腰椎峡部的疲劳特性和应力传导分布特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     (1)测量腰椎L5峡部的有关解剖学数据并进行统计分析;
     (2)制作腰椎峡部外1/2缺损和内1/2缺损病理模型;
     (3)对腰椎峡部外1/2缺损和内1/2缺损病理模型的抗疲劳特性进行对比分析;
     (4)制作腰椎峡部外1/2缺损有限元模型;
     (5)求解分析腰椎峡部裂应力的传导分布特征。
     方法
     (1)成人新鲜腰椎标本12例,所有标本均取自意外死亡的成年男性新鲜尸体,具体年龄不祥,均无腰椎疾患。常规解剖L5椎体,彻底切除软组织,仅保留骨性部分。用聚甲基丙烯酸甲酯(牙托粉,PMMA,自凝型,上海齿科材料厂生产)包埋。包埋的目的是以备装卡固定标本使用,放于-20℃的低温冰箱中保存备用。用游标卡尺对腰椎峡部的宽度进行测量。每一标本重复测量两次,以求精确。对正常腰椎峡部左右侧宽度对比进行统计分析。
     (2)12例模型随机分为两组,每组6例,分别用咬骨钳咬除腰椎峡部外1/2或内1/2骨质,制作腰椎峡部外1/2缺损和内1/2缺损病理模型。采用游标卡尺对剩余腰椎峡部的宽度进行测量。对腰椎峡部外1/2缺损模型与腰椎峡部内1/2缺损模型的峡部缺损后宽度进行统计对比。
     (3)将标本固定于脊柱三维运动试验机上,依次将腰椎峡部外1/2缺损和内1/2缺损病理模型标本置于生物材料力学试验机MTS-858 Mini Bionix (MTS, Minneapolis, MN, USA)上,分别给予压缩负荷,频率为0.5 Hz,加载60~600 N
     的周期性正弦波。整个试验过程中经常喷洒生理盐水于标本上,以保持标本在试验过程中湿润。记录断裂次数进行统计学分析。
     (4)使用螺旋CT,以1mm的间隔,对1具男性青年新鲜尸体的腰椎标本沿轴向进行断层扫描。腰椎的CT图像输入计算机,利用MIMICS11.1提取图片中轮廓线数据矩阵,转换为dat文档后输入ANSYS10.0建模。
     (5)在前处理软件Mimics 11.1与Simpleware3.1中制作L4椎体外1/2腰椎峡部缺损模型,然后导入ANSYS 10.0软件有限元系统,在上椎体上终板面上施纯力偶矩,施加5牛顿*米前屈、后伸、侧弯载荷,然后进入Ansys求解器,求解分析腰椎峡部裂应力的传导分布特征。
     结果
     (1)正常L5左侧腰椎峡部宽度为15.06±0.83,正常右侧腰椎峡部宽度为14.85±0.72,左右侧对比P=0.52>0.05,差异无统计学意义。
     (2)腰椎峡部外1/2缺损模型峡部宽度为5.24±0.41,腰椎峡部内1/2缺损模型峡部宽度为5.15±0.34,对比P=0.57>0.05,差异无统计学意义。
     (3)腰椎峡部外1/2缺损模型峡部断裂次数为25160±1019,腰椎峡部内1/2缺损模型峡部断裂次数为18782±3126,对比P=0.006<0.05,差异有统计学意义。
     (4)建立了一个较为详尽的腰部三维模型。该模型由骨质结构和软组织结构两部分组成。骨质结构包括了腰椎运动节段L4-L5;软组织部分包括椎间盘、软骨及腰部主要的韧带和肌肉。整个模型包括5668个8-node Solid 45单元、8236个壳单元、239个连接单元,由5462个面、20811条线、81221个结点组成。
     (5)有限元实验结果显示:后伸右旋时左侧关节突受力最大,Von Mises应力为188MPa,其力学方向与X轴成约45度角;前屈旋转Von Mises应力为164MPa,其与x轴成角约45度;侧弯旋转最小,Von Mises应力为142MPa,其与x轴成角约15度。
     结论
     (1)腰椎峡部外1/2缺损模型抗疲劳性优于腰椎峡部内1/2缺损模型,腰椎峡部内1/2承担了更多的腰椎负荷应力,腰椎峡部外1/2更容易疲劳骨折。
     (2)L4椎体双侧外1/2腰椎峡部缺损腰椎节点应力分布图显示在旋转外力作用下关节突以及椎弓根周边部位出现高应力区。结果表明,腰椎后伸+右旋转左侧受力最大,对关节突应力分布产生明显影响。而棘突并非旋转轴心,结果显示应力分布无集中趋势。结果提示当峡部缺损达到1/2时,残余峡部的力学强度下降显著,相当一段时期内应尽量避免后伸等有害应力。
     (3)前纵韧带、后纵韧带、棘间韧带等韧带结构附着处应力应变无明显改变。
Objective
     (1) To measure the L5 isthmus portion of lumbar vertebra, get anatomic data and analyze it.
     (2) To make pathologic defect models of isthmus external 1/2 and internal 1/2
     (3) To compare and analyze the anti-fatigue features of these two models
     (4) To make finite element model on the defective isthmus external 1/2
     (5) To analyze and solve the transmit and distribution features of breaking stress on the isthmus portion of lumbar vertebra
     Methods
     (1) Take 12 fresh lumbar vertebra specimens. All the specimens are taken from fresh adult male corpse died from accident, age unidentified, without lumbar vertebra disease. Dissect L5 centrum, remove soft tissue and maintain only the bone part. Embedding with PMMA to fix the specimen (dental base acrylic resin powder, PMMA, self-cures. Manufactured by shanghai orthodontics material factory). Store them in-20℃freezer. Use electric vernier caliper to measure the width of lumbar vertebra isthmus. Each specimen should be measured twice so as to ensure the accuracy. Compare the left and right isthmus side width and analyze them.
