染料亲和色谱复性蛋白质新方法的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分三部分,第一部分,基于大孔生物材料的染料亲和色谱,发展了一种新型的蛋白质色谱复性新技术;第二部分,基于溶胶-凝胶法,通过氨水溶液简单处理制备了球形硅胶支载的固定化金属亲和吸附剂;第三部分,基于溶胶-凝胶法,通过氢氧化钠溶液简单处理制备了球形硅胶支载的生物吸附剂。
     1、基于大孔生物材料的染料亲和色谱(DLAC),发展了一种新型的蛋白质色谱复性新技术。采用具有表面大孔结构的壳聚糖-硅基(CS-silica)材料作为DLAC的基质材料。利用基质中的氨基,共价偶联亲和染料配基活性蓝(CBF)得到DLAC吸附剂。模型蛋白质过氧化氢酶经6 mol/L尿素变性后,DLAC可迅速去除变性剂,并通过CBF-CS-silica的吸附成功实现过氧化氢酶的复性。利用荧光光谱和过氧化氢酶活性研究考察了变性过程并对色谱洗脱步骤进行优化。与常规吸附复性法相比,可在蛋白质浓度提高20倍的条件下进行DLAC复性。
     2、提出了制备新型有机-无机复合基质的有效途径。以球形硅胶作为支载核、以壳聚糖有机-无机杂化层作为壳,基于溶胶-凝胶反应,通过氨水简单处理后制备了该吸附剂。在基质上固定金属离子后,即得到吸附蛋白质的固定化金属亲和吸附剂。扫描电镜表征表明,经氨水溶液简单处理后,基质具有稳定的多孔表面。X-衍射分析表明,有机-无机杂化和氨水处理过程可破坏壳聚糖的结晶区,从而提高活性氨基的可利用度。采用同步热重-微量热分析进一步对制备的基质进行了表征。在基质表面固定作为特异性亲和配体Cu2+后,制备了新型固定化金属亲和吸附剂。以BSA为模型蛋白,通过吸附实验考察了该吸附剂的吸附性能。该吸附剂对BSA吸附速度快、吸附容量大。提出的方法及制备的基质在生化分析中具有潜在的应用前景。
     3、提出了制备新型有机-无机生物吸附剂的有效途径。以球形硅胶作为支载核、以壳聚糖有机-无机杂化层作为壳,基于通过溶胶-凝胶反应,经氢氧化钠溶液简单处理后制备了该生物吸附剂。有机-无机杂化层通过壳聚糖与前驱体γ-环氧丙氧丙基三甲氧基硅烷(GPTMS)溶胶-凝胶化过程共价固定到硅胶表面。CS上的氨基与GPTMS上的环氧基团交联后,克服了其酸溶性缺点。通过氢氧化钠溶液简单处理后发生的湿法相转移,使制备的复合生物吸附剂具有粗糙的表面。制备的生物吸附试剂可以用来处理电镀废水。
There are three parts in this thesis. A novel column-based protein refolding strategy was developed using dye-ligand affinity chromatography based on macroporous biomaterial in the first chapter. A simple strategy was proposed for preparation of spherical silica-supported porous chitosan matrix based on sol–gel reaction and simple treatment with ammonia solution in the second chapter. Spherical silica-supported biosorbent for copper ions removal in wastewater was developted by sol–gel reaction and simple treatment with sodium hydroxide in the third part.
     1. A novel column-based chromatographic protein refolding strategy was developed using dye–ligand affinity chromatography (DLAC) based on macroporous biomaterial. Chitosan–silica (CS–silica) biomaterial with macroporous surface was used as the supporting matrix for the preparation of the DLAC material. The dye ligand Cibacron Blue F3GA (CBF) was selected as affinity handle and could be covalently immobilized to form dye-ligand affinity adsorbent (CBF–CS–silica) using the reactivity of -NH2 on CS–silica biomaterial. After the model protein catalase was denatured with 6 mol/L urea, the denaturant could be rapidly removed and catalase could be successfully refolded as facilitated by the adsorption of CBF–CS–silica. The urea denaturation process and elute condition for the chromatographic refolding were optimized by measuring tryptophan fluorescence and activity of catalase. The refolding performance of the proposed DLAC was comparable to dilution refolding. The protein concentration during the proposed chromatographic refolding was increased by a factor of 20 without reducing the yield achieved compared to dilution refolding. The column-based protein refolding strategy based on dye affinity chromatography with porous biomaterial being matrix possessed potential in chromatographic refolding of protein.
