the properties of LiCoO_2 and LiNi_(0.5)Co_(0.5)O_2 oxides.Solid State Ionics,2003,156(1-2):15-26.
    [17]A.Deptula,W.Lada,T.Olczak,D.Wawszczak,B.Sartowska,K.C.Goretta.Formation of LiNi_xCo_(1-x)O_2 by decarbonization of organic gel precursors through treatment with nitric acid and hydrogen peroxide.Ceramics International,2007,33(8):1617-1621.
    [18]C.M.Julien,A.Amdouni,S.Castro-Garcia,A.Selmane,S.Rangan.LiCo_(1-y)M_yO_2positive electrodes for rechargeable lithium batteries.II.Nickel substituted materials grown by the citrate method.Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006,128(1-3):138-150.
    [19]A.Subramania,N.Angayarkanni,S.Lakshmidevi,R.Gangadharan,T.Vasudevan.A microwave-induced combustion method for the synthesis of nano-crystalline Ni-and Mn-doped LiCoO_2 for Li-ion battery.Bulletin of Electrochemistry,2005,21(9):411-413.
    [20]D.G.Tong,Y.Y.Luo,Y.He,X.Y.Ji,J.L.Cao,L.X.Tang,A.D.Tang,K.L.Huang,Q.Y.Lai.Effect of Ga doping on the structural,electrochemical and thermal properties of LiCo_(0.975)Ga_(0.025)O_2 as cathode materials for lithium ion batteries.Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006,128(1-3):220-228.
    [21]J.Cho,C.S.Kim,S.I.Yoo.Improvement of structural stability of LiCoO_2 cathode during electrochemical cycling by sol-gel coating of SnO_2.Electrochemical and Solid State Letters,2000,3(8):362-365.
    [22]G.T.K.Fey,C.Z.Lu,J.D.Huang,T.P.Kumar,Y.C.Chang.Nanoparticulate coatings for enhanced cyclability of LiCoO_2 cathodes.Journal of Power Sources,2005,146(1-2):65-70.
    [23]G.E.T.K.Fey,J.D.Huang,T.P.Kumar,Y.C.Chano.Zirconia-coated lithium cobalt oxide as a long-cycling cathode for lithium batteries.Journal of the Chinese Institute of Engineers,2005,28(7):1139-1151.
    [24] T. Fang, J.G. Duh, S.R. Sheen. LiCoO_2 cathode material coated with nano-crystallized ZnO for Li-ion batteries. Thin Solid Films, 2004, 469-70: 361-365.
    [25] J.H. Wang, T. Fang, J.G. Duh. LiCoO_2 cathode material coated with nano-crystallized ZnO by sol-gel method. High-Performance Ceramics Hi, Pts 1 and 2, 2005, 280-283:665-670.
    [26] H.W. Ha, N.J. Yun, M.H. Kim, M.H. Woo, K. Kim. Enhanced electrochemical and thermal stability of surface-modified LiCoO_2 cathode by CeO_2 coating. Electrochimica Acta, 2006, 51(16): 3297-3302.
    [27] Y.X. Gu, D.R. Chen, X.L. Jiao, F.F. Liu. LiCoO_2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. Journal of Materials Chemistry, 2007, 17(18): 1769-1776.
    [28] J. Cho, Y.J. Kim, B. Park. Novel LiCoO_2 cathode material with Al_2O_3 coating for a Li ion cell. Chemistry of Materials, 2000, 12(12): 3788-3791.
    [29] J. Cho, G. Kim. Enhancement of thermal stability of LiCoO_2 by LiMn_2O_4 coating. Electrochemical and Solid-State Letters, 1999, 2(6): 253.
    [30] T. Ohzuku, A. Veda, M. Nagayama. Electrochemistry and structural chemistry of LiNiO_2 (R3m) for 4V secondary lithium cells. Journal of the Electrochemical Society, 1996,140(7): 1862-1869.
    [31] A.G. Ritchie, C.O. Giwa, J.C. Lee, P. Bowles, A. Gilmour, J. Allan, D.A. Rice, F. Brady.Future cathode materials for lithium rechargeable batteries. Jounal of Power Sources,1999, 80(1): 98-102.
    [32] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori. Comparative study of LiCoO_2, LiNi_(1/2)Co_(1/2)O_2 and LiNiO_2 for 4 volt secondary lithium cells. Electrochimica Acta, 1993, 38(9): 1159-1167.
    [33] L. El-Farh, M. Massot, M. Lemal, C. Julien, S. Chitra, P. Kalyani, T. Mohan, R.Gangadharan. Physical properties and electrochemical features of lithium nickel-cobalt oxide cathode materials prepared at moderate temperature. Journal of Electroceramics,1999, 3(4): 425-432.
    [34] G.T.K. Fey, J.G. Chen, V. Subramanian, D.L. Huang, T. Akai, H. Masui. Sol-gel synthesis of Li_xNi_(0.8)Co_(0.2)O_2 via an oxalate route and its electrochemical performance as an intercalation material for lithium batteries. Materials Chemistry and Physics, 2003, 79(1):21-29.
    [35] J.R. Dahn, U.v. Sacken, C.A. Michal. Structure and electrochemistry of Li_(1±y)NiO_2 and a new Li_2NiO_2 phase with the Ni (OH)2 structure. Solid State Ionics, 1990, 44(1-2): 87-97.
