非对称双席呋碱过渡金属催化剂对环氧烷与环酸酐开环共聚制备聚酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧化合物与环酸酐共聚得到的聚酯因其具有优良的生物降解性和生物相容性、聚合物和降解产物无毒性等优点而能被广泛应用于生物医用材料领域和新型包装材料。但目前此反应所用的催化剂性能普遍不高,所以制备出高性能的催化剂是一个重要的突破。
     首先成功制备出了非对称双席呋碱配体和非对称双席呋碱锰系列催化剂,采用元素分析、红外光谱、核磁氢谱和碳谱、X-射线单晶衍射和热重分析等手段对其结构进行了表征,把制备出的催化剂用于环氧烷与环酸酐的共聚研究;接着把非对称双席呋碱锰系列催化剂用于环氧烷与双酸酐的共聚研究;然后成功制备出了另外一种非对称双席呋碱配体和非对称双席呋碱铬、钴、锰催化剂,采用元素分析、红外光谱、核磁氢谱、X-射线单晶衍射和热重分析等手段对其结构进行了表征,把制备出的催化剂用于环氧苯乙烷与马来酸酐的共聚研究;最后成功制备出了双烯丙基Salen-type席呋碱锰催化剂,采用元素分析、红外光谱、核磁氢谱、X-射线单晶衍射和热重分析等手段对其结构进行了表征,把制备出的催化剂用于环氧环己烷与马来酸酐的共聚研究;对共聚物采用红外光谱和核磁氢谱来确定它的微观结构,采用凝胶渗透色谱来确定他的分子量和分子量分布。从中挑选出效果最好的催化剂来进行聚合方式、助催化剂的类型、反应的温度、反应的时间和单体与催化剂的摩尔比等聚合工艺参数的优化。
     当采用[Mn(L")Cl]四种催化剂对CHO-MA进行熔融聚合或溶液聚合时,催化剂的催化效能大小顺序依次为9>8>7>6,这也主要取决于四个催化剂具有不同的推拉电子效应和空间位阻效应,催化剂9的吸电子效应和大位阻效应的共同作用使得聚合物单体很容易进行配位插入,共聚物分子链明显增加,溶液共聚物数均分子量为18225g-mol-1,分子量分布为1.03。采用[Mn(Ln)CI]四种催化剂对CHO-ODPA进行溶液聚合时,同样催化剂9的吸电子效应和大位阻效应取得了最好的催化效果,这时得到共聚物数均分子量Mn=4837g·mol-1, PDI=1.08,明显高于其它三个催化剂的催化效果。而对环氧烷与双酸酐溶液共聚反应而言,最优条件为反应时间300min,溶剂为DMF,反应温度110℃,单体与催化剂的比例为250:125:1:1,助催化剂选用n-Bu4NBr。
     在第四章中采用非对称双席呋碱铬、钴、锰催化剂对SO-MA进行熔融聚合或溶液聚合时,明显可以看出,氯离子的阴离子效应明显强于醋酸根的阴离子效应;溶液聚合的效果要好于熔融聚合,溶液开环聚合所得共聚物有更高的分子量,并且分子量分布也较窄,当采用20为催化剂,共聚物的数均分子量Mn达到了最高为5118g-mol-1,分子量分布为1.07。在三种铬、钴、锰过渡金属中,铬的活性最高,钴和锰的活性次之。
     在第五章中采用双烯丙基[Mn(L1)X]、[Mn(L2)X]和[Mn(L3)CI]七种催化剂对CHO-MA进行熔融聚合和溶液聚合的考察,结果表明:不管是熔融聚合还是溶液聚合,CI-的阴离子效应最强,OAc-的阴离子效应次之,N3-的阴离子效应最小;三个连接体中,环己二胺的效果最好,乙二胺的效果次之,邻苯二胺的效果最差。溶液聚合的效果要好于熔融聚合,溶液开环聚合所得共聚物有更高的分子量,并且分子量分布也较窄,当采用2为催化剂,共聚物的数均分子量Mn为14657g-mol-1,分子量分布为1.04。
     综上所述,不管是对于环氧烷与环酸酐共聚还是环氧烷与双酸酐共聚反应,催化剂如果具有吸电子基团和较大的位阻基团时催化活性较高,Cl的阴离子效应最强,OAc的阴离子效应次之,N3的阴离子效应最小,在三种金属中,铬的活性最高。对熔融聚合而言,最优条件为反应时间150min,反应温度110℃,单体与催化剂的比例为250:250:1:1,助催化剂选用DMAP;对溶液聚合而言,最优条件为反应时间300min,反应温度110℃,单体与催化剂的比例为250:250:1:1,助催化剂选用DMAP。
Polyesters based on epoxide and anhydride or dianhydride, due to their good biodegradability and biocompatibility, are currently of interest because of their potential applications in biomedical devices and coatings materials. However, the reported catalysts displayed relatively low catalytic activities, needing the development of high performance catalysts as a breakthrough to polyester.
     Series of asymmetrical bis-Schiff-base ligands based PMBP and their manganese(Ⅲ) asymmetrical bis-Schiff-base complexes were synthesized and characterized by element analysis, infrared spectra, nuclear magnetic resonance spectra, X-ray single-crystal diffraction and thermo-gravimetric analysis. All the nine complexes (1-9) as the catalysts were used for the ring-opening copolymerization of epoxide and anhydride. On the other hand, catalysts6-9were further used for the ring-opening copolymerization of epoxide and dianhydride. Another series of asymmetrical bis-Schiff-base ligand based on Cl-PMBP and its chromium(Ⅲ) cobalt(Ⅲ) manganese(Ⅲ) complexes were prepared and characterized by element analysis, infrared spectra, nuclear magnetic resonance spectra, X-ray single-crystal diffraction and thermo-gravimetric analysis, where they were used for the ring-opening copolymerization of styrene oxide and maleic anhydride. Moreover, manganese(Ⅲ) diallyl-modified Salen-type Schiff-base Catalysts were obtained and also characterized. From which, the complexes were used as the catalysts for the ring-opening copolymerization of cyclohexene oxide and maleic anhydride. As to the totally obtained copolymers, their microstructure were characterized by the FT-IR and1H NMR, and the molecular weight sizes and the molecular weight distribution indexs were determined by gel permeation chromatography (GPC). Especially, the relationship between the molecular structures and the catalytic behaviors was checked, and the optimal polymerization process based of the selected catalyst was also investigated.