     2. A new and effective strategy was proposed for the preparation of organic-inorganic composite matrix by using spherical silica as supporting core and porous chitosan (CS) hybrid layer as shell based on sol–gel reaction and simple treatment with ammonia solution. After metal ion loading, immobilized metal affinity adsorbent for protein adsorption was obtained. Scanning electron microscopy investigation showed that the wet phase-inversion of CS in ammonium hydroxide solution endowed the coated CS hybrid layer with chemically and mechanically stabilized pore structure. X-Ray diffraction investigation revealed significant decrease of CS crystallization, indicating the availability of active amine groups. The as-prepared matrix was also characterized using simultaneous thermogravimetry and differential scanning calorimetry. After loading Cu2+ as pseudo-biospecific ligand, new immobilized metal affinity adsorbent was obtained and its protein adsorption performance was evaluated by batch adsorption experiments using bovine serum albumin (BSA) as a simple model protein. The affinity adsorbent showed fast kinetics and high capability for BSA adsorption. The proposed approach and the prepared matrix showed potential as a platform to conduct bioanalysis.
     3. A new and effective strategy was proposed for preparing new organic-inorganic composite biosorbent by using spherical silica as supporting core and chitosan (CS)-based hybrid layer as shell based on sol–gel reaction and simple treatment with sodium hydroxide (NaOH). The coating layer was covalently bound on the supporting silica through polysaccharide incorporated sol–gel process starting from CS and inorganic precursorγ-glycidoxypropyltrimethoxysiloxane (GPTMS). GPTMS had epoxide groups and cross-linked amine groups of CS to avoid its acidic solubility. The composite biosorbent had coarse surface due to the wet phase-inversion by treating in NaOH solution. The prepared biosorbent could be used in treating electric plating wastewater.
引文
[1] Sun X S, Chiu J. F, He Q. Y., Application of IMAC in proteomics[J], Expert Rev. Proteomic., 2005, 2(5): 649–657
    [2] Vancan S., Miranda E. A., Bueno S. M. A., IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems[J], Process Biochem., 2002, 37(6): 573–579
    [3] Ke H. M., Zhang S., Li J., et al., Folding of Escherichia coli DsbC: characterization of a monomeric folding intermediate[J], Biochemistry, 2006, 45: 15100–15110
    [4] Righetti P. G., Verzola B., Folding/unfolding/refolding of proteins: Present methodologies in comparison with capillary zone electrophoresis[J], Electrophoresis, 2001, 22: 2359–2374
    [5] Li M., Su Z. G., Janson J. C., In vitro protein refolding by chromatographic procedures protein[J], Protein Expres. Purif., 2004, 33: 1–10
    [6] Nian R., Tan L. H., Yoo I. K., et al., Chaperone-assisted column refolding of gloshedobin with the use of refolding cocktail [J], J. Chromatogr. A, 2008: 47–58
    [7] Tan H. D., Wang J. X., Zhao Z. B., Purification and refolding optimization of recombinant bovine enterokinase light chain overexpressed in Escherichia coli[J], Protein Expres. Purif., 2007, 56(1): 40–47
    [8] Gusarova V., Vorobjeva T., Gusarov D., et al., Size-exclusion chromatography based on silica-diol for the analysis of the proinsulin fusion protein[J], J. Chromatogr. A, 2007, 1176(1-2): 157–162
    [9] Bhattaeharjya S., Balaram P., Effects of organic solvents on protein structures: Observation of a struetured helical core in hen egg–white lysozyme in aqueous dimethylsulfoxide[J], Proteins: Strueture, Funetion, and Geneties, 1997, 29(4): 492–507
    [10] Dill K. A., Dominant forces in protein folding[J], Biochemistry, 1990, 29: 7133–7155
    [11] Timothy J. H., James T. H., Method development and results of protein thermal denaturaton analysis by 1H NMR[J], Magn. Reson. Chem., 1997, 352: 115–123