    [36] W. Li, J.N. Reimers, J.R. Dahn. In situ x-ray diffraction and electrochemical studies of Li_(1-x)NiO_2. Solid State Ionics, 1993, 67(1-2): 123-130.
    [37] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M.Ohashi, Y. Yamaguchi. Relationship between non-stoichiometry and physical properties in LiNiO_2. Solid State Ionics, 1995, 78(1-2): 123-131.
    [38] J.R. Dahn, E.W. Fuller, M. Obrovac, U.v. Sacken. Thermal stability of Li_xCoO_2, Li_xNiO_2 and γ-MnO_2 and consequences for the safety of Li-ion cells. Solid State Ionics, 1994,69(3-4): 265-270.
    [39] M. Broussely, P. Biensan, B. Simon. Lithium insertion into host materials: the key to success for Li ion batteries. Electrochimica Acta, 1999, 45(1-2): 3-22.
    [40] H. Arai, S. Okada, Y. Sakurai, J. Yamaki. Electrochemical and thermal behavior of LiNi_(1-z)M_zO_2 (M = Co, Mn, Ti). Journal of the Electrochemical Society, 1997, 144(9):3117-3125.
    [41] R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Y.G. Shul. Influence of Mg doping on the performance of LiNiO_2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. Journal of Power Sources, 2007, 171(2): 922-927.
    [42] M.Y. Song, R. Lee, I. Kwon. Synthesis by sol-gel method and electrochemical properties of LiNi_(1-y_Al_yO_2 cathode materials for lithium secondary battery. Solid State Ionics, 2003,156(3): 319-328.
    [43] C.S. Dai, J. Yang, D.L. Wang, F.P. Wang. Synthesis and property of Al doping Li-Ni-O cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2006,22(11): 2011-2017.
    [44] X.J. Zhu, H. Zhan, H.X. Liu, Y.H. Zhou. Synthesis and characterization of LiNio.95-xCo_xAl_(0.05)O_2 for lithium-ion batteries. Rare Metals, 2006, 25(4): 303-308.
    [45] C.W. Wang, X.L. Ma, J.G. Cheng, J.T. Sun, Y.H. Zhou. Synthesis and electrochemical properties of Ca-doped LiNi_(0.8)Co_(0.2)O_2 cathode material for lithium ion battery. Journal of Solid State Electrochemistry, 2007, 11(3): 361-364.
    [46] D.G. Tong, H.L. Cao, Q.Y. Lai, A.D. Tang, K.L. Huang, Y. He, X.Y. Ji. Synthesis and characterization of LiCo_(0.3-x)Ga_xNi_(0.7)O_2 (x=0, 0.05) as a cathode material for lithium ion battery. Materials Chemistry and Physics, 2006, 100(2-3): 217-223.
    [47] G.T.K. Fey, J.G. Chen, V. Subramanian, T. Osaka. Preparation and electrochemical properties of Zn-doped LiNi_(0.8)Co_(0.2)O_2. Journal of Power Sources, 2002, 112(2): 384-394.
    [48] GS. Rao, B.V.R. Chowdari, H.J. Lindner. Yttrium-doped Li(Ni, Co)O_2: an improved cathode for Li-ion batteries. Journal of Power Sources, 2001, 97-8: 313-315.
    [49]M.Yoshio,H.Noguchi,J.Itoh,M.Okada,T.Mouri.Preparation and properties of LiCo_yMn_xNi_(1-x-y)O_2 as a cathode for lithium ion batteries.Journal of Power Sources,2000,90(2):176-181.
    [50]H.Lee,Y.Kim,Y.S.Hong,Y.Kim,M.G.Kim,N.S.Shin,J.Cho.Structural characterization of the surface-modified Li_xNi_(0.9)Co_(0.1)O_2 cathode materials by MPO_4coating(M=Al,Ce,SrH,and Fe) for Li-ion cells.Journal of the Electrochemical Society,2006,153(4):A781-A786.
    [51]B.V.R.Chowdari,G.V.S.Rao,S.Y.Chow.Cathodic performance of anatase(TiO_2)-coated Li(Ni_(0.8)Co_(0.2))O_2.Journal of Solid State Electrochemistry,2002,6(8):565-567.
    [52]J.Cho,T.J.Kim,Y.J.Kim,B.Park.High-performance ZrO_2-coated LiNiO_2 cathode material.Electrochemical and Solid State Letters,2001,4(10):A159-A161.
    [53]E.Zhecheva,R.Stoyanova,G.Tyuliev,K.Tenchev,M.Mladenov,S.Vassilev.Surface interaction of LiNi_(0.8)Co_(0.2)O_2 cathodes with MgO.Solid State Sciences,2003,5(5):711-720.
    [54]H.J.Kweon,S.J.Kim,D.G.Park.Modification of Li_xNi_(1-y)Co_yO_2 by applying a surface coating of MgO.Journal of Power Sources,2000,88(2):255-261.
    [55]Y.Gao,J.R.Dahn.Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for lithium ion battery application.Jounal of the Electrochemical Society,1996,143(1):100-144.