     The ring-opening copolymerization behaviors of CHO and MA in bulk and solution were studied in detail by series of catalysts [Mn(Ln)Cl](n=1-4), where the catalyst9showed the better catalytic activity under the conditions applied, due to its large steric effects and the electronic effects. Using the selected9as the suitable catalyst, its solution copolymerization showed that the number molecular weight of the obtained copolymer was18225g·mol-1and the PDI was1.03. The ring-opening copolymerization of epoxide and dianhydride in solution were former studied also using catalysts [Mn(Ln)Cl] as the catalysts, where also due to its large steric effects and the electronic effects, catalyst9as the suitable catalyst could endow the number molecular weight of4837g·mol-1and the PDI of1.08for the copolymer from the solution copolymerization. On the other hand, as to its use for the solution (DMF) copolymerization of CHO and ODPA in presence of n-Bu4NBr as the co-catalyst, the optimal polymerization conditions are composed of the molar ratio of CHO, ODPA,9and n-Bu4NBr of250:125:1:1, the polymerization time of300min and the reaction temperature of110℃.
     The ring-opening copolymerization of SO and MA in bulk and solution were also studied by another chromium(Ⅲ) cobalt(Ⅲ) manganese(Ⅲ) asymmetrical bis-Schiff-base catalysts. It is obviously that the anion effect of Cl" is better than the anion effect of OAc-, the results of solution polymerization is better than the bulk polymerization. The higher molecular weight and the lower molecular weight distribution index were achieved by solution polymerization. Using the selected20as the suitable catalyst, the molecular weight of solution copolymer was5118g·mol-1and the PDI was1.07. Of all catalysts, the chromium-based catalysts performed the best under the conditions applied, followed by the cobalt and manganese catalysts.
     The ring-opening copolymerization of CHO and MA in bulk and solution were studied in detail by using Manganese(Ⅲ) diallyl-modified Salen-type Schiff-base Catalysts. It is obviously that the anion effect of Cl-performed the best under the conditions applied, followed by the OAc-, the anion effect of N3-proved to be the least active under the applied conditions, the effect of1,2-diaminocyclohexane is the best in the three linkers. The effect of solution polymerization is better than the bulk polymerization. The higher molecular weight and the lower molecular weight distribution index were achieved by solution polymerization. Using the selected2as the suitable catalyst, the molecular weight of solution copolymer was14657g-mol"1and the PDI was1.04.
     In sum, the catalyst with the withdrawing electronic group or having a larger steric group showed superior catalytic activities to copolymerization of epoxide and anhydride and epoxide and dianhydride. The anion effect of Cl" performed the best under the conditions applied, followed by the OAc-, the anion effect of N3-proved to be the least active under the applied conditions. Of all catalysts, the chromium-based catalysts performed the best under the conditions applied, followed by the cobalt and manganese catalysts. The better catalytic performances were obtained from the copolymerization procedure of the molar ratio of epoxide, anhydride, catalyst and co-catalyst of250:250:1:1, the polymerization time of150min and the reaction temperature of110℃in bulk. The better catalytic performances were obtained from the copolymerization procedure of the molar ratio of epoxide, anhydride, catalyst and co-catalyst of250:250:1:1, the polymerization time of300min and the reaction temperature of110℃in toluene.
引文
[1]Zhan W. C., Guo Y. L., Wang Y. Q., Guo Y., Liu X. H., Wang Y. S., Zhang Z. G, Lu G Z. Study of Higher Selectivity of Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst[J]. J. Phys. Chem. C., 2009,113: 7181-7185
    [2]Gupta K. C., Sutar A. K., Lin C.-C. Polymer-supported Schiff-base complexes in oxidation reactions[J]. Coord. Chem. Rev.,2009,253:1926-1946
    [3]Zolezzi S., Spodine E., Decinti A. Epoxidation of Styrene with iodosylbenzene in the presence of copper(II) Schiff-base complexes[J]. Polyhedron, 2003,22:1653-1658
    [4]Iglesias A. L., Aguirre G., Somanathan R., P-Hake M. New chiral Schiff-base Cu (Ⅱ) complexes as cyclopropanation catalysts[J]. Polyhedron, 2004,23:3051-3062
    [5]Rayati S., Zakavi S., Koliaei M., Wojtczak A., Kozakiewicz A. Electron-rich salen-type Schiff-base complexes of Cu(Ⅱ) as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide: A comparison with electron-deficient ones[J]. Inorg. Chem. Commun.,2010,13:203-207
    [6]Naskar S., Naskar S., M-Figge H., W. Sheldrick S., Chattopadhyay S. K. Synthesis, X-ray crystal structures, spectroscopic and cyclic voltammetric studies of Cu(II) Schiff-base complexes of pyridoxal[J]. Polyhedron, 2011,30:529-534