    [12] Suryraprakash P., Prakash V., Unfolding of multimeric proteins in presence of denaturants: a case study of helianlthinin from helianthus annuus L[J], Nahrung/food, 2000, 443: 178–183
    [13] Williams R. K., Naismith W. E. F., The denaturation of the proteins of the groundnut (arachishy pogaea) with guanidinium salts, metalsalts, and urea[J], J. Polymer Sci., 1958, 32(124): 193–206
    [14] Baneyx F., Recombinant protein expression in Escherichia coli[J], Curr. Opin. Biot., 1999, 10: 441–421
    [15] Gribskov M., Burgess R. R., Overexpression and purification of the sigma subuit ofEscherichia coli RNA polymerase[J], Gene, 1983, 26: 109–115
    [16] Lilie H., Schwarz E., Rudolph R., Advances in refolding of proteins produced in Escherichia coli[J], Curr. Opin. Biot., 1998, 9: 497–501
    [17] Hannig G., Makrides S. C., Strategies for optimizing heterologous protein expression in Escherichia coli[J], Trends Biotechno1., 1998, 16: 54–60
    [18] Jungbauer A., Kaar W., Current status of technical protein refolding[J], J. Biotechnol., 2007, 128: 587–596
    [19]吉清,何凤田,包涵体复性的研究进展[J],国外医学临床生物化学与检验学分册,2004,25:516–518
    [20] Mitraki A., King J., Protein folding intermediates and inclusion body formation[J], Bio/Technol., 1989, 7: 690–697
    [21] King J., Haase P. C., Robinson A. S., et al., Themolabile folding intermediates: inclusion body precursors and chaperonin substrates[J], FASEB J., 1996, 10: 57–66
    [22]艾恒,包涵体研究进展[J],中国医学文摘,内科学,2006,27:109–101
    [23]黄汉,张伟包含体的体外复性研究进展[J],生命的化学,2003,23:397–400
    [24]卢圣栋,现代分子生物学实验技术[M],北京:高教出版社,1993
    [25] De Bernardez C. E., Protein refolding for industrial process[J]. Curr. Opin. Biot., 2001, 12: 202–207
    [26] Langenhof M., Leong S. S. J., Pattenden L. K., et. al, Controlled oxidative protein refolding using an ion-exchange column[J], J. Chromatogr. A, 2005, 1069: 195–201
    [27] Zhang Z. S., Yan Y. S., Weng Y. W., et. al, High-level expression of recombinant dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C mice[J], J. Virol. Methods, 2007, 143: 125–131
    [28] Fischer B., Summer L., Goodenough P., Isolation, renaturations, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies[J], Biotechnol. Bioeng., 1993, 41: 3–13.
    [29] Singh S. M., Panda A. K., Solubilization and refolding of bacterial inclusion body proteins[J], J. Biosci. Bioeng., 2005, 99, 303–310
    [30] Kim S. H., Zhou H. M., Yan Y. B., Effects of hydroxypropyl cyclodextrins on the reactivation of SDS-denatured aminoacylase[J], J. Biol. Macromol., 2007, 40 : 76–82
    [31] Stockel J., Doring K., Malotka J., et al., Pathway of detergent-mediated and peptide ligang-mediated refolding of heterodimer class II major histocompatibility complex(MHC) molecules[J], Eur. J. Biochem., 1997, 248: 684–691
    [32] Puri N. K., Cardamone M., A relationship between the starting secondary structure ofrecombinant porcine growth hormone solubilized foem inclusion bodies and the yield native(monomeric) protein after in vitro refolding[J], FEBS Lett., 1992, 305: 177–180
    [33] Kurucz I., Titus J. A., Jost C. R., et al., Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins form bacterial inclusion bodies[J], Mol. Immunol., 1995, 32: 1443–1452
    [34] Gavit P., Better M., Production of antifungal reconbinant peptides in Escherichia coli[J], Biotechnol., 2002, 79: 127–136
    [35] Khan R. H., Rao K. B. C. A., Eshwari A. N. S., et al., Solubilization recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli[J], Biotechnol. Prog., 1998, 14: 722–728
    [36] Parea A. K., Mukhopadhyay R., Muhhijia R., et al., Optimization of inclusion body solubilization and renaturation of recombinant human growth hormane from Escherichia coli[J], Protein Expres. Purif., 2000, 18: 182–192
    [37] Misawa S., Kumagai I., Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies[J], Biopolymers, 1999, 51: 297–307