    [56]S.Q.Liu,Y.Y.Lu,K.L.Huang.Preparation of LiMn_2O_4 by sol-gel method and its properties.Journal of Inorganic Materials,2005,20(6):1368-1372.
    [57]T.Fukutsuka,K.Sakamoto,Y.Matsuo,Y.Sugie,T.Abe and Z.Ogumi.Preparation of LiMn_2O_4 thin-film electrode by the oxygen plasma-assisted sol-gel method.Electrochemical and Solid State Letters,2004,7(12):A481-A483.
    [58]S.T.Myung,H.T.Chung.Preparation and characterization of LiMn_2O_4 powders by the emulsion drying method.Journal of Power Sources,1999,84(1):32-38.
    [59]K.Matsuda,I.Taniguchi.Relationship between the electrochemical and particle properties of LiMn_2O_4 prepared by ultrasonic spray pyrolysis.Journal of Power Sources,2004,132(1-2):156-160.
    [60]刘东强,刘兴泉.锂离子蓄电池正极材料LiMn_2O_4的高温性能研究进展.化工科技,2006,14(3):58-63.
    [61]M.M.Thackeray.Manganese oxides for lithium batteries.Progress in Solid State Chemistry,1997,25(1-2):1-71.
    [62]V.W.J.Verhoeven,F.M.Mulder,I.M.de Schepper.Influence of Mn by Li substitution on the Jahn-Teller distortion in LiMn_2O_4.Physica B-Condensed Matter,2000,276:950-951.
    [63]J.Molenda,W.Ojczyk,K.Swierczek,W.Zajac,F.Krok,J.Dygas,R.S.Liu.Diffusional mechanism of deintercalation in LiFe_(1-y)Mn_yPO_4 cathode material.Solid State Ionics,2006,177(26-32):2617-2624.
    [64]B.J.Hwang,Y.W.Tsai,R.Santhanam,Y.W.Wu,S.G.Hu,J.F.Lee,D.G.Liu.Evolution of local electronic and atomic structure of Co-doped LiMn_2O_4 cathode material for lithium rechargeable batteries.Journal of Power Sources,2003,123(2):206-215.
    [65]Y.J.Wei,K.W.Nam,K.B.Kim,G.Chen.Spectroscopic studies of the structural properties of Ni substituted spinel LiMn_2O_4.Solid State Ionics,2006,177(1-2):29-35.
    [66]H.J.Bang,V.S.Donepudi,J.Prakash.Preparation and characterization of partially substituted LiM_yMn_2-y)O)4(M=Ni,Co,Fe) spinel cathodes for Li-ion batteries.Electrochimica Acta,2002,48(4):443-451.
    [67]K.W.Kim,S.W.Lee,K.S.Han,H.J.Chung,S.I.Woo.Characterization of Al-doped spinel LiMn_2O_4 thin film cathode electrodes prepared by liquid source misted chemical deposition(LSMCD) technique.Electrochimica Acta,2003,48(28):4223-4231.
    [68]D.Capsoni,M.Bini,G.Chiodelli,P.Mustarelli,V.Massarotti,C.B.Azzoni,M.C.Mozzati,L.Linati.Inhibition of Jahn-Teller cooperative distortion in LiMn_2O_4 spinel by Ga~(3+) doping.Journal of Physical Chemistry B,2002,106(30):7432-7438.
    [69]M.Womes,P.E.Lippens,B.Leon,C.Perez-Vicente,J.L.Tirado.X-ray absorption spectra of the spinel LiCu_(0.5)Mn_(1.5)O_4.Journal of Power Sources,2008,175(1-3):570-574.
    [70]D.Capsoni,M.Bini,G.Chiodelli,V.Massarotti,M.C.Mozzati,C.B.Azzoni.Structural transition in Mg-doped LiMn_2O_4:a comparison with other M-doped Li-Mn spinels.Solid State Communications,2003,125(3-4):179-183.
    [71]C.Wu,F.Wu,L.Q.Chen,X.J.Huang.X-ray diffraction and X-ray photoelectron spectroscopy analysis Cr-doped spinel LiMn_2O_4 for lithium ion batteries.Solid State Ionics,2002,152:335-339.
    [72]X.M.He,J.J.Li,Y.Cai,Y.W.Wang,H.R.Ying,C.Y.Jiang,C.R.Wan.Fluorine doping of spherical spinel LiMn_2O_4.Solid State Ionics,2005,176(35-36):2571-2576.
    [73]M.Molenda,R.Dziembaj,D.Majda,M.Dudek.Synthesis and characterisation of sulphided lithium manganese spinels LiMn_2O_(4-y)S_y prepared by sol-gel method.Solid State Ionics,2005,176(19-22):1705-1709.
    [74]M.Molenda,R.Dziembaj,E.Podstawka,L.M.Proniewiez,Z.Piwowarska.An attempt to improve electrical conductivity of the pyrolysed carbon-LiMn_2O_(4-y)Sy(0<=y<=0.5)composites.Journal of Power Sources,2007,174(2):613-618.
    [75]邹启凡.锂离子电池用尖晶石锰酸锂的合成、结构与性能研究.[博士学位论文]湖南, 中南大学,2005:23-24.