     (2) Divide these 12 specimens randomly into 2 groups. Use rongeur to remove respectively the external 1/2 isthmus and the internal 1/2 isthmus bone and then make pathological defect models. Use electric vernier caliper to measure the width of the remaining isthmus. Compare the width of the external 1/2 isthmus defect model and the internal 1/2 isthmus defect model.
     (3) Fix the specimen on spine 3D movement test machine, put the external 1/2 isthmus defect model and the internal 1/2 isthmus defect model on mechanic test machine MTS-858 Mini Bionix (MTS, Minneapolis, MN, USA). Give each of them compressed load, with 0.5 Hz frequency and 60-600 N periodic sine waves. Keep spraying physiological saline onto the specimen throughout the test to keep them moisture. Record the breakage times and analyze them.
     (4) Take a young male fresh corpse, use spiral CT to scan each layer of the lumbar vertebra specimen along axial direction, each layer space is 1mm. Input the CT image into computer, use MIMICS 11.1 to collect matrix of the contour line data, transform them into dat files and then put them into ANSYS 10.0 to build up model.
     (5) Use pre-treatment software Mimics 11.1 and Simpleware3.1 to make L4 vertebra isthmus external 1/2 defect model, and then lead it in to finite element system with ANSYS 10.0, and then apply force onto the upper centrum surface. Apply 5N* meter load, ante flexion, rear protraction and side bend, and then enter the Ansys solver to analyze and solve the transmit and distribution features of breaking stress on the isthmus portion of lumbar vertebra
     Result
     (1) The width of the normal L5 left isthmus portion of lumbar vertebra is 15.06±0.83, the right width is 14.85±0.72. The difference between the left width and the right width is P=0.52>0.05, no statistic value.
     (2) The isthmus width of the external 1/2 isthmus defect model is 5.24±0.41, the isthmus width of the internal 1/2 isthmus defect model is 5.15±0.34. The difference between the external and the internal isthmus width is P=0.57>0.05, no statistic value.
     (3) The breakage times of the external 1/2 isthmus defect model are 25160±1019, while the internal 1/2 isthmus defect model are 18782±3126. The difference between them is P=0.006<0.05, has statistic value.
     (4) Build up a detail 3D model for the waist, including bone structure and soft tissue. The bone structure include lumbar vertebra movement segment L4-L5; the soft tissue include inter vertebral disk, gristle, and main ligament and muscle on the waist. The whole model include 5668 8-nodeSolid 45 units,8236 shell units and 239 connecting units, consisting of 5462 surfaces,20811 lines and 81221 nodal points.
     (5) The result of finite element experiment shows:in the rear protraction rotation, the left side joint has the maximum stress; its dynamic direction forms a 45 degree angle with the X axis. In the ante flexion rotation, the stress is 164n; it forms an approximate 45 degree angle with the X axis. Side bend rotation has the minimum stress; it forms an approximate 15 degree angle with the X axis.
     Conclusion
     (1) The anti-fatigue features of the external 1/2 lumbar vertebra isthmus defect model is better than the internal 1/2. The internal 1/2 bears more loads. The external 1/2 is easier to become fatigue and fracture.
     (2) According to the stress distribution map of the L4 external 1/2 isthmus portion of lumbar vertebra, the articular process and vertebral pedicle neighboring part exist high stress zone. The result shows that rear protraction plus right rotation have the maximum stress, which has distinctive effect on articular process distribution. While the spinous process is not the rotation center, the result shows that there is no concentration trend of stress distribution. The result also shows that when the isthmus defection reaches 1/2, the stress of the remaining isthmus decreases notably, the rear protraction should be avoided in a period of time.
     (3) There is no obvious stress change to the anterior longitudinal ligament, the posterior longitudinal ligament, interspinal ligaments or other ligament structures.
引文
[1]Sairyo, K., et al., Buck's direct repair of lumbar spondylolysis restores disc stresses at the involved and adjacent levels. Clin Biomech (Bristol, Avon),2006.21(10):p.1020-6.
    [2]Kim, K., et al., [Unilateral spondylolysis with spina bifida occulta of lumbar spine-case report and review of the literature]. No Shinkei Geka,2005.33(11):p.1119-23.
    [3]El, R.G., et al., Lumbar spondylolysis in pediatric and adolescent soccer players. Am J Sports Med, 2005.33(11):p.1688-93.
    [4]Sairyo, K., et al., Biomechanical rationale of endoscopic decompression for lumbar spondylolysis as an effective minimally invasive procedure-a study based on the finite element analysis. Minim Invasive Neurosurg,2005.48(2):p.119-22.
    [5]Krupski, W. and P. Majcher, Radiological diagnostic of lumbar spondylolysis. Ortop Traumatol Rehabil,2004.6(6):p.809-18.
    [6]Sherif, H. and A.E. Mahfouz, Epidural fat interposition between dura mater and spinous process: a new sign for the diagnosis of spondylolysis on MR imaging of the lumbar spine. Eur Radiol,2004. 14(6):p.970-3.
    [7]Krupski, W., P. Majcher and M.R. Tatara, Computed tomorgaphy diagnostic of lumbar spondylolysis. Ortop Traumatol Rehabil,2004.6(5):p.652-7.
    [8]Chosa, E., K. Totoribe and N. Tajima, A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. J Orthop Res,2004.22(1):p.158-63.
    [9]Sairyo, K., et al., A new endoscopic technique to decompress lumbar nerve roots affected by spondylolysis. Technical note. J Neurosurg,2003.98(3 Suppl):p.290-3.
    [10]Askar, Z., D. Wardlaw and M. Koti, Scott wiring for direct repair of lumbar spondylolysis. Spine (Phila Pa 1976),2003.28(4):p.354-7.