    [7]Monfaerd H. H., Bikas R., Mayer P. Homogeneous green catalysts for olefin oxidation by oxovanadium(V) complexes of hydrazone Schiff-base ligands[J]. Inorg. Chim. Acta., 2010,363:2574-2583
    [8]Li Z. K., Li Y, Lei L., Che C. M., Zhou X. G. Synthesis, structure and catalytic properties of Re(I)-NOBIN Schiff-base complex[J]. Inorg. Chem. Commun.,2005,8: 307-309
    [9]Samsel E. G, Srinivasan K., Kochi J. K. Mechanism of the Chromium-Catalyzed Epoxidation of Olefins. Role of Oxochromium(V) Cations[J]. J. Am. Chem. Soc., 1985, 107:7606-7617
    [10]Lu X.-H., Xia Q.-H., Zhan H.-J., Yuan H.-X., Ye C.-P., Su K.-X., Xu G. Synthesis, characterization and catalytic property of tetradentate Schiff-base complexes for the epoxidation of styrene[J]. J. Mol. Catal. A: Chem., 2006,250:62-69
    [11]Jiang J., Ma K., Zheng Y.-F., Cai S.-L., Li R., Ma J.-T. Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air[J]. Appl. Clay. Sci., 2009,45:117-122
    [12]Yang Y., Zhang Y., Hao S.-J., Guan J.-Q., Ding H., Shang F.-R, Qiu P.-P., Kan Q.-B. Heterogenization of functionalized Cu(Ⅱ) and VO(Ⅳ) Schiff-base complexes by direct immobilization onto amino-modified SBA-15:Styrene oxidation catalysts with enhanced reactivity [J]. Appl. Catal. A: Gen.,2010,381:274-281
    [13]S. Gomez, Garces L. J., Villegas J., Ghosh R., Giraldo O., Suib S. L. Synthesis and characterization of TM-MCM-48(TM=Mn, V, Cr) and their catalytic activity in the oxidation of styrene[J]. J. Catal.,2005,233:60-67
    [14]Hu J.-L., Li K.-X., Li W., Ma F.-Y, Guo Y.-H. Selective oxidation of styrene to benzaldehyde catalyzed by Schiff base-modified ordered mesoporous silica materials impregnated with the transition metal-monosubstitued Keggin-type polyoxometalates[J]. Appl. Catal. A: Gen.,2009, 364:211-220
    [15]Jana S., Dutta B., Bera R., Koner S. Anchoring of Copper Complex in MCM-41 Matrix: A Highly Efficient Catalyst for Epoxidation of Olefins by tert-BuOOH[J]. Langmuir, 2007,23:2492-2496
    [16]Yang Y., Zhang Y., Hao S.-J., Kan Q.-B. Tethering of Cu(Ⅱ), Co(Ⅱ) and Fe(Ⅱ) tetrahydro-salen and salen complexed onto amino-functionalized SBA-15:Effects of salen ligand hydrogenation on catalytic performances for aerobic epoxidation of styrene[J]. Chem. Eng. J.,2011,171:1356-1366
    [17]Yang Y., Guan J.-Q., Qiu P.-P., Kan Q.-B. Enhanced catalytic performances by surface silylation of Cu(Ⅱ) Schiff base-containing SBA-15 in epoxidation of styrene with H2O2[J]. Appl. Surf. Sci., 2010,256:3346-3351
    [18]Qi B., Lu X.-H., Zhou D., Xia Q.-H., Tang Z.-R., Fang S.-Y., Pang T., Dong Y.-L. Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites [J]. J. Mol. Catal. A: Chem.,2010,322:73-79
    [19]Ghost R., Shen X.-F., Villegas J. C., Ding Y.-S., Malinger K., Suib S. L. Role of Manganese Oxide Octahedral Molecular Sieves in Styrene Epoxidation[J]. J. Phys. Chem. B,2006,110:7592-7599
    [20]Sharma S., Sinha S., Chand S. Polymer Anchored Catalysts for Oxidation of Styrene Using TBHP and Molecular oxygen[J]. Ind. Eng. Chem. Res., 2012,51:8806-8814
    [21]Sen R., Bhunia S., Mal D., Koner S., Miyashita Y., Okamoto K.-I. Layered Transition Metal Carboxylates:Efficient Reusable Heterogeneous Catalyst for Epoxidation of Olefins[J]. Langmuir, 2009,23:13667-13672
    [22]Das P., Biernacka I. K., Silva A. R., Carvalho A. P., Pires J., Freire C. Encapsulation of chiral Mn(Ⅲ) salen complexes into aluminium pillared clays: Application as heterogeneous catalysts in the epoxidation of styrene[J]. J. Mol. Catal. A: Chem., 2006, 248:135-143
    [23]Cardoso M., Silva A. R., Castro B. D., Freire C. Styrene epoxidation catalysed by manganese(in) salen complex supported on activated carbons[J]. Appl. Catal. A: Gen. 2005,285:110-118
    [24]Silva A. R., Figueiredo J. L., Freire C., Castro B. D. Copper(Ⅱ) acetylacetonate anchored onto an activated carbon as a heterogeneous catalyst for the aziridination of styrene[J]. Catal. Today., 2005,102-103:154-159
    [25]Parihar S., Pathan S., Jadeja R. N., Patel A., Gupta V. K. Synthesis and crystal structure of an oxovanadium(IV) complex with a pyrazolone ligand and its use as a heterogeneous catalyst for the oxidation of styrene under mild conditions[J]. Inorg. Chem.,2012,51(2):1152-1161
    [26]Nava H. Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed [M]. New York: 2004,95-119
    [27]Worzakowska M. Curing reaction of unsaturated (epoxy) polyesters based on different aliphatic glycols[J]. J. Therm. Anal. Calorim.,2010,102(2):745-750
    [28]Cai L., Wang S. Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity[J]. Biomaterials, 2010,31(29):7423-7434
    [29]Dadsetan M., Liu Z., Pumberger M. A stimuli-responsive hydrogel for doxorubicin delivery[J]. Biomaterials, 2010,31(31):8051-8062
    [30]Dawes E., Senior P. The role and regulation of energy reserve polymers in micromechanism[J]. Advances in Microbial Physiology, 1973,10:135-266
