土壤中环丙氨嗪和三聚氰胺的残留检测方法及其吸附特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兽药对环境污染的研究越来越受到广泛重视,在许多土壤和水域中均发现了不同程度的抗生素残留。环丙氨嗪是一种高效的昆虫生长抑制剂类杀虫剂,广泛用于畜禽养殖业中作为饲料添加剂以控制动物厩舍内蝇蛆的生长发育。其代谢产物三聚氰胺是一种重要的化工原料,由于含氮量很高(66%),被广泛添加到饲料中用以“增加”产品的表观蛋白质含量。近年来环丙氨嗪和三聚氰胺在动物性食品中的残留问题十分严重,环丙氨嗪在水体、土壤及大气中均有检出,各国都对该药制定了严格的残留限量标准。动物口服的环丙氨嗪约99%以原药或代谢物三聚氰胺的形式通过畜禽粪便排泄的方式进入环境中,对环境造成潜在威胁。但迄今环丙氨嗪和三聚氰胺在我国主要类型耕地土壤中的环境行为数据仍为空白。本文在建立高效液相色谱法检测土壤中环丙氨嗪和三聚氰胺残留的基础上,研究了环丙氨嗪和三聚氰胺在江西红壤、江苏黄棕壤、太湖地区水稻土、河南潮土和黑龙江黑土中的吸附行为特征及其影响因素。
     首先,建立了土壤中环丙氨嗪和三聚氰胺残留的高效液相检测方法。方法采用Phenomenex Gemini C18色谱柱,以乙腈和pH=3.0的磷酸水溶液为流动相,梯度洗脱,流速为0.3ml/min,紫外检测波长为214nm,12min内可以测定环丙氨嗪和三聚氰胺在土壤中的残留量。土壤经(?)(NH40H)=5%的甲醇溶液提取浓缩后,环丙氨嗪和三聚氰胺土壤中的回收率分别为87.2~101.1%和75.3~101.6%,最低检测限分别为0.05mg/kg和0.07mg/kg。本方法操作快速、简单,易于普及,能够满足环丙氨嗪和三聚氰胺在土壤中残留检测的要求。
     其次,基于所建立的实验分析方法,采用批量平衡法,研究了环丙氨嗪和三聚氰胺在江西红壤、江苏黄棕壤、太湖地区水稻土、河南潮土和黑龙江黑土中的吸附特征。Freundlich模型和Langmuir模型均能较好地拟合吸附数据,拟合曲线均表现为良好的线性关系。结果表明:5种土壤对环丙氨嗪和三聚氰胺的吸附能力有所差异,其1gKf值分别在1.651~2.656、1.632~2.549之间。吸附常数Kf与土壤有机质含量呈显著正相关,与土壤pH之间呈显著负相关,而与土壤其他理化性质间相关性不明显。环丙氨嗪和三聚氰胺在5种供试土壤中的吸附自由能变化-△G为20.8~23.0kJ/mol,均小于40kJ/mol,表明其在这5种土壤中的吸附以物理吸附为主。
     此外,进一步研究了土壤pH、阳离子强度和柠檬酸对环丙氨嗪和三聚氰胺在土壤中吸附的影响。结果表明:环丙氨嗪和三聚氰胺在潮土中的线性吸附参数对数值1gKd随pH的变化趋势不明显,1gKd值在1.65左右;在其余4种供试土壤中,在试验pH范围(3~11)内,环丙氨嗪和三聚氰胺在4种土壤中的吸附参数对数值1gKd先随pH的增加逐渐降低,而当土壤溶液pH为碱性时,1gKd值随pH的增加无明显变化。环丙氨嗪和三聚氰胺在5种土壤中的吸附量随着离子强度的逐渐增强而减少,之后逐渐趋向于稳定。随着柠檬酸浓度的增加,环丙氨嗪和三聚氰胺在水稻土中的吸附量逐渐降低。这说明了柠檬酸对环丙氨嗪和三聚氰胺在水稻土中的吸附起着抑制作用。
Recently, growing attention has been paid on environment pollution caused by veterinary medicines, because residues of potentially harmful pharmaceutical antibiotics have been found in soils and waters. Cyromazine is a highly effective insect growth inhibitor pesticide, widely used in livestock and poultry industry as feed additive to control the maggot growth in animal stalls. Melamine, the metabolite of cyromazine, is an important chemical raw material, and has been widely added into animal feed to "increase" the apparent protein content of products due to its high content of nitrogen (66%). In recent years, it has become a serious problem of cyromazine and melamine residues in animalized food. Cyromazine has been detected in water, soil and air, therefore strict residue limit standard is made in the world. Cyromazine feeding to animals enters into the environment in the form of the original drug (99%) or the metabolite melamine via livestock and poultry excretion, potentially threatening the environment. But till now, the environmental behavior data of cyromazine and melamine in the main types of soil in China was still in blank. In this paper, the adsorption characters and influence factors of cyromazine and melamine on five kind of soils(Ferrosols, Argosols, Anthrosols, Cambosols, Isohumosols)on the basis of determining cyromazine and melamine residues in soils by high-performance liquid chromatography(HPLC).