    [11]Ivanic, G.M., et al., Direct stabilization of lumbar spondylolysis with a hook screw: mean 11-year follow-up period for 113 patients. Spine (Phila Pa 1976),2003.28(3):p.255-9.
    [12]Watanabe, O., et al., [Evaluation of usefulness of bone SPECT for lumbar spondylolysis]. Nippon Igaku Hoshasen Gakkai Zasshi,2002.62(8):p.423-9.
    [13]Zhang, H., A.M. Jin and M.C. Zhang, [Finite element analysis of shape memory alloy intrasegmental fixator for lumbar spondylolysis]. Di Yi Jun Yi Da Xue Xue Bao,2002.22(12):p. 1128-30.
    [14]McGregor, A.H., H.R. Cattermole and S.P. Hughes, Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis:does the grade or type of slip affect global spinal motion?. Spine (Phila Pa 1976),2001.26(3):p.282-6.
    [15]Dai, L.Y., et al., Direct repair of defect in lumbar spondylolysis and mild isthmic spondylolisthesis by bone grafting, with or without facet joint fusion. Eur Spine J,2001.10(1):p. 78-83.
    [16]Chang, J.H., et al., Management of multiple level spondylolysis of the lumbar spine in young males:a report of six cases. J Formos Med Assoc,2001.100(7):p.497-502.
    [17]Chen, J.F. and S.T. Lee, A physiological method for the repair of young adult simple isthmic lumbar spondylolysis. Chang Gung Med J,2000.23(2):p.92-8.
    [18]Sales, D.G.J., F. Vadier and J.P. Cahuzac, Repair of lumbar spondylolysis using Morscher material: 14 children followed for 1-5 years. Acta Orthop Scand,2000.71(3):p.292-6.
    [19]Guillodo, Y., et al., Contralateral spondylolysis and fracture of the lumbar pedicle in an elite female gymnast:a case report. Spine (Phila Pa 1976),2000.25(19):p.2541-3.
    [20]Dai, L.Y., Disc degeneration in patients with lumbar spondylolysis. J Spinal Disord,2000.13(6): p.478-86.
    [21]Lee, J., et al., Spondylolysis of the upper lumbar spine. Radiological features. Clin Imaging,1999. 23(6):p.389-93.
    [1]Ward, C.V., et al., Lumbar vertebral morphology and isthmic spondylolysis in a British medieval population. Am J Phys Anthropol,2010.141(2):p.273-80.
    [2]Takao, S., et al., Radiographic comparison between male and female patients with lumbar spondylolysis. J Med Invest,2010.57(1-2):p.133-7.
    [3]Park, J.S., et al., Unilateral lumbar spondylolysis on radiography and MRI:emphasis on morphologic differences according to involved segment. AJR Am J Roentgenol, 2010.194(1):p.207-15.
    [4]Leone, A., et al., Lumbar spondylolysis:a review. Skeletal Radiol,2010.
    [5]Sairyo, K., et al., Newly occurred L4 spondylolysis in the lumbar spine with pre-existence L5 spondylolysis among sports players:case reports and biomechanical analysis. Arch Orthop Trauma Surg,2009.129(10):p.1433-9.
    [6]Zehnder, S.W., et al., Radiographic assessment of lumbar facet distance spacing and pediatric spondylolysis. Spine (Phila Pa 1976),2009.34(3):p.285-90.
    [7]Sairyo, K., T. Sakai and N. Yasui, Conservative treatment of lumbar spondylolysis in childhood and adolescence:the radiological signs which predict healing. J Bone Joint Surg Br,2009.91(2):p.206-9.
    [8]Park, K.H., et al., Multiple levels of lumbar spondylolysis-a case report-. Asian Spine J,2009.3(1):p.35-8.
    [9]Dunn, A.S., S. Baylis and D. Ryan, Chiropractic management of mechanical low back pain secondary to multiple-level lumbar spondylolysis with spondylolisthesis in a United States Marine Corps veteran: a case report. J Chiropr Med,2009.8(3):p. 125-30.
    [10]Brooks, B.K., et al., Lumbar spine spondylolysis in the adult population: using computed tomography to evaluate the possibility of adult onset lumbar spondylosis as a cause of back pain. Skeletal Radiol,2009.
    [11]Huber, J.F., et al., Symptom assessment in lumbar stenosis/spondylolysis-patient questionnaire versus physician chart. Swiss Med Wkly,2009.139(41-42):p.610-4.
    [12]Sakai, T., et al., Incidence of lumbar spondylolysis in the general population in Japan based on multidetector computed tomography scans from two thousand subjects. Spine (Phila Pa 1976),2009.34(21):p.2346-50.
    [13]Yamamoto, T., et al., Segmental wire fixation for lumbar spondylolysis associated with spina bifida occulta. Arch Orthop Trauma Surg,2008.128(10):p.1177-82.
    [14]Noggle, J.C., et al., Minimally invasive direct repair of lumbar spondylolysis with a pedicle screw and hook construct. Neurosurg Focus,2008.25(2):p. E15.
    [15]Hioki, A., et al., Spondylolysis of the second lumbar vertebra treated with segmental wiring and bone grafting. Orthopedics,2008.31(3):p.287.
    [16]Sonne-Holm, S., et al., Lumbar spondylolysis:a life long dynamic condition? A cross sectional survey of 4.151 adults. Eur Spine J,2007.16(6):p.821-8.
    [17]Ward, C.V., et al., Radiographic assessment of lumbar facet distance spacing and spondylolysis. Spine (Phila Pa 1976),2007.32(2):p. E85-8.
    [18]Masharawi, Y.M., et al., Lumbar facet orientation in spondylolysis:a skeletal study. Spine (Phila Pa 1976),2007.32(6):p. E176-80.