    [76]G.Amatucci,A.Du Pasquier,A.Blyr,T.Zheng,J.M.Tarascon.The elevated temperature performance of the LiMn_2O_4/C system:failure and solutions.Electrochimica Acta,1999,45(1-2):255-271.
    [77]S.Yang,K.L.Huang,S.Q.Liu,H.B.Wang.Lithiation Behavior of LiFePO_4 in saturated lithium nitrate solution.Chinese Journal of Inorganic Chemistry,2007,23(1):141-144.
    [78]D.Q.Liu,X.Q.Liu,Z.Z.He.The elevated temperature performance of LiMn_2O_4 coated with Li_4Ti_5O_(12) for lithium ion battery.Materials Chemistry and Physics,2007,105(2-3):362-366.
    [79]Y.M.Lin,H.C.Wu,Y.C.Yen,Z.Z.Guo,M.H.Yang,H.M.Chen,H.S.Sheu,N.L.Wu.Enhanced high-rate cycling stability of LiMn_2O_4 cathode by ZrO_2 coating for Li-ion battery.Journal of the Electrochemical Society,2005,152(8):A1526-A1532.
    [80]J.Cho,G.B.Kim,H.S.Lim,C.S.Kim,S.I.Yoo.Improvement of structural stability of LiMn_2O_4 cathode material on 55 degrees C cycling by sol-gel coating of LiCoO_2.Electrochemical and Solid State Letters,1999,2(12):607-609.
    [81]S.C.Park,Y.S.Han,Y.S.Kang,P.S.Lee,S.Ahn,H.M.Lee,J.Y.Lee.Electrochemical properties of LiCoO_2-coated LiMn_2O_4 prepared by solution-based chemical process.Journal of the Electrochemical Society,2001,148(7):A680-A686.
    [82]D.Q.Liu,Z.Z.He,X.Liu.Increased cycling stability of AlPO_4-coated LiMn_2O_4 for lithium ion batteries.Materials Letters,2007,61(25):4703-4706.
    [83]Y.Bai,C.Wu,F.Wu.Microstructure and electrochemical performances of LiF-coated spinel LiMn_2O_4.Transactions of Nonferrous Metals Society of China,2007,17:S892-S896.
    [84]N.Jayaprakash,N.Kalaiselvi,Y.K.Sun.Combustion synthesized LiMnSnO_4 cathode for lithium batteries.Electrochemistry Communications,2008,10:455-460.
    [85]J.X.Dai,F.Y.Sam,Z.Q.Gao,K.S.Siow.A new form of vanadium oxide for use as a cathode material in lithium battery.Journal of Power Sources,1998,74(1):40-45.
    [86]黄学杰,李泓,王庆,刘伟峰,师丽红,陈立泉.纳米储锂材料和锂离子电池.物理,2002.31:444-449.
    [87]陈军,陶占良,袁华堂.锂离子二次电池电极材料的研究进展.电源技术,2007,31(12):946-950.
    [88]闫俊美,杨勇.非碳类新型锂离子蓄电池负极材料研究进展.电源技术,2004,28:435-439.
    [89]Y.Idota,T.Kubota,A.Matsufuji.Tin-based amorphous oxide:a highcapacity lithium-ion-storage material.Science,1997,276:1395-1397.
    [90]Y.-L.Kim,S.-J.Lee,H.-K.Baik,S.-M.Lee.Sn-Zr-Ag alloy thin-film anodes.Journal Power Sources,2003,119-121:106-109.
    [91]王小东,李雪鹏,孙占波,宋晓平.锂离子电池合金负极材料的研究进展.电池,2007,37(2):161-163.
    [92]J.Wolfenstine,S.Campos,D.Foster,J.Read,W.K.Behl.Nano-scale Cu_6Sn_5 anodes.Journal of power sources,2002,109(1):230-233.
    [93]T.Moriga.Reaction mechanism of metal silicide Mg_2Si for Li insertion.Journal Solid State Chemistry,2000,153(2):386-390.
    [94]J.Xie,X.B.Zhao,G.S.Cao,M.J.Zhao,Y.D.Zhong,L.Z.Deng.Electrochemical lithiation and delithiation of FeSb_2 anodes for lithium-ion batteries.Materials Letters,2003,57(30):4673-4677.
    [95]T.Ohzuku,A.Ueda,N.Yamamoto.Zero-Strain Insertion Material of Li[Li_(1/3)Ti_(5/3)]O_4 for Rechargeable Lithium Cells.Jounal of the Electrochemical Society,1995,142(5):1431-1435.
    [96]P.Poizot,S.Laruelle,S.Grugeon,L.Dupont,J.M.Tarascon.Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries.Nature,2000,407(6803):496-499.
    [97]P.Poizot,S.Laruelle,S.Grugeon,L.Dupont,J.M.Tarascon.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.Nature,2000,407:496-499.
    [98]T.Shodai,S.Okada,S.Tobishima,J.Yamaki.Anode performance of a new layered nitride Li_(3-x)Co_xN(x=0.2-0.6).Journal of Power Sources,1997,68(2):515-518.
    [99]T.Shodai,Y.Sakurai,T.Suzuki.Reaction mechanisms of Li_(2.6)Co_(0.4)N anode material.Solid State Ionics,1999,122(1-4):85-93.