    [31]Kusaka S., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters[J]. Prog. Polym. Sci.,2000,25:1503-1555
    [32]Dionisi D., Majone M., Tandoi V. Sequencing batch reactor: influence of periodic operation on performance of activated sludges in biological wastewater treatment: novel reactor engineering for the new millennium[J]. Ind. Eng. Chem. Res.,2001,40: 5110-5119
    [33]Matsumura S., Okamoto T., Tsukada K., Toshima K. Novel lipase-catalyzed ring-opening copolymerization of oxiranes and succinic anhydride forming polyesters bearing functional groups[J]. Macromol. Rapid Commun., 1998,19(6):295-298
    [34]Rajkhowa R., Varma I. K., Albertsson A. C., Edlund U. Enzyme-catalyzed copolymerization of oxiranes with dicarboxylic acid anhydrides[J]. J. Appl. Poly. Sci., 2005,97:697-704
    [35]Brown A. H., Sheares V. V. Amorphous unsaturated aliphatic polyesters derived from dicarboxylic monomers synthesized by Diels-Alder chemistry [J]. Macromolecules, 2007,40:4848-4853
    [36]Tschan M. J.-L., Brule E., Haquette P., Thomas C. M. Synthesis of biodegradable polymers from renewable resources[J]. Polym. Chem., 2012,3:836-851
    [37]Albertsson A. C., Varma I. K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications[J]. Biomacromolecules, 2003,4:1466-1486
    [38]Brule E., Gaillard S., Rager M. N., Roisnel T., Guerineau V., Nolan S. P., Thomas C. M. Polymerization of racemic β-butyrolactone using gold catalysis:a simple access to biodegradable polymers[J]. Organometallics, 2011,30:2650-2653
    [39]Zintl M., Molnar F., Urban T., Bernhart V., Preishube-Pflugl P., Rieger B. Variably isotactic poly(hydroxybutyrate) from racemic β-butyrolactone: microstructure control by achiral chromium(Ⅲ) salophen complexes[J]. Angew. Chem. Int. Ed.,2008,47: 3458-3460
    [40]Reichard R., Vagin S., Reithmeier R., Ott A. K., Rieger B. Factors influencing the ring-opening polymerization of racemic β-butyrolactone using CrⅢ (salphen)[J]. Macromolecules,2010,43:9311-9317
    [41]Ohsawa S., Morino K., Sudo A., Endo T. Synthesis of a reactive polyester bearing α,β-unsaturated ketone groups by anionic alternating copolymrization of epoxide and bicyclic bis(y-butyrolactone) bearing isopropenyl group[J]. Macromolecules, 2011, 44(7):1814-1820
    [42]Meulen I., Gubbels E., Huijser S., Sabling R., Koning C. E., Heise A., Duchateau R. Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethykene-like polymers[J]. Macromolecules, 2011,44:4301-4305
    [43]Ma J., Cheng C., Wooley K. L. Cycloalkenyl-functionalized polymers and block copolymers:syntheses via selective RAFT polymerization and demonstration of their versatile reactivity [J]. Macromolecules, 2009,42(5):1565-1573
    [44]Coulembier O., Dege'e P., Hedrick J. L. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives[J]. Prog. Polym. Sci.,2006,31:723-747
    [45]Darensbourg D. J., Choi W., Karroonnirun O. Ring-Opening Polymeriza-tion of Cyclic Monomers by Complexes Derived from Biocompatible Metals. Production of Poly(lactide), Poly(trimethylene carbonate), and Their Copolymers [J]. Macromolecules, 2008,41:3493-3502
    [46]Nieuwenhuis J. Synthesis of polylactides, polyglycolides and their copolymers [J]. Clin. Mater.,1992,10(1-2):59-67
    [47]Li H., Zhang S. H., Jiao J. C. Controlled Synthesis of Polylactides Using Biogenic Creatinine Carboxylate Initiators [J]. Biomacromolecules, 2009,10:1311-1314
    [48]Wang J. F., Yao Y. M., Zhang Y. Bridged Bis(amidinate) Ytterbium Alkoxide and Phenoxide:Syntheses, Structures, and Their High Activity for Controlled Polymerization of L-Lactide and ε-Caprolactone[J]. Inorg. Chem., 2009,48:744-751
    [49]Samantaray M. K., Katiyar V., Roy D. A Cationic (N-Heterocyclic carbene) silver Complex as Catalyst for Bulk Ring-Opening Polymerization of L-Lactides[J]. Eur. J. Inorg. Chem.,2006,15:2975:2984
    [50]Ray L., Katiyar V., Raihan M. J., et al. First Example of a Gold(I) N-Heterocyclic-Carbene-Based Initiator for the Bulk Ring-Opening Polymerization of L-Lactide[J]. Eur. J. Inorg. Chem.,2006,18:3724-3730
    [51]Chisholm M. H., Gallucci J. C., Phomphrai K. Lactide Polymerization by Well-Defined Calcium Coordination Complexes: Comparisons with Related Magnesium and Zinc Chemistry[J]. Chem. Commun., 2003:48-49
    [52]Myers M., Connor E. F., Glauser T., et al. Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides[J]. J. Polym. Sci. Part A: Polym. Chem.,2002,40(7):844-851
    [53]Spassky N. Stereospecific and anionic ring-opening polymerization[J]. Makromol Chemie-Macromol. Symp.,1991,42/43:15-49
    [54]Sodergard A., Stolt M. Properties of lactic acid based polymers and their correlation with composition[J]. Prog. Polym. Sci., 2002,27(6):1123-1163
    [55]Kimura Y., Tang Z., Fukushima K., et al. Polylactic acid with good moldability and high crystallinity and melting point[J]. PCT. Int. Appl.,2006,58
    [56]Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications[J]. Macromol. Biosci.,2005,5(7):569-597