    [19]Masharawi, Y, et al., Lumbar facet anatomy changes in spondylolysis:a comparative skeletal study. Eur Spine J,2007.16(7):p.993-9.
    [20]Debusscher, F. and S. Troussel, Direct repair of defects in lumbar spondylolysis with a new pedicle screw hook fixation: clinical, functional and Ct-assessed study. Eur Spine J,2007.16(10):p.1650-8.
    [21]Guglielmino, A., et al., A case of lumbar sciatica in a patient with spondylolysis and spondylolysthesis and underlying misdiagnosed brucellar discitis. Minerva Anestesiol, 2007.73(5):p.307-12.
    [22]Chung, C.H., et al., Direct repair of multiple levels lumbar spondylolysis by pedicle screw laminar hook and bone grafting:clinical, CT, and MRI-assessed study. J Spinal Disord Tech,2007.20(5):p.399-402.
    [23]Ogawa, H., et al., Clinical outcome after segmental wire fixation and bone grafting for repair of the defects in multiple level lumbar spondylolysis. J Spinal Disord Tech, 2007.20(7):p.521-5.
    [24]Schulte, T.L., et al., Acquired spondylolysis after implantation of a lumbar ProDisc Ⅱ prosthesis:case report and review of the literature. Spine (Phila Pa 1976),2007. 32(22):p. E645-8.
    [25]Zhao, J., et al., Biomechanical and clinical study on screw hook fixation after direct repair of lumbar spondylolysis. Chin J Traumatol,2006.9(5):p.288-92.
    [26]Wang, J.P., et al., Finite element analysis of the spondylolysis in lumbar spine. Biomed Mater Eng,2006.16(5):p.301-8.
    [27]Rush, J., Assessment of bony union following surgical stabilisation for lumbar spondylolysis:a comparative study between radiography and computed tomography. J Orthop Surg (Hong Kong),2006.14(2):p.225; author reply 225.
    [28]Pai, V.S. and B. Hodgson, Assessment of bony union following surgical stabilisation for lumbar spondylolysis:a comparative study between radiography and computed tomography. J Orthop Surg (Hong Kong),2006.14(1):p.17-20.
    [29]Kim, K.S., Y.W. Kim and H.D. Kwon, Unilateral spondylolysis combined with contralateral lumbar pediculolysis in a military parachutist. J Spinal Disord Tech, 2006.19(1):p.65-7.
    [30]Sairyo, K., et al., Buck's direct repair of lumbar spondylolysis restores disc stresses at the involved and adjacent levels. Clin Biomech (Bristol, Avon),2006.21(10):p. 1020-6.
    [31]Kim, K., et al., [Unilateral spondylolysis with spina bifida occulta of lumbar spine-case report and review of the literature]. No Shinkei Geka,2005.33(11):p. 1119-23.
    [32]El, R.G., et al., Lumbar spondylolysis in pediatric and adolescent soccer players. Am J Sports Med,2005.33(11):p.1688-93.
    [33]Sairyo, K., et al., Biomechanical rationale of endoscopic decompression for lumbar spondylolysis as an effective minimally invasive procedure-a study based on the finite element analysis. Minim Invasive Neurosurg,2005.48(2):p.119-22.
    [34]Krupski, W. and P. Majcher, Radiological diagnostic of lumbar spondylolysis. Ortop Traumatol Rehabil,2004.6(6):p.809-18.
    [1]Su, J.C., et al., Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance. Chin J Traumatol,2009.12(3):p. 153-6.
    [2]Chung, S.K., Y.E. Kim and K.C. Wang, Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Spine (Phila Pa 1976), 2009.34(12):p.1281-6.
    [3]Kim, H.J., et al., A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med Biol Eng Comput,2009.47(6):p.599-605.
    [4]Tang, X.J., et al., [Analysis of lumbar disc degeneration using three-dimensional nonlinear finite element method]. Zhonghua Yi Xue Za Zhi,2008.88(23):p.1634-8.
    [5]Zhang, Q.H. and E.C. Teo, Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys,2008.30(10):p. 1246-56.
    [6]Natarajan, R.N., et al., Biomechanical response of a lumbar intervertebral disc to manual lifting activities:a poroelastic finite element model study. Spine (Phila Pa 1976),2008.33(18):p.1958-65.
    [7]Chen, S.H., et al., Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques-a three-dimensional finite element analysis. BMC Musculoskelet Disord,2008.9:p.88.
    [8]Guan, Y., et al., Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis. J Spinal Disord Tech,2008.21(4):p.299-304.
    [9]Imai, K., et al., In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine (Phila Pa 1976),2008.33(1):p.27-32.
    [10]Deb, A., S. Majumder and A. Roychowdhury, Biomechanical study of the lumbar spine with and without implant: a finite element approach. J Long Term Eff Med Implants,2008.18(4):p.257-67.
    [11]Ivanov, A.A., et al., The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5:anatomic and finite element investigations. Spine (Phila Pa 1976), 2007.32(22):p.2462-6.
    [12]Guo, L., et al., [Finite element modeling of lumbar spine and study on its biodynamics]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2007.24(5):p.1084-8.
    [13]Kim, Y., Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Spine (Phila Pa 1976),2007.32(23):p. 2558-68.
    [14]Ivanov, A., et al., Minimally invasive decompression for lumbar spinal canal stenosis in younger age patients could lead to higher stresses in the remaining neural arch-a finite element investigation. Minim Invasive Neurosurg,2007.50(1):p.18-22.
    [15]Zander, T., et al., [Biomechanical consequences of variations in artificial disc positioning. A finite element study on the lumbar spine]. Orthopade,2007.36(3):p. 205-6,208-11.
    [16]Bono, C.M., et al., Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria. Spine (Phila Pa 1976),2007.32(4):p.417-22.
    [17]Noailly, J., et al., How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J Biomech,2007.40(11):p.2414-25.