    [100]M.Nishijima,T.Kagohashi,Y.Takeda,M.Imanishi,O.Yamamoto.Electrochemical studies of a new anode material,Li_(3-x)M_xN(M=Co,Ni,Cu).Journal of Power Sources,1997,68(2):510-514.
    [101]尹鸽平,王程,新群,史鹏飞.锂离子电池新型负极材料的研究进展.电池,1999,29(6):270-274.
    [102]A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries.Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [103]J.S.Yang,J.J.Xu.Nonaqueous sol-gel synthesis of high-performance LiFePO_4. Electrochemical and Solid State Letters, 2004, 7(12): A515-A518.
    [104] C.R. Sides, F. Croce, V.Y. Young, C.R. Martin, B. Scrosati. A high-rate, nanocomposite LiFePO_4/carbon cathode. Electrochemical and Solid State Letters, 2005, 8(9):A484-A487.
    [105] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates. Journal of the Electrochemical Society, 1997, 144(5): 1609-1613.
    [106] A. Deb, U. Bergmann, E.J. Cairns, S.P. Cramer. Structural investigations of LiFePO_4 electrodes by Fe X-ray absorption spectroscopy. Journal of Physical Chemistry B, 2004,108(22): 7046-7049.
    [107] H.S. Kim, B.W. Cho, W.I. Cho. Cycling performance of LiFePO_4 cathode material for lithium secondary batteries. Journal of Power Sources, 2004, 132(1-2): 235-239.
    [108] A.S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas. Lithium extraction/insertion in LiFePO_4: an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics,2000, 130(1-2): 41-52.
    [109] J. Shim, K.A. Striebel. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO_4. Journal of Power Sources, 2003, 119: 955-958.
    [110] A.S. Andersson, J.O. Thomas, B. Kalska, L. Haggstrom. Thermal stability of LiFePO_4-based cathodes. Electrochemical and Solid State Letters, 2000, 3(2): 66-68.
    [111] N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand. Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 2001, 97-8: 503-507.
    [112] D. Dal, M.H. Whangbo, H.J. Koo, X. Rocquefelte, S. Jobic, A. Villesuzanne. Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMP_O4 (M = Mn, Fe, Co, Ni) with the olivine structure. Inorganic Chemistry, 2005, 44(7): 2407-2413.
    [113] A.A. Salah, A. Mauger, C.M. Julien, F. Gendron. Nano-sized impurity phases in relation to the mode of preparation of LiFePO_4. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006, 129(1-3): 232-244.
    [114] J.Y. Li, V.O. Garlea, J.L. Zarestky, D. Vaknin. Spin-waves in antiferromagnetic single-crystal LiFePO_4. Physical Review B, 2006, 73:024410.
    [115] G. Rousse. Magnetic structures of the triphylite LiFePO_4 and of its delithiated form FePO_4. Chemistry of Materials, 2003, 15(21): 4082-4090.
    [116] M. Takahashi, H. Ohtsuka, K. Akuto, Y. Sakurai. Confirmation of long-term cyclability and high thermal stability of LiFePO_4 in prismatic lithium-ion cells. Journal of the Electrochemical Society, 2005, 152(5): A899-A904.
    [117] K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthier.LiFePO_4/polymer/natural graphite: low cost Li-ion batteries. Electrochimica Acta, 2004,50(2-3): 263-270.
    [118] K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthier, K. Zaghib. LiFePO_4/gel/natural graphite cells for the BATT program. Journal of Power Sources, 2003, 119: 951-954.
    [119] S. Franger, C. Bourbon, F. Le Cras. Optimized lithium iron phosphate for high-rate electrochemical applications. Journal of the Electrochemical Society, 2004, 151(7):A1024-A1027.
    [120] A.A.M. Prince, S. Mylswamy, T.S. Chan, R.S. Liu, B. Hannoyer, M. Jean, C.H. Shen,S.M. Huang, J.F. Lee, G.X. Wang. Investigation of Fe valence in LiFePO_4 by Mossbauer and XANES spectroscopic techniques. Solid State Communications, 2004, 132(7):455-458.
    [121] M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai. Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries. Journal of Power Sources, 2001, 97-8:508-511.
    [122] S. Franger, F. Le Cras, C. Bourbon, H. Rouault. Comparison between different LiFePO_4 synthesis routes and their influence on its physico-chemical properties. Journal of Power Sources, 2003, 119: 252-257.
    [123] X.Z. Liao, Z.F. Ma, Y.S. He, X.M. Zhang, L. Wang, Y. Jiang. Electrochemical behavior of LiFePO_4/C cathode material for rechargeable lithium batteries. Journal of the Electrochemical Society, 2005, 152(10): A1969-A1973.
    [124] M.R. Yang, T.H. Teng, S.H. Wu. LiFePO_4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Journal of Power Sources, 2006, 159(1): 307-311.
    [125] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, H.G. Kim. Synthesis of LiFePO_4 by co-precipitation and microwave heating. Electrochemistry Communications, 2003, 5(10):839-842.
    [126] G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, A. Wohlfahrt-Mehrens.Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources, 2003, 119: 247-251.
    [127] S.F. Yang, P.Y. Zavalij, M.S. Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications, 2001, 3(9): 505-508.