    [38] Muller C., Rinas U., Renaturation of heterodimeric platelet-derived growth factor from inclusion bodies of recombinant Escherichia coli using size-exclusion chromatography[J], J. Chromatogr. A, 1999, 855: 203–213
    [39]沈同,王镜岩,生物化学(第二版)[M],1990
    [40] Buchner J.,Pastan I.,Brinkmann U., A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renuatration of bacterial inclusion bodies[J], Anal. Biochem., 1992, 205: 263–270
    [41] Righetti P. G., Verzola B., Folding/unfolding/refolding of proteins: Present methodologies in comparison with capillary zone electrophoresis[J], Electrophoresis, 2001, 22: 2359–2374
    [42] Li M., Su Z. G., Janson J. C., In vitro protein refolding by chromatographic procedures protein[J], Protein Expres. Purif., 2004, 33: 1–10
    [43] Gu Q. L. Zhang T. Y., Luo J. X., et al., Expression, purification, and bioactivity of human tumstatin from Escherichia coli[J], Protein Expres. Purif., 2006, 47: 461–466
    [44] Langenhof M., Leong S. S. J., Pattenden L. K., et al., Controlled oxidative protein refolding using an ion-exchange column[J], J. Chromatogr. A 2005, 1069: 195–201
    [45]靳挺,关怡新,费峥峥等,重组人γ–干扰素包涵体稀释复性[J],化工学报, 2004,55(5):770–774
    [46] Terashima M., Suzuki K., Katoh S., Effective refolding of fully reduced lysozyme with a flow-type reactor[J], Process Biochem., 1996, 31(4): 341–345
    [47] El-Batal A. I., Continuous production of L-phenylalanine by rhodotorula glutinis immobilized cells using a column reactor[J], Acta Microbiol. Pol., 2002, 51(2): 153–169
    [48] Katoh S., Sezai Y., Yamaguchi T., Refolding of enzyme in a feed-batch operation[J], Process Biochem., 1999, 35: 297–300
    [49] Rudolph R., Rainer F., Process for obtaining renatured proteins[J], US pat: 4933434,1990
    [50] Maeda Y., Ueda T., Lmoto T., Effective renaturation of denatured and reduced immunoglobulin G in vitro without assistance of chaperone[J], Protein Eng., 1996, 9: 95–100
    [51] Tsumoto K., Ejima D., Kumagai I., et al., Practical considerations in refolding proteins form inclusion bodies[J], Protein Expres. Purif., 2003, 28: 1–8
    [52] Raines R. T., Method of folding proteins with synthetic dithiol catalysts[J], US Pat: 5910435, 1999
    [53] Katoh S., Katoh Y., Continuous refolding of lysozyme with fed-batch addition of denatured protein solution[J], Process Biochem., 2000, 35: 1119–1124
    [54] West S. M., Chaudhuri J. B., Howell J. A., Improved protein refolding using hollow-fibre membrane dialysis[J], Biotechnol. Bioeng., 1998, 57(5): 590–599
    [55] Righetti P. G., Verzola B., Folding/unfolding/refolding of proteins: Present methodologies in comparison with capillary zone electrophoresis[J], Electrophoresis, 2001, 22: 2359–2374
    [56] Li M., Su Z. G., Janson J. C., In vitro protein refolding by chromatographic procedures protein[J], Protein Expres. Purif., 2004, 33: 1–10
    [57] Chaudhuri J. B., Batas B., Guise A. D., Improving protein refolding yields by minimizing aggregation[J], Ann. N Y Acad. Sci., 1996, 15(782): 495–505
    [58] Batas B., Jones H. R., Chaudhuri J. B., Studies of the hydrodynamic volume changes that occur during refolding of lysozyme using size-exclusion chromatography[J], J. Chromatogr. A, 1997, 766(1-2): 109–119
    [59] Batas B., Chaudhuri J. B., Considerations of sample application and elution during size-exclusion chromatography-based protein refolding[J], J. Chromatogr. A, 1999, 864(2): 229–236
    [60] Werner M. H., Clore G. M., Gronenborn A. M., et al., Refolding proteins by gel filtration chromatography[J], FEBS Lett., 1994, 345(2-3): 125–130
    [61] Muller C., Rinas U., Renaturation of heterodimeric platelet-derived growth factor from inclusion bodies of recombinant Escherichia coli using size-exclusion chromatography[J], J. Chromatogr. A, 1999, 855(1): 203–213
    [62] Fahey E. M., Chaudhuri J. B., Binding P., Refolding and purification of a urokinase plasminogen activator fragment by chromatography[J], J. Chromatogr. B, 2000, 737(1-2):225–235