    [18]Rohlmann, A., et al., Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine:a finite element analysis. Eur Spine J,2007.16(8):p.1223-31.
    [19]Schmidt, H., et al., Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon), 2007.22(4):p.377-84.
    [20]Zhang, D. and Y. Song, [The finite element analysis of lumbar fusions]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2006.20(4):p.400-3.
    [21]Sairyo, K., et al., Three-dimensional finite element analysis of the pediatric lumbar spine. Part I:pathomechanism of apophyseal bony ring fracture. Eur Spine J,2006. 15(6):p.923-9.
    [22]Sairyo, K., et al., Three dimensional finite element analysis of the pediatric lumbar spine. Part Ⅱ:biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J,2006.15(6):p.930-5.
    [23]Schmidt, H., et al., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon),2006.21(4):p.337-44.
    [24]Zhong, Z.C., et al., Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys,2006.28(1):p.90-8.
    [25]Sairyo, K., et al., Biomechanical comparison of lumbar spine with or without spina bifida occulta. A finite element analysis. Spinal Cord,2006.44(7):p.440-4.
    [26]Rohlmann, A., et al., Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech,2006.39(13):p.2484-90.
    [27]Rohlmann, A., et al., Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech,2006.39(6):p.981-9.
    [28]Vadapalli, S., et al., Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976), 2006.31(26):p. E992-8.
    [29]Wang, J.P., et al., Finite element analysis of the spondylolysis in lumbar spine. Biomed Mater Eng,2006.16(5):p.301-8.
    [30]Chiang, M.F., et al., Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine (Phila Pa 1976),2006.31(19):p. E682-9.
    [31]Wang, Z.L., et al., Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing. Comput Methods Programs Biomed,2005.80(1):p.25-35.
    [32]Sairyo, K., et al., Biomechanical rationale of endoscopic decompression for lumbar spondylolysis as an effective minimally invasive procedure-a study based on the finite element analysis. Minim Invasive Neurosurg,2005.48(2):p.119-22.
    [33]Bouzakis, K.D., et al., Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations. J Musculoskelet Neuronal Interact,2004.4(2):p.152-8.
    [34]Totoribe, K., E. Chosa and N. Tajima, A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method. J Spinal Disord Tech,2004. 17(2):p.147-53.
    [35]Chosa, E., et al., Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method. J Spinal Disord Tech,2004.17(2):p.134-9.
    [36]Belytschko,T., Kulak, R. F. and Schultz, A. B. Finite element stress analysis of an intervertebral disc[J]. J. Biomechanics,1974(7):277-285.
    [37]Kulak, R. F., Belytschko, T. B., Schultz, A. B. and Galante,J. O. Non-linear behaviour of the human intervertebral disc under axial load[J]. J. Biomechanics, 1976(9):377-386.
    [38]Lin, H. S., Liu, Y. K., Ray, G. and Nikravesh, P. Systems identi. cation for material properties of the intervertebral joint [J]. J. Biomechanics,1978(11):1-14.
    [39]Shirazi-Adl, A. Load bearing role of facets in a lumbar segment under sagittal plane loadings[J]. J. Biomechanics,1987(20):601-613.
    [40]Kim, Y. and T.W. Kim, Finite Element Analysis of the Effects of Pedicle Screw Fixation Nut Loosening on Lumbar Interbody Fusion Based on the Elasto-Plateau Plasticity of Bone
    [41]Kim, H.J., et al., Analysis of biomechanical changes after removal of instrumentation in lumbar arthrodesis by finite element analysis. Med Biol Eng Comput,2010.
    [42]McDonald, K., et al., Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics. Med Eng Phys,2010.
    [43]Schmidt, H., et al., Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J, 2010.
    [44]Schmidt, H., et al., Response analysis of the lumbar spine during regular daily activities-A finite element analysis. J Biomech,2010.
    [45]Ding, J.Y., et al., Design and finite-element evaluation of a versatile assembled lumbar interbody fusion cage. Arch Orthop Trauma Surg,2010.130(4):p.565-71.
    [46]Characteristics. Spine (Phila Pa 1976),2010.
    [1]Harms J, Rolinger H:A one-stager procedure in operative treatment of spondyloistheses:dorsal traction-reposition and anterior fusionJ]. Z Orthop Ihre Grenzgeb,1982,120(3):343-47.
    [2]Mummaneni PV, Haid RW, Rodts GE.Lumbar interbody fusion state-of-the-art technical advance.Invited submission from the Joint Section Meeting on Disorders of the spine and peripheral Nevers, March 2004J].Neurosurg Spine,2004,1(1):24-30.
    [3]Schwender JD,Holly LT,Ruben DP,et al.Minimally invasive transforaminal lumbar interbody fusion (TLIF):Technical feasibility and initial results J].Spinal Disorder Tech,2005,18 Suppl:Sl-6.
    [4]Kandziora F, Schleicher P, Scholz M, et al.Biomechanical testing of the lumbar facet interference screwJ]. Spine,2005,30(2):E34-9.
    [5]Slucky AV, Brodke DS, Bachus KN, et al. Less invasive posterior fixation method following transfora-minal lumbar interbody fusion: a biomechanical analysisJ]. Spine,2006,6(1):78-85.
    [6]Schleicher P, Beth P, Ottenbacher A, et al. Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusionJ]. Neurosurg Spine,2008,9(4):363-71.
    [7]Sethi A, Lee S, Vaidya R. Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw J]. Eur Spine,2009,18(3):430-4.