    [128] M.M. Doeff, Y.Q. Hu, F. McLarnon, R. Kostecki. Effect of surface carbon structure on the electrochemical performance of LiFePO_4. Electrochemical and Solid State Letters, 2003, 6(10):A207-A209.
    [129] Y.Q. Hu, M.M. Doeff, R. Kostecki, R. Finones. Electrochemical performance of sol-gel synthesized LiFePO_4 in lithium batteries. Journal of the Electrochemical Society, 2004,151(8):A1279-A1285.
    [130] K.F. Hsu, S.Y. Tsay, B.J. Hwang. Synthesis and characterization of nano-sized LiFePO_4 cathode materials prepared by a citric acid-based sol-gel route. Journal of Materials Chemistry, 2004, 14(17): 2690-2695.
    [131] M. Piana, B.L. Cushing, J.B. Goodenough, N. Penazzi. New sol-gel synthetic route to phospho-olivines as environmentally friendly cathodes for Li-ion cells. Annali Di Chimica, 2003, 93(12): 985-995.
    [132] D. Choi, P.N. Kumta. Surfactant based sol-gel approach to nanostructured LiFePO_4 for high rate Li-ion batteries. Journal of Power Sources, 2007, 163(2): 1064-1069.
    [133] A. Yamada, S.C. Chung, K. Hinokuma. Optimized LiFePO_4 for lithium battery cathodes. Journal of the Electrochemical Society, 2001, 148(3): A224-A229.
    [134] J. Barker, M.Y. Saidi, J.L. Swoyer. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochemical and Solid State Letters, 2003, 6(3):A53-A55.
    [135] N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington. The Electrochemical Society of Japan Meeting Abstract, 1999, Vol. 99-2, Abstract 127.
    [136] H. Huang, S.C. Yin, L.F. Nazar. Approaching theoretical capacity of LiFePO_4 at room temperature at high rates. Electrochemical and Solid State Letters, 2001, 4(10):A170-A172.
    [137] Z.H. Chen, J.R. Dahn. Reducing carbon in LiFePO_4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of the Electrochemical Society, 2002, 149(9): A1184-A1189.
    [138] I. Belharouak, C. Johnson, K. Amine. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO_4. Electrochemistry Communications, 2005, 7(10):983-988.
    [139] M.M. Doeff, J.D. Wilcox, R. Kostecki, G. Lau. Optimization of carbon coatings on LiFePO_4. Journal of Power Sources, 2006, 163(1): 180-184.
    [140] P.P. Prosini, D. Zane, M. Pasquali. Improved electrochemical performance of a LiFePO_4-based composite cathode. Electrochimica Acta, 2001, 46(23): 3517-3523.
    [141] M. Gaberscek, R. Dominko, J. Jamnik. Is small particle size more important than carbon coating? An example study on LiFePO_4 cathodes. Electrochemistry Communications, 2007,9(12):2778-2783.
    [142]Y.G.Xia,M.Yoshio,H.Noguchi.Improved electrochemical performance of LiFePO_4 by increasing its specific surface area.Electrochimica Acta,2006,52(1):240-245.
    [143]C.Delacourt,P.Poizot,S.Levasseur,C.Masquelier.Size effects on carbon-free LiFePO_4powders.Electrochemical and Solid State Letters,2006,9(7):A352-A355.
    [144]D.H.Kim,J.Kim.Synthesis of LiFePO_4 nanoparticles in polyol medium and their electrochemical properties.Electrochemical and Solid State Letters,2006,9(9):A439-A442.
    [145]J.L.Allen,T.R.Jow,J.Wolfenstine.Kinetic study of the electrochemical FePO_4 to LiFePO_4 phase transition.Chemistry of Materials,2007,19(8):2108-2111.
    [146]F.Croce,A.D.Epifanio,J.Hassoun,A.Deptula,T.Olczac,B.Scrosati.A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode.Electrochemical and Solid State Letters,2002,5(3):A47-A50.
    [147]S.Y.Chung,J.T.Bloking,Y.M.Chiang.Electronically conductive phospho-olivines as lithium storage electrodes.Nature Materials,2002,1(2):123-128.
    [148]倪江峰,周恒辉,陈继涛,苏光耀.Cr离子掺杂对LiFePO_4电化学性能的影响.物理化学学报,2004,20:582
    [149]G.X.Wang,S.L.Bewlay,K.Konstantinov,H.K.Liu,S.X.Dou,J.H.Ahn.Physical and electrochemical properties of doped lithium iron phosphate electrodes.Electrochimica Acta,2004,50(2-3):443-447.
    [150]S.Y.Chung,Y.M.Chiang.Microscale measurements of the electrical conductivity of doped LiFePO_4.Electrochemical and Solid State Letters,2003,6(12):A278-A281.
    [151]C.Y.Ouyang,S.Q.Shi,Z.X.Wang,X.J.Huang,L.Q.Chen.First-principles study of Li ion diffusion in LiFePO_4.Physical Review B,2004,69:104303.
    [152]D.Y.Wang,H.Li,S.Q.Shi,X.J.Huang,L.Q.Chen.Improving the rate performance of LiFePO_4 by Fe-site doping.Electrochimica Acta,2005,50(14):2955-2958.