    [57]Biela T., Duda A., Penczek S. Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes [J]. Macromolecules, 2006,39:3710-3713
    [58]Connor E. F., Nyce G. W., Myers M., et al. First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters[J]. J. Am. Chem. Soc.,2002,124(6):914-915
    [59]Tanzi M. C., Verderio P., Lumpugnani M. G., et al. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use[J]. J. Mater. Sci.: Mater. Med.,1994,5(6&7):393-396
    [60]Aida T., Inoue S. Metalloporphyrins as initiators for living and immortal polymerizations[J]. Acc. Chem. Res.1996,29:39-48
    [61]Mauri A. N., Galego N., Riccardi C. C., Williams R. J. J. Kinetic model for gelation in the diepoxide-cyclic anhydride copolymerization initiated by tertiary amines[J]. Macromolecules,1997,30:1616-1620
    [62]Sarbu T., Beckman E. Homopolymerization and copolymerization of cyclohexene oxide with carbon dioxide using zinc and aluminum catalysts [J]. Macromolecules, 1999,32: 6904-6912
    [63]Wu G. P., Xu P. X., Lu X. B., Zu Y. P., Wei S. H., Ren W. M., Darensbourg D. J. Crystalline CO2 copolymer from epichlorohydrin via Co(Ⅲ)-complex-mediated stereospecific polymerization[J]. Macromolecules, 2013,46(6):2128-2133
    [64]Darensbourg D. J., Mackiewicz R. M. Role of the cocatalyst in the copolymerization of CO2 and cyclohexene oxide utilizing chromium salen complexes[J]. J. Am. Chem. Soc., 2005,127:14026-14038
    [65]Darensbourg D. J., Moncada A. I. (Salen)Co(Ⅱ)/n-Bu4NX catalysts for the coupling of CO2 and oxetane: selectivity for cyclic carbonate formation in the production of poly(trimethylene carbonate)[J]. Macromolecules, 2009,42:4063-4070
    [66]Lu X. B., Liang B., Zhang Y. J., Tian Y. Z., Wang Y. M., Bai C. X., Wang H., Zhang R. Asymmetric catalysts with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides[J]. J. Am. Chem. Soc.,2004,126:3732-3733
    [67]Ren W. M., Liu Z. W., Wen Y. Q., Zhang R., Lu X. B. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable sing-site cobalt(Ⅲ) catalyst[J]. J. Am. Chem. Soc., 2009,131:11509-11518
    [68]Lu X. B., Shi L., Wang Y. M., Zhang R., Zhang Y. J., Peng X. J., Zhang Z. C., Li B. Design of highly active binary catalyst systems for CO2/epocide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control[J]. J. Am. Chem. Soc.,2006,128:1664-1674
    [69]Wu G. P., Wei S. H., Ren W. M., Lu X. B., Xu T. Q., Darensbourg D. J. Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(Ⅲ)-based catalysts systems[J]. J. Am. Chem. Soc., 2011,133:15191-15199
    [70]Liu J., Ren W. M., Liu Y., Lu X. B. Kinetic study on the coupling of CO2 and epoxides catalyzed by Co(Ⅲ) complex with an inter-or intramolecular nucleophilic cocatalyst[J]. Macromolecules,2013,46:1343-1349
    [71]Zhang W. Z., Li W. J., X. Zhang, H. Zhou, X. B. Lu. Cu(Ⅰ)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2[J]. Org. Lett.,2010, 12(21): 4748-4751
    [72]Zhang X., Zhang W. Z., Ren X., Zhang L. L., Lu X. B. Ligand-free Ag(Ⅰ)-catalyzed carboxylation of terminal alkynes with CO2[J]. Org. Lett., 2011,13(9):2402-2405
    [73]Nakano K., Nakamura M., Nozaki K. Alternating copolymerization of cyclohexene oxide with carbon dioxide catalyzed by (salalen)CrCl complexes[J]. Macromolecules, 2009,42: 6972-6980
    [74]Harrold N. D., Li Y., Chisholm M. H. Studies of ring-opening reactions of styrene oxide by chromium tetraphenylporphyrin initiators. Mechanistic and stereochemical considerations[J]. Macromolecules,2013,46(3):692-698
    [75]Huijser S., Nejad E. H., Sablong R., Jong C. de, Koning C. E., Duchateau R. Ring-opening Co and Terpolymerization of an alicyclic oxirane with carboxylic acid anhydrides and CO2 in the presence of chromium porphyrinato and salen catalysts [J]. Macromolecules,2011,44:1132-1139
    [76]Jeske R. C., Rowley J. M., Coates G. W. Pre-rate-determing selectivity in the terpolymerization of epoxides, cyclic anhydrides, and CO2:a one-step route to diblock copolymers[J]. Angew, Chem. Int. Ed., 2008,47:6041-6044
    [77]Darensbourg D. J., Poland R. R., Escobedo C. Kinetic studies of the alternating copolymerization of cyclic acid anhydrides and epoxides, and the terpolymerization of cyclic acid anhydrides, epoxides, and CO2 catalyzed by (salen)CrⅢCl[J]. Macromolecules,2012,45:2242-2248
    [78]Brule E., Guo J., Coates G. W., Thomas C. M. Metal-catalyzed synthesis of alternating copolymers[J]. Macromol. Rapid. Commun.,2011,32:169-185
    [79]You Z. W., Wang Y. D. A versatile synthetic platform for a wide range of functionalized biomaterials[J]. Adv. Funct. Mater.,2012,22:2812-2820
    [80]Wang W., Ding J. X., Xiao C. S., Tang Z. H., Li D., Chen J., Zhuang X. L., Chen X. S. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery [J]. Biomacromolecules, 2011,12: 2466-2474