    [8]陈家麟,茅祖斌,吴小涛.四种经椎间孔腰椎间融合固定方式的三维有限元分析J].中国组织工程研究和临床康复杂志.2008,12(39):7605-7610。
    [9]Chen CS,Cheng CK,Liu CL.A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine J]. Spinal Disord Tech,2002,15(1):53-63
    [10]Tuttle J, Shakir A, Choudhri HF:Paramedian approach for transforaminal lumbar interbody fusion with unilateral pedicle screw fixation: Technical note and preliminary report on 47 casesJ]. Neurosurg Focus,2006,20(3):E5.
    [11]Deguchi M, Cheng BC, Sato K, et al. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws and pedicle fixationJ]. Spine,1998,23(12):1307-12.
    [12]Ferrara LA, Secor JL, Jin BH, et al. A biomechanical comparison of facet screw fixation and pedicle screw fixation:effect of short term and long-term repetitive cyclingJ]. Spine,2003,28 (12):1226-34.
    [13]Harris BM, Hilibrand AS, Savas PE,et al.Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spineJ].Spine.2004,29(4):E65-70.
    [14]Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixationJ]. Neurosurg Spine, 2005,3(3):218-23.
    [15]Mahar A, Kim C, Oka R,et al. Biomechanical comparison of a novel percutaneous transfacet device and a traditional posterior system for single level fusionJ]. Spinal Disord Tech,2006,19(8):591-4.
    [16]Chen SH, Tai CL, Lin CY, et al. Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques-a three-dimensional finite element analysisJ]. BMC Musculoskelet Disord.2008 Jun 18;9:88.
    [17]Kong, W. Z., Goel, V. K. and Gilbertson, L. G. Prediction of biomechanical parameters in the lumbar spine during sagittal plane lifting. J. Biomech..Engng,1998, 120,273-280.
    [18]Yamamoto, S., Tanaka, E., Mihara, K., Inoue, H. and Ohmori, K. Finite element evaluation of spondylolysis taking account of non-linear mechanical properties of ligaments and annulus fibrosis. Japan Soc. Mech. Engrs Int. J., Ser. C,1999,42, 521-531.
    [19]Wang, Z.L., et al., Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing. Comput Methods Programs Biomed,2005.80(1):p.25-35.
    [20]Sairyo, K., et al., Biomechanical rationale of endoscopic decompression for lumbar spondylolysis as an effective minimally invasive procedure-a study based on the finite element analysis. Minim Invasive Neurosurg,2005.48(2):p.119-22.
    [21]Guan, Y., et al., Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis. J Spinal Disord Tech,2008.21(4):p.299-304.
    [22]Imai, K., et al., In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine (Phila Pa 1976),2008.33(1):p.27-32.
    [23]Deb, A., S. Majumder and A. Roychowdhury, Biomechanical study of the lumbar spine with and without implant:a finite element approach. J Long Term Eff Med Implants,2008.18(4):p.257-67.
    [24]Ivanov, A. A., et al., The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5:anatomic and finite element investigations. Spine (Phila Pa 1976), 2007.32(22):p.2462-6.
    [25]Guo, L., et al., Finite element modeling of lumbar spine and study on its biodynamics]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2007.24(5):p.1084-8.
    [26]Kim, Y., Finite element analysis of anterior lumbar interbody fusion:threaded cylindrical cage and pedicle screw fixation. Spine (Phila Pa 1976),2007.32(23):p. 2558-68.
    [27]Ivanov, A., et al., Minimally invasive decompression for lumbar spinal canal stenosis in younger age patients could lead to higher stresses in the remaining neural arch-a finite element investigation. Minim Invasive Neurosurg,2007.50(1):p.18-22.
    [28]Zander, T., et al., Biomechanical consequences of variations in artificial disc positioning. A finite element study on the lumbar spine]. Orthopade,2007.36(3):p. 205-6,208-11.
    [29]Bono, C.M., et al., Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria. Spine (Phila Pa 1976),2007.32(4):p.417-22.
    [30]Noailly, J., et al., How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J Biomech,2007.40(11):p.2414-25.
    [31]Rohlmann, A., et al., Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine:a finite element analysis. Eur Spine J,2007.16(8):p.1223-31.
    [32]Schmidt, H., et al., Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon), 2007.22(4):p.377-84.
    [33]Zhang, D. and Y. Song, The finite element analysis of lumbar fusions]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2006.20(4):p.400-3.
    [34]Sairyo, K., et al., Three-dimensional finite element analysis of the pediatric lumbar spine. Part I:pathomechanism of apophyseal bony ring fracture. Eur Spine J,2006. 15(6):p.923-9.
    [35]Sairyo, K., et al., Three dimensional finite element analysis of the pediatric lumbar spine. Part II:biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J,2006.15(6):p.930-5.
    [36]Schmidt, H., et al., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon),2006.21(4):p.337-44.
    [37]Zhong, Z.C., et al., Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys,2006.28(1):p.90-8.
    [38]Sairyo, K., et al., Biomechanical comparison of lumbar spine with or without spina bifida occulta. A finite element analysis. Spinal Cord,2006.44(7):p.440-4.
    [39]Rohlmann, A., et al., Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech,2006.39(13):p.2484-90.
    [40]Rohlmann, A., et al., Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech,2006.39(6):p.981-9.
    [41]Vadapalli, S., et al., Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976), 2006.31(26):p. E992-8.
    [42]Wang, J.P., et al., Finite element analysis of the spondylolysis in lumbar spine. Biomed Mater Eng,2006.16(5):p.301-8.
    [43]Chiang, M.F., et al., Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine (Phila Pa 1976),2006.31(19):p. E682-9.
    [1]Belytschko,T., Kulak, R. F. and Schultz, A. B. Finite element stress analysis of an intervertebral disc[J]. J. Biomechanics,1974(7):277-285.
    [2]Kulak, R. F., Belytschko, T. B., Schultz, A. B. and Galante,J. O. Non-linear behaviour of the human intervertebral disc under axial load[J]. J. Biomechanics, 1976(9):377-386.