    [153]G.X.Wang,S.Bewlay,J.Yao,J.H.Ahn,S.X.Dou,H.K.Liu.Characterization of LiM_xFe_(1-x)PO_4(M=Mg,Zr,Ti) cathode materials prepared by the sol-gel method.Electrochemical and Solid State Letters,2004,7(12):A503-A506.
    [154]H.Liu,Q.Cao,L.J.Fu,C.Li,Y.P.Wu,H.Q.Wu.Doping effects of zinc on LiFePO_4cathode material for lithium ion batteries.Electrochemistry Communications,2006,8(10):1553-1557.
    [155]D.X.Gouveia,V.Lemos,J.A.C.de Paiva,A.G.Souza,J.Mendes,S.M.Lala,L.A.Montoro,J.M.Rosolen.Spectroscopic studies of Li_xFePO_4 and Li_xM_(0.03)Fe_(0.97)PO_4(M=Cr, Cu,Al, Ti). Physical Review B, 2005, 72: 024105.
    [156] M. Abbate, S.M. Lala, L.A. Montoro, J.M. Rosolen. Ti-, A1-, and Cu-doping induced gap states in LiFePO_4. Electrochemical and Solid State Letters, 2005, 8(6): A288-A290.
    [157] S.Q. Shi, L.J. Liu, C.Y. Ouyang, D.S. Wang, Z.X. Wang, L.Q. Chen, X.J. Huang.Enhancement of electronic conductivity of LiFePO_4 by Cr doping and its identification by first-principles calculations. Physical Review B, 2003, 68: 195108.
    [158] C.Y. Ouyang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen. The effect of Cr doping on Li ion diffusion in LiFePO_4 from first principles investigations and Monte Carlo simulations. Journal of Physics-Condensed Matter, 2004, 16(13): 2265-2272.
    [159] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater. Atomic-scale investigation of defects,dopants, and lithium transport in the LiFePO_4 olivine-type battery material. Chemistry of Materials, 2005, 17(20): 5085-5092.
    [160] P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials, 2004, 3(3): 147-152.
    [161] Y.B. Xu, Y.J. Lu, L. Yan, Z.Y. Yang, R.D. Yang. Synthesis and effect of forming Fe_2P phase on the physics and electrochemical properties of LiFePO_4/C materials. Journal of Power Sources, 2006, 160(1): 570-576.
    [162] C.W. Kim, J.S. Park, K.S. Lee. Effect of Fe_2P on the electron conductivity and electrochemical performance of LiFePO_4 synthesized by mechanical alloying using Fe~(3+) raw material. Journal of Power Sources, 2006, 163(1): 144-150.
    [163] Y.H. Rho, L.F. Nazar, L. Perry, D. Ryan. Surface chemistry of LiFePO_4 studied by mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. Journal of the Electrochemical Society, 2007, 154(4): A283-A289.
    [164] M.S. Whittingham, Y.N. Song, S. Lutta, P.Y. Zavalij, N.A. Chernova. Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries. Journal of Materials Chemistry, 2005, 15(33): 3362-3379.
    [165] J. Molenda. Electronic limitations of lithium diffusibility from layered and spinel toward novel olivine type cathode materials. Solid State Ionics, 2005, 176: 1687 - 1694.
    [166] D. Morgan, A. Van der Ven, G. Ceder. Li conductivity in Li_xMPO_4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid State Letters, 2004, 7(2): A30-A32.
    [167] R. Amin, P. Balaya, J. Maier. Anisotropy of electronic and ionic transport in LiFePO_4 single crystals. Electrochemical and Solid State Letters, 2007, 10(1): A13-A16.
    [168] B. Ellis, L.K. Perry, D.H. Ryan, L.F. Nazar. Small polaron hopping in Li_xFePO_4 solid solutions: Coupled lithium-ion and electron mobility. Journal of the American Chemical Society,2006,128(35):11416-11422.
    [169]J.X.Ma,C.S.Wang,S.Wroblewski.Kinetic characteristics of mixed conductive electrodes for lithium ion batteries.Journal of Power Sources,2007,164(2):849-856.
    [170]C.S.Wang,J.Hong.Ionic/electronic conducting characteristics of LiFePO_4 cathode materials-The determining factors for high rate performance.Electrochemical and Solid State Letters,2007,10(3):A65-A69.
    [171]H.M.Rietveld.Line profiles of neutron powder-diffraction peaks for structure refinement.Acta Crystallographica,1967,22:151-152.
    [172]刘红超,郭常霖.研究固体微结构的X射线粉末衍射全谱图拟合方法.物理学进辰,1996.16:228-244.
    [173]马礼敦.X射线粉末衍射的新起点-Rietveld全谱拟合.物理学进展,1996,16:251-270.
    [174]L.L.Hench,J.K.West.The Sol-Gel Process.Chemical Review,1990:33-72.
    [175]A.Hernandez,S.Fabela,L.C.Toffes-Gonzalez,E.Saanchez.Preparation and electrochemical behavior of sol-gel LiNi_(0.3)Co_(0.70-x)M_xO_2(M=Mn,Al).Ceramics International,2008,34(1):225-229.