    [63] Gu Z., Su Z., Janson J. C., Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding[J], J. Chromatogr. A, 2001, 918(2): 311–318
    [64] Tan G. M., Dong X.. Y., Sun Y., Oscillatory transverse electric field enhances protein resolution and capacity of size-exclusion chromatography[J], J. Sep. Sci., 2006, 29(5):684–690
    [65] Geng X. D., Guo L. A., Chang J. H., Study of the retention mechanism of proteins in hydrophobic interaction chromatography[J], J. Chromatogr. A, 1990, 507: 1–23
    [66]张耀东,张丽华,耿信笃,人干扰素-γ基因工程大肠杆菌的培养及其产物的纯化与复性[J],生物工程学报,1999,15(2):240–243
    [67] Wang F. W., Liu Y. D., Li J. J., et al, On-column refolding of consensus interferon at high concentration with guanidine-hydrochloride and polyethylene glycol gradients[J], J. Chromatogr. A, 2006, 1115 (1-2): 72–80
    [68] Li J. J., Venkataramana M., Wang A. Q., et al., A mild hydrophobic interaction chromatography involving polyethylene glycol immobilized to agarose media refolding recombinant Staphylococcus aureus elongation factor G[J], Protein Expres. Purif. 2005, 40: 327–335
    [69]吴丹,王超展,耿信笃,蛋白折叠液相色谱法中流动相对重组人干扰素-γ质量回收率的影响[J],色谱,2007,25(2):197–202
    [70] Li J. J., Liu Y. D., Wang F. W., et al., Hydrophobic interaction chromatography correctly refolding proteins assisted by glycerol and urea gradients[J], J. Chromatogr. A, 2004, 1061(2) : 193–199
    [71] Geng X. D., Bai Q., Zhang Y. J., et al., Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography[J], J. Biotechnol., 2004, 113(1-3): 137–149
    [72]耿信笃,白泉,用疏水色谱复性并同时纯化蛋白质的机理及其应用[J],中国科学,2002,32(5):460–471
    [73] Suttnar J., Dyr J. E., Hamsikova E., et. al, Procedure for refolding and purifaction of recombinant protein from Escherichia coli inclusion bodies using a strong anion exchanger[J], J. Chromatogr. B., 1994, 656: 123–126
    [74] Cabanne C., Noubhani A. M., Hocquellet A., et al., Purification and on-column refolding of EGFP overexpressed as inclusion bodies in Escherichia coli with expanded bed anion exchange chromatography[J], J. Chromatogr. B, 2005, 818 (1): 23–27
    [75] Li M., Zhang G., Su Z. G., Dual gradient ion-exchange chromatography improved refoldingyield of lysozyme[J], J. Chromatogr. A, 2002, 959: 113–120
    [76] Liu X. Q., Yang X. Q., Xie F. H., et al., On-column refolding and purification of transglutaminase from Streptomyces fradiae expressed as inclusion bodies in Escherichia coli[J], Protein Expres. Purif., 2007, 51: 179–186
    [77] Creighton T. E., Folding of proteins adsorbed reversibly to ion-exchange resins[J], Protein Structure Folding and Design, 1985, 39: 249–251
    [78] Machold C., Schlegl R., Buchinger W., et al., Continuous matrix assisted refolding ofα-lactalbumin by ion exchange chromatograpHy with recycling of aggregates combined with ultradiafiltration[J], J. Chromatogr. A, 2005, 1080 (1): 29–42
    [79] Hamaker K. H., Liu J., Seely R. J., et. al, Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor[J], Biotechnol. Prog., 1996, 12: 184–189
    [80] Wang C. Z., Wang L. L., Geng X. D., Renaturation with simultaneous purification of rhG-CSF from Escherichia coli by ion exchange chromatography[J], Biomed. Chromatogr., 2007, 21(12): 1291–1296
    [81] Hutchinson M. H., Chase H. A., Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography[J], J. Chromatogr. A, 2006, 1128(1-2): 125–132
    [82]曹玉华,许晶晶,陈勇等,人CDK4基因的原核表达及重组蛋白的纯化和复性[J],吉林大学学报:理学版,2008,46(5):992–996
    [83] Ana C. A., Cláudia S. O., Silva M., Affinity-based methodologies and ligands for antibody purification: advances and perspectives[J]. J. Chromatogr. A, 2007, 1160(1-2): 44–55
    [84] Phadtare S., Fisher M. T., Yarbrough L. R., Refolding and release of tubulins by a functional immobilized GroEL column[J], Biochim. Biophys. Acta, 1994, 1208: 189–192
    [85] Altamirano M. M., Golbik R., Zahn R., et aL, Refolding chromatography with immobilized minin-chaperones[J], Proc. Natl . Acad. Sci. USA, 1997, 94: 3576–3578