     Firstly, a new method for trace level analysis of cyromazine and melamine in soils by HPLC with gradient elution was presented in this paper. Phenomenex Gemini C18 column (150×4.60mm) was used and the mobile phase was a mixture of acetonitrile-orthophosphoric(pH=3.0) with a flow rate of 0.3mL/min. The residues of cyromazine and melamine in soils were detected at 214 nm of UV wave within 12 min. Soil samples were extracted and concentrated thrice by ultrasonic with cp (NH40H)= 5%methanol solution, then analyzed by HPLC. The average recovery rates of cyromazine and melamine were 87.2~101.1% and 75.3~101.6 respectively, with the detection limit of 0.05mg/kg and 0.07mg/kg respectively. This method is fast, easy and popular, and can meet the needs of detecting cyromazine and melamine residues in soils.
     Moreover, the adsorption characters of cyromazine and melamine in 5 kinds of soils were studied by batch equilibrium method on the basis of experimental analysis. Results showed that the experimental data are best described by the Freundlich and Langmuir model, while fitted successfully by the linear model. Different adsorption behaviors of Cyromazine and melamine are observed in the five tested soils,with the values of lgKfof cyromazine and melamine were 1.651-2.656 and 1.632-2.549 respectively. Adsorption constant (Kf) was significantly positively correlated with soil organic matter content (OM), while significantly negatively correlated with soil pH. In addition, the Kf had no apparent correlations with other physical and chemical soil properties. The adsorption free energy (-ΔG) of cyromazine and melamine in five kinds of soils changed in the range of 20.8 and 23.0 kJ/mol, smaller than 40kJ/mol. It indicated that in these soils, physical adsorption was the main form.
     Finally, the effects of the soil pH, cation intensity and citric acid on soil adsorption of cyromazine and melamine were studied. It showed that the logarithm values of linear adsorption parameter (lgKd) of cyromazine and melamine in Cambosols had no obvious change with the pH, and the value was about 1.65.At the tested pH interval of 3~11 of the rest of soil types, the lgKd gradually decreased with the increase of pH value, while it showed no apparent change concomitant with the pH when the soil solution was alkaline. The adsorption of cyromazine and melamine in five kinds of soils declined with the elevated cation intensity, and then gradually turned to be stable. With the increase in the concentration of citric acid, the paddy soil had a gradually reduced adsorption of cyromazine and melamine. This showed that citric acid inhibited the adsorption of cyromazine and melamine in the paddy soil.
引文
1 Aboul-Kassim T A T, Simoneit B R T. The handbook of environmental chemistry vol.5 part E, pollutant-solid phase interactions:mechanism, chemistry and modeling [M]. Berlin Heidelberg:Springer-Verlag,2001:107-167.
    2 Addison J B. Antibiotics in sediments and run-off water from feedlots [J]. Residue Rev, 1984,92:1-24.
    3 Bakal R S, Stoskopf M K. In vitro studies of the fate of sulfadimethoxine and ormetoprim in the aquatic environment [J]. Aquaculture,2001,195(1-2):95-102.
    4 Bardalaye.P. C., Wheeler, W.B.et al. Gas chromatographic determination of cyromazine and its degradation product-melamine in Chinese cabbage [J].J.Assoc. Off. Anal Chem.1987.70:455-457.
    5 Bolan N S, Naidu N, Mahimairaja S, et al. Influence of low molecular weight organic acids on the solubilization of phosphorus [J]. Biol Fertil Soils,1994,18:311-319.
    6 Boxall A B A, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett,2002,131:19-28.
    7 Boyle J R, Voigt G K, Sawhney B L. Chemical weathering of biotite by organic acids [J]. Soil Sci,1974,117:42-45.
    8 Capone D G, Weston D P, Miller V, et al. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture [J]. Aquaculture,1996,145(1-4): 55-75.
    9 Carbras P., Melini M. and Spanedda L. High performance liquid chromatographic separation of cyromazine and its metabolite melamine[J] J. Chromatogr,.1990.505:413-416.
    10 Chee-Sanford J C, Aminov RI, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities [J]. Applied and Environmental Microbiology,2001,67(4):1494-1502.