    [176]P.Z.Shen,D.Z.Jia,Y.D.Huang,L.Liu,Z.P.Guo.LiMn_2O_4 cathode materials synthesized by the cellulose-citric acid method for lithium ion batteries.Journal of Power Sources,2006,158(1):608-613.
    [177]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,21(5):443-450.
    [178]P.S.Devi,M.S.Rao.Journal of Analytical and Applied Pyrolysis,1992,22:187.
    [179]H.Pan,Y.Chen,C.Wang,J.X.Ma,C.P.Chen,Q.D.Wang.Effect of alloys modifed by an alkaline solution containing potassium borohydride on the kinetic properties of MlNi_(3.7)Co_(0.6)Mn_(0.4)Al_(0.3) hydride electrode.Electrochimica Acta,1999,44(13):2263-2269.
    [180]X.Q.Wang,P.Clark,S.T.Oyama.Synthesis,characterization,and hydrotreating activity of several iron group transition metal phosphides.Journal of Catalysis,2002,208(2):321-331.
    [181]P.P.Prosini,M.Lisi,D.Zane,M.Pasquali.Determination of the chemical diffusion coefficient of lithium in LiFePO_4.Solid State Ionics,2002,148(1-2):45-51.
    [182]H.C.Shin,K.Y.Chung,W.S.Min,D.J.Byun,H.Jang,B.W.Cho.Asymmetry between charge and discharge during high rate cycling in LiFePO_4-In situ X-ray diffraction study.Electrochemistry Communications,2008,10(4):536-540.
    [183]W.E.Brown,D.Dollimore,A.K.Galwey.Comprehensive Chemical Kinetics,Reactions in the Solid State, Vol. 22. Amsterdam: Elsevier , 1990: 71.
    [184] A.S. Andersson, J.O. Thomas. The source of first-cycle capacity loss in LiFePO_4. Journal of Power Sources, 2001, 97-8: 498-502.
    [185] V. Srinivasan, J. Newman. Discharge model for the lithium iron-phosphate electrode. Journal of the Electrochemical Society, 2004, 151(10): A1517-A1529.
    [186] P.P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, M. Pasquali. Long-term cyclability of nanostructured LiFePO_4. Electrochimica Acta, 2003, 48(28): 4205-4211.
    [187] A.A. Salah, A. Mauger, K. Zaghib, J.B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, C.M. Julien. Reduction Fe~(3+) of impurities in LiFePC>4 from pyrolysis of organic precursor used for carbon deposition. Journal of the Electrochemical Society, 2006, 153(9):A1692-A1701.
    [188] Z. Sun, X. Shi, X. Wang, Y. Sun. Structure and properties of hard carbon films depending on heat treatment temperatures via polymer precursor. Diamond and Related Materials,1999,8(6): 1107-1113.
    [189] A. Ait-Salah, J. Dodd, A. Mauger, R. Yazami, F. Gendron, C.M. Julien. Structural and magnetic properties of LiFePO_4 and lithium extraction effects. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632(8-9): 1598-1605.
    [190] CM. Burba, R. Freeh. Raman and FTIR spectroscopic study of Li_xFePO_4 (0 <= x <= 1).Journal of the Electrochemical Society, 2004, 151(7): A1032-A1038.
    [191] K. Zaghib, A. Mauger, F. Gendron, CM. Julien. Surface effects on the physical and electrochemical properties of thin LiFePO_4 particles. Chemistry of Materials, 2008, 20(2):462-469.
    [192] A.A. Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Mauger, C.M. Julien.FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2006,65(5): 1007-1013.
    [193] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M.Tarascon, C. Masquelier. Toward understanding of electrical limitations (electronic, ionic) in UMPO_4 (M = Fe, Mn) electrode materials. Journal of the Electrochemical Society,2005, 152(5):A913-A921.
    [194] V. Srinivasan, J. Newman. Existence of path-dependence in the LiFePO_4 electrode.Electrochemical and Solid State Letters, 2006, 9(3): A110-A114.
    [195] T. Nakamura, K. Sakumoto, M. Okamoto, S. Seki, Y. Kobayashi, T. Takeuchi, M. Tabuchi,Y. Yamada. Electrochemical study on Mn~(2+)-substitution in LiFePO_4 olivine compound. Journal of Power Sources, 2007, 174(2): 435-441.
    [196] D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, S. Fujitani.Study of LiFePO_4 by cyclic voltammetry. Journal of the Electrochemical Society, 2007,154(4):A253-A257.
    [197] Y. Lin, H.G. Pan, M.X. Gao, H. Miao, S.Q. Li, Y. Wang. Synthesis and characterization of LiFePO_4/C prepared via a sol-gel method. Surface Review and letters, 2008, 15(1-2):133-138.
    [198] C.H. Mi, X.G. Zhang, X.B. Zhao, H.L. Li. Effect of sintering time on the physical and electrochemical properties of LiFePO_4/C composite cathodes. Journal of Alloys and Compounds, 2006, 424(1-2): 327-333.
    [199] K.F. Hsu, S.Y. Tsay, B.J. Hwang. Physical and electrochemical properties of LiFePO_4/carbon composite synthesized at various pyrolysis periods. Journal of Power Sources, 2005, 146(1-2): 529-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700