    [81]Kyeremateng S. O., Busse K., Kohlbrecher J., Kressler J. Synthesis and self-organization of poly(propylene oxide)-based amphiphilic and triphilic block copolymers[J]. Macromolecules,2011,44:583-593
    [82]Feng L., Liu Y., Hao J. Y., Xiong C. D., Deng X. M. Alternating copolymers with degradability and quantitatively controlled thermosensitivity[J]. J. Polym. Sci. Part A: Polym. Chem.,2012,50:1812-1818
    [83]Zhou J. B., Liu J., Cheng C. J., Patel T. R., Weller C. E., Piepmeier J. M., Jiang Z. Z., Saltzman W. M. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery[J]. Nat. Mater., 2012,11:82-89
    [84]Loy R. N., Jacobsen E. N. Enantioselective intramolecular openings of oxetanes catalyzed by (salen)Co(Ⅲ) complexes: access to enantioenriched tetrahydrofurans[J]. J. Am. Chem. Soc.,2009,131:2786-2787
    [85]Rajkhowa R., Varma I. K., Albertsson A. C., Edlund U. Enzyme-catalyzed copolymerization of oxiranes with dicarboxylic acid anhydrides[J]. J. Appl. Polym. Sci., 2005,97(2):697-704
    [86]Peretti K. L., Ajiro H., Cohen C. T., Lobkovsky E. B., Coates G. W. A highly active isospecific cobalt catalyst for propylene oxide polymerization[J]. J. Am. Chem. Soc., 2005,127:11566-11567
    [87]Erturk E., Tezeren M. A., Tilki T., Erdogan T., Goren A. C. Polymerization of epoxides catalyzed by a mixed-valent iron trifluoroacetate [Fe3O(O2CCF3)(H2O)3][J]. Polym Int, 2012,61:795-799
    [88]Huang Y. B., Gao L. X., Ding M. X. Polymerization of styrene oxide catalyzed by a diethylzinc/a-pinene oxide system[J]. J. Polym. Sci. Part A:Polym. Chem.,1999,37: 4640-4645
    [89]Wang B. C., Zhou X., Yin J. S., Wang L. Investigation on some matrix-dominated properties of hybrid multiscale composites based on carbon fiber/carbon nanotube modified epoxy [J]. J. Appl. Polym. Sci.,2013,990-996
    [90]Fischer R. F. Polyesters from expoxides and anhydrides [J]. J. Polym. Sci., 1960,44(143): 155-172
    [91]Tsuruta T., Matsuura K., Inoue S. Preparation of some polyesters by organometallic-catalyzed ring opening polymerization[J]. Makromol. Chem.,1964, 75(1):211-214
    [92]Aida T., Inoue S. Catalytic Reaction on Both Sides of a Metalloporphyrin Plane Alternating Copolymerization of Phthalic Anhydride and Epoxypropane with an Aluminum Porphyrin-Quaternary Salt System[J]. J. Am. Chem. Soc.,1985,107(5): 1358-1364
    [93]Aida T., Sanuki K., Inoue S. Well-controlled polymerization by metalloporphyrin. Synthesis of copolymer with alternating sequence snd regulated molecular weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt[J]. Macromolecules, 1985,18(6):1049-1054
    [94]Maeda Y., Nakayama A., Kawasaki N., et al. Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide[J] Polymer, 1997, 38(18):4719-4725
    [95]Jeske R. C., DiCiccio A. M., Coates G. W. Alternating Copolymerization of Epoxides and Cyclic Anhydrides: An Improved Route to Aliphatic Polyesters[J]. J. Am. Chem. Soc.,2007,129:11330-11331
    [96]DiCiccio A. M., Coates G. W. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides: A Chain-Growth Approach to Unsaturated Polyesters [J]. J. Am. Chem. Soc.,2011,133:10724-10727
    [97]Nejad E. H., Paoniasari A., Koning C. E., Duchateau R. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides [J]. Polym. Chem.2012,3:1308-1313
    [98]Nejad E. H., van Melis C. G. W., Vermeer T. J., Koning C. E., Duchateau R. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides:Effect of Catalyst, Cocatalyst, and Anhydride Structure[J]. Macromolecules, 2012,45:1770-1776
    [99]Bernard A., Chatterjee C., Chisholm M. H. The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by prophyrin metal(Ⅲ) complexes[J]. Polymer, 2013,54:2639-2646
    [100]Liu J., Bao Y. Y., Liu Y., Ren W. M., Lu X. B. Binuclear chromium-salan complex catalyzed alternating copolymerization of epoxides and cyclic anhydrides [J]. Polym. Chem. 2013,4:1439-1444
    [101]Nejad E. H., Paoniasari A., Van Melis C. G. W., Koning C. E., Duchateau R. Catalytic ring-opening copolymrization of limonene oxide and phthalic anhydride:toward partially renewable polyesters[J]. Macromolecules, 2013,46(3):631-637
    [102]Tan S. B., Li J. J., Zhang Z. C. Study of chain transfer reaction to solvents in the initiation stage of atom transfer radical polymerization[J]. Macromolecules, 2011, 44(20):7911-7916
    [1]Tsuruta T., Matsuura K., Inoue S. Preparation of some polyesters by organometallic-catalyzed ring opening polymerization[J]. Makromol. Chem.,1964,75(1): 211-214
    [2]Aida T., Inoue S. Catalytic Reaction on Both Sides of a Metalloporphyrin Plane Alternating Copolymerization of Phthalic Anhydride and Epoxypropane with an Aluminum Porphyrin-Quaternary Salt System[J]. J. Am. Chem. Soc., 1985,107(5): 1358-1364
    [3]Aida T., Sanuki K., Inoue S. Well-controlled polymerization by metalloporphyrin. Synthesis of copolymer with alternating sequence snd regulated molecular weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt[J]. Macromolecules, 1985,18(6):1049-1054.