    11 Cooperative Research Group on Chinese Soil Taxonomy. Chinese Soil Taxonomy[M]. Beijing and New York:Science Press,2001.
    12 Cyromazine and Melamine in Animal Tissues and Eggs[J]. Pesticide Analytical Manual. Volume II,1986.
    13 De Liguoro M, Cibin V, Capolongo F, et al. Use of oxytetracycline and tylosin in intensive calf farming:evaluation of transfer to manure and soil [J]. Chemosphere,2003,50:203-212.
    14 Diaz-Cruz M S, Lopez de Alda M J, Barcelo D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge [J]. Trends Anal Chem,2003, 22(6):340~351.
    15 Difrancesco A M, Chiu P C, Standley L J, et al. Dissipation of fragrance materials in sludge-amended soils [J]. Environ Sci Technol,2004,38(1):194-201.
    16 Donoho A L. Biochemical studies on the fate of monensin in animals and in the environment [J]. J Anim Sci,1984,58(6):1528-1539.
    17 Dutch food authority finds melamine in cookies. Available at http://www.aol.com.au /news/story/Dutch-food-authority-finds-melamine-in-cookies/1061301/index.html. Accessed 10 October 2008.
    18 Elmund G K, Morrison S M, Grant D W, et al. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste [J]. Bull Environ Contam Toxicol, 1971,6(2):129-132.
    19 Esiobu N, Arments L, Ike J. Antibiotic resistance in soil and water environments used forvarious activities[J]. J. Environ. Health Res.2002,12:133-144.
    20 Feinman S E, Matheson J C. Draft environmental impact statement:subtherapeutic antibacterial agents in animal feeds [R]. Washington, D.C.:Food and Drug Administration Department of Health, Education and Welfare Report, Food and Drug Administration,1978.
    21 Feng K, Lu H M, Sheng H J, et al. Effect of organic ligands on biological availability of inorganic phosphorus in soils [J]. Pedosphere,2004,14:85-92.
    22 Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays [J]. Environ Sci Technol,2004,38(2):476483.
    23 Figueroa R A, MacKay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils [J]. Environ Sci Technol,2005,39 (17):6664-6671.
    24 Gavalchin J, Katz S E. The persistence of faecal-borne antibiotics in soil [J]. Journal of AOAC International,1994,77(2):481-485.
    25 Golet E M, Strehler A, Alder A C, et al. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction [J]. Anal Chem,2002,74:5455-5462.
    26 Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environ Sci Technol,2003,37:3243-3249.
    27 Goll S. Possible environmental effects of antibiotic residues in animal manure [A]. Netherland:Tijdschrift voor Diergeneeeskunde (in dutch) (summary in english),1993.
    28 Goutailler G, Valette JC, Guillard C, Paisse O, Faure R. Photocatalysed degradation of cyromazine in aqueous titanium dioxide suspensions:comparison with photolysis. J.
    Photochem.Photobiol.A-Chem.2001,141(1):79-84
    29 Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environ. Sci. Technol.,2005a,39:2660-2667.
    30 Halling-S(?)rensen B, Nielsen SN, Lanzky P F, et al. Occurence, fate and effects of pharmaceutical substances in the environment-a review [J]. Chemosphere,1998,36(2): 357-393.
    31 Halling-S(?)rensen B, Sengel(?)v G, Ingerslev F, et al. Reduced antimicrobial potenties of oxytetracycline, tylosin, sulfadiazin streptomycin ciprofloxacin [J]. Arch Environ Contam Toxicol,2003a,44:7-16.
    32 Halling-S(?)rensen B, Lykkeberg A, Ingerslev F, et al. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS [J]. Chemosphere,2003b,50(10):1331-1342.
    33 Hamscher G, Sczesny S, Hoper H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry [J]. Anal Chem,2002,74(7):1509-1518.
    34 Han X G, Jordan C F. Mobilization of phosphorus by naturally occurring organic acids in Oxisols and Ultisols [J]. Pedosphere,1995,5:289-303.
    35 Hartmann,H.R.,Schneider,M.,Gretener,P.,Froehlich,E.,Malinowski,W.,Krinke,A. and Gfeller, W.,(1988). CGA-72662 tech.28 day aerosol inhalation toxicity in the rat-final report. Unpublished report, project no.861472 from CIBA-GEIGY Ltd,.Basle,Switzerland.