    [3]Lin,H.S.,Liu,Y K.,Ray,G and Nikravesh,P.Systems identi.cation for materialproperties of the intervertebral joint[J].J.Biomechanics,1978(11):1-14.
    [4]Shirazi-Adl,A.Load bearing role of facets in a lumbar segment under sagittal planeloadings[J].J.Biomechanics,1987(20):601-613.
    [5]Shirazi-Adl,A.On the fibre composite material models of disc annulus—comparisonof predicted stresses[J].J.Biomechanics,1989(22):357-365.
    [6]Shirazi-Adl,A.and Drouin,G Finite element simulation of changes in the fluidcontent of human lumbar discs:mechanical and clinical implications[J]. Spine,1992(17):206-212.
    [7]Shirazi-Adl,A.Analysis of role of bone compliance on mechanics of a lumbar motionsegment[J].J.Biomech.Engng,1994(116):408-412.
    [8]Simon,B.R.,Wu,J.S.S.,Carlton,M.W,Evans,J.H.and Kazarian,L.E.Structuralmodels for human spinal motion segments based on a poroelastic view of theintervertebral disc[J].J.Biomech.Engng,1985(107):327-335.
    [9]Laible,J.P.,P(?) aster,D.S.,Krag,M.H.,Simon,B.R.and Haugh,L.D.Aporoelastic.finite element model with application to the intervertebral disc[J].Spine,1993(18):659-670.
    [10]Ueno,K.and Liu,Y K.A three-dimensional non-linear finite element model oflumbar intervertebral joint in torsion[J].J.Biomech.Engng,1987(109):200-209.
    [11]Lu,Y M.,Hutton,W.C.and Gharpuray,V. M.Do bending,twisting and diurnal fluidchanges in the disc affect the propensity to prolapse:A viscoelastic finite elementmodel[J].Spine,1996(21):2570-2579.
    [12]Lu,Y M.,Hutton,W.C.and Gharpuray,V. M.The effect of fluid loss on theviscoelastic behavior of the lumbar intervertebral disc in compression[J].J.Biomech.Engng,1998(120):48-54.
    [13]Goel,V.K.,Monroe,B.T.,Gilbertson,L.G and Brinckmann,P.Interlaminar shearstresses and laminae separation in a disc:finite element analysis of the L3-L4 motionsegment subjected to axial compressive loads[J].Spine,1995(20):689-698.
    [14]Natarajan,R.N.and Andersson,G B.J.The influence of lumbar disc height andcross-sectional area on the mechanical response of the disc to physiologic loading[J].Spine,1999(24):1873-1881.
    [15]Lu,Y M.,Hutton,W.C.and Gharpuray,V. M.Can variations in intervertebral discheight affect the mechanical function of the disc[J].Spine,1996(21):2208-2216.
    [16]Lavaste,F.,Skalli,W.,Robin,S.,Roy-Camille,R.and Mazel,C.Three-dimensional geometrical and mechanical modelling of the lumbar spine[J]. J. Biomechanics, 1992(25):1153-1164.
    [17]Kong, W. Z., Goel, V. K. and Gilbertson, L. G. Prediction of biomechanical parameters in the lumbar spine during sagittal plane lifting[J]. J. Biomech. Engng, 1998(120):273-280.
    [18]Yamamoto, S., Tanaka, E., Mihara, K., Inoue, H. and Ohmori, K. Finite element evaluation of spondylolysis taking account of non-linear mechanical properties of ligaments and annulus fibrosis[J]. Japan Soc. Mech. Engrs Int. J., Ser. C, 1999(42):521-531.
    [19]陈肇辉,李义凯.计算机辅助的三维重建在骨伤科中的运用[J].中国中医骨伤科,2000,8(2):52-54.
    [20]毕胜,张德文,张明,等.腰椎牵引三维有限元模型分析[J].中国康复医学杂志,2002,17(2):84-86.
    []] Sakakura, C.E., et al., Influence of cyclosporin A therapy on bone healing around titanium implants:a histometric and biomechanic study in rabbits. J Periodontol,2003.74(7):p.976-81.
    [2]Xing, X.P., et al., [Evaluation of bone architecture and biomechanic properties by peripheral quantitative computed tomography in rats]. Zhonghua Yi Xue Za Zhi,2003.83(9):p.791-5.
    [3]Ramsey, D.K., et al., Electromyographic and biomechanic analysis of anterior cruciate ligament deficiency and functional knee bracing. Clin Biomech (Bristol, Avon),2003.18(1):p.28-34.
    [4]Kolar, E., K.A. Kolar and S. Stuhec, Comparative analysis of selected biomechanic characteristics between a support backward swing and support swing for the 11/4 straddle-piked forward salto on the parallel bars. Sports Biomech,2002.1(1):p.69-78.
    [5]Larsen, K., F. Weidich and C. Leboeuf-Yde, Can custom-made biomechanic shoe orthoses prevent problems in the back and lower extremities? A randomized, controlled intervention trial of 146 military conscripts. J Manipulative Physiol Ther,2002.25(5):p.326-31.
    [6]Kwun, S.K. and C. Kim, Enhanced nutrient removals using conventional anoxic biomechanic aerobic system for on-site wastewater treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng,2002.37(5):p.863-73.
    [7]Guigui, P. and P. Hardouin, [Histologic and biomechanic evaluation of posterolateral arthrodesis using a biphasic ceramic of calcium phosphate as bone substitute. Experimental study with sheep]. Bull Acad Natl Med,2000.184(2):p.403-12; discussion 413-4.
    [8]Schedel, J.M., P. Terrier and Y. Schutz, The biomechanic origin of sprint performance enhancement after one-week creatine supplementation. Jpn J Physiol,2000.50(2):p.273-6.