    [4]Fischer R. F. Polyesters from expoxides and anhydrides[J]. J. Polym. Sci.,1960, 44(143): 155-172
    [5]Maeda Y., Nakayama A., Kawasaki N., et al. Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide[J] Polymer, 1997, 38(18):4719-4725
    [6]Jeske R. C., DiCiccio A. M., Coates G. W. Alternating Copolymerization of Epoxides and Cyclic Anhydrides:An Improved Route to Aliphatic Polyesters[J]. J. Am. Chem. Soc., 2007,129:11330-11331
    [7]DiCiccio A. M., Coates G. W. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides:A Chain-Growth Approach to Unsaturated Polyesters[J]. J. Am. Chem. Soc., 2011,133:10724-10727
    [8]Nejad E. H., Paoniasari A., Koning C. E., Duchateau R. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides [J]. Polym. Chem. 2012,3,1308-1313
    [9]Nejad E. H., Koning C. E., Duchateau R. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides:Effect of Catalyst, Cocatalyst, and Anhydride Structure[J]. Macromolecules,2012,45:1770-1776
    [10]Sheikhshoaie I. A., Shamspur T., Ebrahimipur S. Y. Asymmetric Schiff base as carrier in PVC membrane electrodes for manganese (Ⅱ) ions[J]. Arab. J. Chem., 2012,5(2): 201-205
    [11]Gungor O., Gurkan P. Synthesis and spectroscopic properties of novel asymmetric Schiff-bases[J]. Spectrochim. Acta, Part A, 2010,77(1):304-311
    [12]Saeid M., Azadeh A., Abbas T., et al. Synthesis, characterization and electrochemical study of synthesis of a new Schiff base ligand and their two asymmetric Schiff-base complexes of Ni(Ⅱ) and Cu(Ⅱ) with NN'OS coordination spheres[J]. Spectrochim. Acta, Part A,2012,97:1033-1040
    [13]Gupta K. C., Sutar A. K. Catalytic activities of Schiff base transition metal complexes[J]. Coord. Chem. Rev.,2008,252(12-14):1420-1450
    [14]Shouvik C., Michael G. B., Ashutosh G Anion directed templated synthesis of mono- and di-Schiff base complexes of Ni(Ⅱ)[J]. Polyhedron, 2007,26(14):3513-3522
    [15]Bibal C., Daran J. C., Deroover S. Ionic Schiff base dioxidomolybdenum(Ⅵ) complexes as catalysts in ionic liquid media for cyclooctene epoxidation[J]. Polyhedron, 2010, 29(1):639-647
    [16]Shebl M., Khalil Saied M. E., Ahmed S. A., et al. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand[J]. J. Mol. Struct., 2010,980(1-30):39-50
    [17]Yao K. M., Li N., Shen L. F. Synthesis and Catalytic Activity of Ln (Ⅲ) Complexes with an Unsymmetrical Schiff Base Including Multi-C=N-Groups[J]. Sci. China, Ser. B, 2003,46(1):75-83
    [18]Elder R. C. Tridentate and unsymmetrical tetradentate Schiff-base ligands from Salicyldehydes and diamines:Their monomeric and dimeric nickel (Ⅱ) complexes[J]. Aust. J. Chem.,1978,31(1):35-45
    [19]Atkins R., Brewer G., Kokot E. Copper(Ⅱ) and Nickel(Ⅱ)complexes of unsymmetrical tetradentate Schiff-base [J]. Inorg. Chem., 1985,24(2):127-134
    [20]Sheldrick G M. SHELXL-97:Program for Crystal Structure RefinementfM]. Gottingen, Germany, 1997
    [21]Sheldrick G. M. SADABS[M]. University of Gottingen, 1996
    [1]Fischer R. F. Polyesters from expoxides and anhydrides[J]. J. Polym. Sci., 1960,44(143): 155-172
    [2]Tsuruta T., Matsuura K., Inoue S. Preparation of some polyesters by organometallic-catalyzed ring opening polymerization[J]. Makromol. Chem.,1964,75(1): 211-214
    [3]Aida T., Inoue S. Catalytic Reaction on Both Sides of a Metalloporphyrin Plane Alternating Copolymerization of Phthalic Anhydride and Epoxypropane with an Aluminum Porphyrin-Quaternary Salt System[J]. J. Am. Chem. Soc., 1985,107(5): 1358-1364
    [4]Aida T., Sanuki K., Inoue S. Well-controlled polymerization by metalloporphyrin. Synthesis of copolymer with alternating sequence snd regulated molecular weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt[J]. Macromolecules, 1985,18(6):1049-1054
    [5]Maeda Y., Nakayama A., Kawasaki N., et al. Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide[J]. Polymer, 1997, 38(18):4719-4725
    [6]Jeske R. C., DiCiccio A. M., Coates G. W. Alternating Copolymerization of Epoxides and Cyclic Anhydrides: An Improved Route to Aliphatic Polyesters[J]. J. Am. Chem. Soc., 2007, 129:11330-11331
    [7]DiCiccio A. M., Coates G. W. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides: A Chain-Growth Approach to Unsaturated Polyesters[J]. J. Am. Chem. Soc., 2011,133:10724-10727
    [8]Nejad E. H., Paoniasari A., Koning C. E., Duchateau R. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides [J]. Polym. Chem.2012,3:1308-1313
    [9]Nejad E. H., Koning C. E., Duchateau R. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides:Effect of Catalyst, Cocatalyst, and Anhydride Structure[J]. Macromolecules,2012,45:1770-1776
    [10]Bernard A., Chatterjee C., Chisholm M. H. The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by prophyrin metal(Ⅲ) complexes[J]. Polymer, 2013,54:2639-2646
    [11]Liu J., Bao Y. Y., Liu Y., W. Ren M., Lu X. B. Binuclear chromium-salan complex catalyzed alternating copolymerization of epoxides and cyclic anhydrides[J]. Polym. Chem. 2013,4:1439-1444
    [12]Nejad E. H., Paoniasari A., Koning C. E., Duchateau R. Catalytic ring-opening copolymrization of limonene oxide and phthalic anhydride: toward partially renewable polyesters[J]. Macromolecules, 2013,46(3):631-637