    36 Hue N V, Craddock G R, Adam F. Effects of organic acids on aluminum toxicity [J]. Soil Sci Soc Am J,1986,50:28-34.
    37 http://pmep.cce.cornell.edu/profiles/insect-mite/cadusafos-cyromazine/cyromazine/cyromaz ine-prop-tol-mush.html
    38 http://www.epa.gov/fedrgstr/EPA-PEST
    39 http://www.epa.gov/fedrgstr/EPA-PEST/1993/
    40 Ingerslev F, Halling-Soerensen B. Environ. Biodegradability properties of sulfonamides in activated sludge [J]. Toxicol Chem,2000,19(10):2467-2473.
    41 Jones AD, Bruland G L, Agrawal S Q et al. Factors influencing the sorption of oxytetracycline to soils [J]. Environ Sci Technol,2005,24(4):761~770.
    42 Jorgensen S E,Halling-Sorensen B.Drugs in the environment [J]. Chemosphere, 2000,40:691-699
    43 Kroker R. Aspekte zur ausscheidung antimikrobiell wirksamer substanzen nach der chemoterapeutischen behandlung von nutztieren [J]. Wissenschaft und Umwelt,1983,4: 305-308.
    44 Kulshrestha P, Giese R F Jr, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter:insights on factors affecting its mobility in soil [J]. Environ Sci Technol,2004,38(15):4097-4105.
    45 Kumar K, Thompson A, Singh A K, et al. Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples [J]. J Environ Quality,2004,33: 250-256.
    46 Kumar K, Gupta S C, Chander Y, et al. Antibiotic use in agriculture and its impact on the terrestrial environment [J]. Adv Agron,2005a,87:1-54.
    47 Kumar K, Gupta S C, Baidoo S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure [J]. J Environ Qual,2005b,34:2082-2085.
    48 Kummerer K. Significance of antibiotics in the environment [J]. J Antimicrob Chemother, 2003,52(1):5-7.
    49 Kummerer K. Pharmaceuticals in the environment:sources, fate, effects and risks [M].2nd ed. Berlin:Springer-verlag,2004:527.
    50 Lunestad B T, Goksoyr J. Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium [J]. Diseases of Aquatic Organisms,1990,9:67-72.
    51 Maureen P. Serafini. cyromazine Registration of the Major Change in Labeling for Cyromazine, Contained in the Pesticide Product Trigard Insecticide 4/05. http://pmep.cce.cornell.edu/profiles/insect-mite/cadusafos-cyromazine/cyromazine/cyromaz ine_let_405.html
    52 Melamine-Tainted Candy Found In CT. Available at http://www.wfsb.com/health/ 17599817/detail.html. Accessed 10 October 2008.
    53 Montforts M H M M, de Knecht J A. European medicines and feed additives regulation are not in compliance with environmental legislation and policy [J]. Toxicol Lett,2002, 131(1-2):125-136.
    54 Muller S R, Singer H P, Stoob K, et al. Occurrence and fate of antibiotics in manure, soil and water [J]. Mitt Lebensm Hyg,2003,94:574-578.
    55 Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals [J]. J Agric Food Chem 1997,45:1459-1463.
    56 Nygaard K, Lunestad B T, Hektoern H, et al. Resistance to oxytetracycline, oxolinic acid and furazolidone in bacteria from marine sediments [J]. Aquaculture,1992,104(1-2):31-36.
    57 OECD. OECD guidelines for testing of chemicals, test guideline 106:adsorption/desorption
    using a batch equilibrium method [M]. Revised Draft Document. Paris:OECD,2000:45.
    58 Pfaffl M W,Reck B,Dreher R,Meyer H H D.Production of cleenbuterol, diethylstilbestrol and trenbolone mass standards in lyophilized bovine urine.Analytica Chimica Acta[J].2003,483:401~4125.
    59 Rab(?)lle M, Spliid N H. Sorption and mobility of metronidazole,olaquindox,oxytetracycline and tylosin in soil [J]. Chemosphere,2000,40(7):715-722.
    60 Roberts,T.R.,Hutson,D.H., Eds. Metabolic Pathways of Agrochemicals, Part 2:Insecticides and Fungicides; Royal Society of Chemistry, MPG Books, Ltd.:Bodmin, Cornwall.UX, 1998,741-743
    61 Root DS, Hongtrakul T, Dauterman WC. Studies on the absorption, residues and metabolism of cyromazine in Tomatoes. Pestic. Sci.1996,48(1):25-30
    62 Sancho J.V., M.banez, S. Grimalt, O.J.Pozo, F.Hernandez. Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry. Analytica Chimica Acta.2005,530:237-243
    63 Sassman S A, Lee L S. Sorption of three tetracyclines by several soils:assessing the role of pH and cation exchange [J]. Environ Sci Technol,2005,39(19):7452-7459.