    [9]Tairbekov, M.G., [The cell as a gravity-dependent biomechanic system]. Aviakosm Ekolog Med, 2000.34(2):p.3-17.
    [10]Devocht, J.W., et al., Biomechanic evaluation of the Rola Stretcher as a passive distraction device. J Manipulative Physiol Ther,2000.23(4):p.252-7.
    [11]Chen, H., et al., [Effects of microwave acute irradiation on biomechanic properties of rabbit tissues]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,1999.16(2):p.168-71,176.
    [12]Rasmusson, L., et al., The influence of simultaneous versus delayed placement on the stability of titanium implants in onlay bone grafts. A histologic and biomechanic study in the rabbit. Int J Oral Maxillofac Surg,1999.28(3):p.224-31.
    [13]Vathana, P. and T. Prasartritha, A biomechanic study of the surgical repair technique of pars defect in spondylolysis. J Med Assoc Thai,1998.81(11):p.824-9.
    [14]Vorro, J. and W.L. Johnston, Clinical biomechanic correlates of cervical dysfunction: Part 4. Altered regional motor behavior. J Am Osteopath Assoc,1998.98(6):p.317-23.
    [15]Shin, S.S., et al., Scapholunate ligament reconstruction using a bone-retinaculum-bone autograft: a biomechanic and histologic study. J Hand Surg Am,1998.23(2):p.216-21.
    [16]Liu, C. and H. Chen, [Preliminary study of biomechanic property on human forethigh skin]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,1997.14(4):p.380-2.
    [17]Steriopoulos, K., et al., Architecture of the femoral medullary canal and working length for intramedullary nailing. Biomechanic indications for dynamic nailing. Acta Orthop Scand Suppl, 1997.275:p.123-6.
    [18]Kerrigan, D.C., et al., Biomechanic effects of a contralateral shoe-lift on walking with an immobilized knee. Arch Phys Med Rehabil,1997.78(10):p.1085-91.
    [19]Luria, S., et al., Biomechanic analysis of trapeziectomy, ligament reconstruction with tendon interposition, and tie-in trapezium implant arthroplasty for thumb carpometacarpal arthritis:a cadaver study. J Hand Surg Am,2007.32(5):p.697-706.
    [20]McCall, T.A., et al., Volar versus dorsal fixed-angle fixation of dorsally unstable extra-articular distal radius fractures:a biomechanic study. J Hand Surg Am,2007.32(6):p.806-12.
    [21]Gelberman, R.H., et al., The early effects of sustained platelet-derived growth factor administration on the functional and structural properties of repaired intrasynovial flexor tendons: an in vivo biomechanic study at 3 weeks in canines. J Hand Surg Am,2007.32(3):p.373-9.
    [22]Wolfe, S.W., et al., Biomechanic comparison of the Teno Fix tendon repair device with the cruciate and modified Kessler techniques. J Hand Surg Am,2007.32(3):p.356-66.
    [23]Croog, A., et al., Comparative biomechanic performances of locked cruciate four-strand flexor tendon repairs in an ex vivo porcine model. J Hand Surg Am,2007.32(2):p.225-32.
    [24]Cheema, T.A., et al., Biomechanic comparison of 3 tendon transfers for supination of the forearm. J Hand Surg Am,2006.31(10):p.1640-4.
    [25]Wolf, J.C., et al., A biomechanic comparison of an internal radiocarpal-spanning 2.4-mm locking plate and external fixation in a model of distal radius fractures. J Hand Surg Am,2006.31(10):p. 1578-86.
    [26]Cheynel, N., et al., Biomechanic study of the human liver during a frontal deceleration. J Trauma, 2006.61(4):p.855-61.
    [27]Iwamoto, A., et al., An anatomic and biomechanic study of the wrist extensor retinaculum septa and tendon compartments. J Hand Surg Am,2006.31(6):p.896-903.
    [28]Mazza, C., et al., Biomechanic modeling of sit-to-stand to upright posture for mobility assessment of persons with chronic stroke. Arch Phys Med Rehabil,2006.87(5):p.635-41.
    [29]Drobetz, H., et al., Volar fixed-angle plating of distal radius extension fractures:influence of plate position on secondary loss of reduction-a biomechanic study in a cadaveric model. J Hand Surg Am,2006.31(4):p.615-22.
    [30]Steyaert, A.E., et al., The effects of substance P on the biomechanic properties of ruptured rat Achilles' tendon. Arch Phys Med Rehabil,2006.87(2):p.254-8.
    [31]Yan, J.Z., et al., [Dynamic observation of the biomechanic properties of sciatic nerve at the suture site in rats following repairing]. Zhonghua Wai Ke Za Zhi,2005.43(12):p.792-4.
    [32]Akulov, V.A., [The biomechanic criterium of adequacy of the modelled and natural force of gravity]. Aviakosm Ekolog Med,2005.39(1):p.59-61.
    [33]Chung, S.G., et al., Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehabil,2004.85(10):p.1638-46.
    [34]Frosi, G., et al., [The sterno-clavicular joint: anatomy, biomechanic, clinical features and aspects of manual therapy]. Reumatismo,2004.56(2):p.82-8.
    [35]Lebiedowska, M.K., et al., Biomechanic characteristics of patients with spastic and dystonic hypertonia in cerebral palsy. Arch Phys Med Rehabil,2004.85(6):p.875-80.
    [36]Li, W., Y. Song and D. Wang, [A biomechanic study on the relapse after sagittal split and oblique osteotomy of Ramus]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2004.21(1):p.47-50.
    [37]Kazmierski, R., [Biomechanic shear stress in carotid arteries and atherosclerosis development]. Postepy Hig Med Dosw,2003.57(6):p.713-25.
    [38]Kucukaksu, D.S., et al., Dynamic cardiomyoplasty as a biomechanic bridge to heart transplantation. Heart Lung,2003.32(6):p.407-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700