    [13]Tan S. B., Li J. J., Zhang Z. C. Study of chain transfer reaction to solvents in the initiation stage of atom transfer radical polymerization[J]. Macromolecules, 2011,44(20): 7911-7916
    [1]Nejad E. H., Paoniasari A., Koning C. E., Duchateau R. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides[J]. Polym. Chem. 2012,3:1308-1313
    [2]Sheikhshoaie I. A., Shamspur T., Ebrahimipur S. Y. Asymmetric Schiff base as carrier in PVC membrane electrodes for manganese(Ⅱ) ions[J]. Arab. J. Chem.,2012,5(2):201-205
    [3]Gungor O., Gurkan P. Synthesis and spectroscopic properties of novel asymmetric Schiff bases[J]._Spectrochim. Acta, Part A, 2010,77(1):304-311
    [4]Saeid M., Azadeh A., Abbas T., et al. Synthesis, characterization and electrochemical study of synthesis of a new Schiff base ligand and their two asymmetric Schiff-base complexes of Ni(Ⅱ) and Cu(Ⅱ) with NN'OS coordination spheres[J]. Spectrochim. Acta, Part A,2012,97:1033-1040
    [5]Gupta K. C., Sutar A. K. Catalytic activities of Schiff base transition metal complexes[J]. Coord. Chem. Rev.,2008,252(12-14):1420-1450
    [6]Shouvik C., Michael G. B., Ashutosh G Anion directed templated synthesis of mono- and di-Schiff base complexes of Ni(Ⅱ)[J]. Polyhedron, 2007,26(14):3513-3522
    [7]Bibal C., Daran J. C., Deroover S. Ionic Schiff base dioxidomolybdenum(Ⅵ) complexes as catalysts in ionic liquid media for cyclooctene epoxidation[J]. Polyhedron, 2010,29(1): 639-647
    [8]Shebl M., Khalil Saied M. E., Ahmed S. A., et al. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand[J]. Journal of Molecular Structure, 2010,980(1-30):39-50
    [9]Yao K. M., Li N., Shen L. F. Synthesis and Catalytic Activity of Ln (Ⅲ) Complexes with an Unsymmetrical Schiff Base Including Multi-C=N-Groups[J]. Sci. China, Ser. B, 2003, 46(1):75-83
    [10]Elder R. C. Tridentate and unsymmetrical tetradentate Schiff base ligands from Salicyldehydes and diamines: Their monomeric and dimeric nickel (Ⅱ) complexes[J]. Aust. J. Chem., 1978,31(1):35-45
    [11]Atkins R., Brewer G., Kokot E. Copper(II) and Nickel(II)complexes of unsymmetrical tetradentate schiff base[J]. Inorg. Chem., 1985,24(2):127-134
    [12]Liu D. F., Wu L. Y., Feng W. X., Zhang X. M., Wu J., Zhu L. Q., Fan D. D., Lu X. Q., Shi Q. Ring-opening copolymerization of CHO and MA catalyzed by mononuclear [Zn(L2)(H2O)] or trinuclear [Zn3(L2)2(OAc)2] complex based on the asymmetrical bis-Schiff-base ligand precursor[J]. J. Mol. Catal. A: Chem.,2014,382:136-145
    [13]Wu J., Liu D. F., Wu L. Y., Zhang X. M., Zhu L. Q., Fan D. D., Lu X. Q., Shi Q. Electronic and steric effects of substituents in series of Zn2+ asymmetrical bis-Schiff-base ligands complexes on catalytic ring-opening copolymerization of CHO and MA[J]. J. Organomet. Chem.,2014,749:302-311
    [14]Zhu L. Q., Liu D. F., Wu L. Y., Feng W. X., Zhang X. M., Wu J., Fan D. D., Lu X. Q., Lu R., Shi Q. A trinuclear [Zn3(L)2(OAc)2] complex based on the asymmetrical bis-Schiff-base ligand H2L for ring-opening copolymerization of CHO and MA[J]. Inorg. Chem. Commun.,2013,37:182-185
    [15]Sheldrick G. M. SHELXL-97:Program for Crystal Structure Refinement[M]. Gottingen, Germany, 1997
    [16]Sheldrick G. M. SADABS[M]. University of Gottingen, 1996
    [1]Aida T., Sanuki K., Inoue S. Well-controlled polymerization by metalloporphyrin. Synthesis of copolymer with alternating sequence snd regulated molecular weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt[J]. Macromolecules, 1985,18(6):1049-1054
    [2]Jeske R. C., DiCiccio A. M., Coates G. W. Alternating Copolymerization of Epoxides and Cyclic Anhydrides: An Improved Route to Aliphatic Polyesters[J]. J. Am. Chem. Soc., 2007,129:11330-11331
    [3]DiCiccio A. M., Coates G. W. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides:A Chain-Growth Approach to Unsaturated Polyesters [J]. J. Am. Chem. Soc., 2011,133:10724-10727
    [4]Nejad E. H., Paoniasari A., Koning C. E., Duchateau R. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides [J]. Polym. Chem. 2012,3:1308-1313
    [5]Nejad E. H., Koning C. E., Duchateau R. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides: Effect of Catalyst, Cocatalyst, and Anhydride Structure[J]. Macromolecules,2012,45:1770-1776
    [6]Bernard A., Chatterjee C., Chisholm M. H. The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by prophyrin metal(Ⅲ) complexes[J]. Polymer, 2013,54:2639-2646
    [7]Liu J., Bao Y. Y., Liu Y., Ren W. M., Lu X. B. Binuclear chromium-salan complex catalyzed alternating copolymerization of epoxides and cyclic anhydrides[J]. Polym. Chem. 2013,4:1439-1444
    [8]Haak R. M., Castilla A. M., Martinez Belmonte M., Escudero-Adan E. C., Benet-Buchholz J., Kleij A. W. Access to multinuclear salen complexes using olefin metathesis[J]. Dalton Trans.,2011,40(13):3352-3364
    [9]Sheldrick G M. SHELXL-97:Program for Crystal Structure Refinement[M]. Gottingen, Germany, 1997
    [10]Sheldrick G. M. SADABS[M]. University of Gottingen, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700