    64 Sergio Armenta, Guillermo Quintas, Salvador Garrigues, Miguel de la Guardia. Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures. Analytica Chimica Acta,2004,(524):257-264
    65 Shin-Shou Chou. rmination of cyromazine and its derivative melamine in poultry meats and eggs[J].Journal of Food and Analysis.2003.11(4):290~295.
    66 Soren Thiele-Bruhn,Iris-Constanze Beck.Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass[J]. Chemosphere,2005,59:457~465.
    67 Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-a review [J]. J Plant Nutri Soil Sci,2003a,166(3):145-167.
    68 Thiele-Bruhn S, Peters D, Halling-S(?)rensen B, et al. Photodegradation and ageing of antibiotic pharmaceutical on soil [R]. Lyon:Presentation of project results on Envirpharma European conference,2003b.
    69 Tolls J. Sorption of veterinary pharmaceuticals in soils:a review [J]. Environ Sci Technol, 2001,35(17):3397-3406.
    70 Toth JP. And Bardalaye PC..Capillary gas chromatographic separation and mass spectrometric detection of cyromazine and its metabolite melamine[J]. J.Chromatogr..1987. 408:335~340.
    71 Varelis, Peter; Beck, Jonathan; Wang, Kefei; and Ghosh, Dipankar. Analysis of Melamine and Cyanuric Acid in Food Matrices by LC-MS/MS. Thermo Fisher Scientific Application Note No.424.2008.
    72 Washing D C. Pesticide Analytical Manual [S].[S. I.]:Food and Drug Administration, 1988:180,414.
    73 World Health Organization. Available at http://www.who.int/foodsafety/fs_management/ infosan events/en/index.html. Accessed 10 October 2008.
    74 Yanze Kontchou C., and Gschwind N. Biodegradation of s-Triazine Compounds by a Stable Mixed Bacterial Community. Ecotoxicology and Environmental Safety, Environmental Research, Section B.1999,43:47-56
    75 Yeager R L, Halley B A. Sorption/desorption of [14C]-efrotomycin with soils [J]. Agric.Food Chem,1990,38:883-886
    76 Yokley RA. Maver LC. Rezaaivan R et al.Analytical method for the determination of cyromazine and melamine residues in soil usin LC-UV and GC-MAS [J].Journal of agricultural and food chemistry.2000.(8):3352-3358.
    77 阿基业,王广基.药物代谢研究与药物设计及结构修饰[J].药学进展,2002,26(2):80-86.
    78 卜仕金,徐小艳.鸡组织中环丙氨嗪残留的高效液相色谱检测方法.扬州大学学报(农业与生命科学版)[A].2005.26(4):23~26.
    79 郭筠,莫汉宏,安凤春等.HPLC法检测灭蝇胺在黄瓜和土壤中的残留.环境化学,2004,23(6):700~703.
    80 辜雪英,吴小花,仇满珍.饲料中三聚氰胺残留量高效液相色谱测定的研究.江西化工,2007,2:70-73.
    81 李克斌,刘维屏,周瑛等.灭草松在土壤中吸附的支配因素[J].环境科学,2003,24(1):126-130.
    82 刘泉雨.从三聚氰胺事件看饲料产品质量控制,专家访谈.新饲料,2007,7:19-21.
    83 王和兴,黎源倩,雍莉,谷素英,杨小琪,李磊.固相萃取—高效液相色谱法同时测定大豆和大米中的磺酰脲类和二苯醚类除草剂残留.色谱,2007,25(4):536—540
    84 王方浩,马文奇,窦争霞等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    85 王辉,董元华,安琼.环丙氨嗪的生物毒性与环境行为研究进展.农业工程学报,2008,24(1):246~249.
    86 吴明礼,陈彩虹.高效液相色谱法(HPLC)测定单氰胺中三聚氰胺的含量.宁夏石油化工,2005,2:24—26
    87 王冉,柳伟荣,耿志明等.高效液相色谱法测定饲料中环丙氨嗪[A].中国饲料,2005,2,34-36.
    88 王冉,刘铁铮,柳伟荣.SPE-HPLC法测定鸡蛋中灭蝇胺一环丙氨嗪[A].浙江农业学报,2005,17(6):376~379.
    89 徐小艳.鸡组织中环丙氨嗪残留的HPLC检测法及消除规律研究.2005.5.
    90 仪器信息网http://www.instrument.com. cn/news/2008/021644.shtml.三聚氰胺事件及其对全球食品供应链的冲击.2008.11.3.
    91 张劲强,董元华,安琼等.兽药抗生素在土壤环境中的行为[J].土壤,2005,37(4):353~361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700