    [86] Hutchinson M. H., Chase H. A., Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography[J], J. Chromatogr. A, 2006, 1128: 125–132
    [87] Kim S. G., Kim J. A., Yu H. A., et al., Application of poly-arginine fused minichaperone to renaturation of cyclodextrin glycosyltransferase expressed in recombinant Escherichia coli[J], Enzyme Microb. Tech., 2006, 39: 459–465
    [88] Rehm B. H., Qi Q., Beermann B. B., et al., Matrix-assisted in vitro refolding of pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli[J], Biochem. J., 2001, 358: 263–268
    [89] Panagabko C., Morley S., Neely S., et al., Expression and refolding of recombinant humana-tocopherol transfer protein capable of specific a-tocopherol binding[J], Protein Expres. Purif., 2002, 24: 395–403
    [90] Poroth J., Carlsson J., Olsson I., et al., Metal chelate affinity chromatography:a new approach to protein fractionation[J], Nature, 1975, 258: 598–599
    [91] Ito M., Nagata K., Kato Y., et at., Expression, oxidative refolding and characterization of six-histidine-tagged recombinant human LECT2,a 16-kDa chemotactic protein with three disulfide bonds[J], Protein Expres. Purif., 2003, 27: 272–278
    [92] Lemercier G., Bakalara N., Santarelli X., On-column refolding of an insoluble histidine tag recombinant exopolyphosphatase from trypanosoma brucei overexpressed in Escherichia coli[J], J. Chromatogr. B., 2003, 786: 305–309
    [93] Guo J. Q., Li Q. M., Zhou J. Y., et al., Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system[J], Protein Expres. Purif. 2006, 45 (1): 168–174
    [94] Li M. C., Huang D. Y., et al., On-column refolding purification and characterization of recombinant human interferon-λ1 produced in Escherichia coli[J], Protein Expres. Purif., 2007, 53 (1): 119–123
    [95]孙彦,生物分离工程(第二版)[M],北京:化学工业出版社,2005
    [96]付丽棠,融合His Tag重组蛋白的基因克隆、表达及亲和纯化[J],天津大学学报,2007
    [97] Ueda E. K. M., Gout P. W., Morganti L., Current and prospective applications of metal ion-protein binding[J], J. Chromatogr. A., 2003, 988: 1–23
    [98] Zhu X. Q., On column refolding of an insoluble His6-tagged recombinant EC-SOD overexpressed in Escherichia coli[J], Act. Bioch. BiopH. S, 2005, 37(4): 265–269
    [99] Hutchinson M. H., Chase H. A., Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography[J], J. Chromatogr. A, 2006, 1128: 125–132
    [100] Batas B., Chaudhuri J. B., Considerations of sample application and elution during size-exclusion chromatography-based protein refolding[J], J. Chromatogr. A, 1999, 864(2): 229–236
    [101] Zahn R., Buekle A. M., Perrett S., et al., Chaperone activity and strueture of monomeric polypeptide binding domains of GroEL[J], Biochemistry, 1996, 93: 15024–15029
    [102] Altamirano M. M., Garcia C., Possani L. D., Oxidative refolding chromatography: folding of the seorpion toxin Cn5[J], Nature Biotech., 1999, 17: 187–191
    [103] Manukhov I. V., Eroshnikov G. E., Vyssokikh Y. M., Folding and refolding of thermolabile and therlmostable bacterial luciferases: the role of DnaKJ heat-shock proteins[J], FEBS Lett., 1999, 448: 265–268
    [104] Hartl F. U., Molecular chaperones in cellular protein folding[J], Nature, 1996, 381: 571
    [105] Chen J., Walter S., Arthur L., et al., Folding of malate dehydrogenase inside the GroEL-GroES cavity[J], J. Biochem., 2001, 8(8): 721–728
    [106] Tanaka N., Fersht A. R., Identification of substrate binding site of GroEL miniehaperone in solution[J], J. Molecular Biology., 1999, 292: 173–180
    [107] Elis R. J., The general concept of molecular chaperones philos[J]. Trans. R Soc. Lond. B, 1993, 339: 257–261
    [108] Rozema D., Gellman S. H., Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin[J], J. Am. Chem. Soc., 1995, 117: 2373–2374
    [109] Rozema D., Gellman S. H., Artificial chaperone-assisted refolding of denatured-reduced lysizyme:modulation of the competition between renaturation and aggregation[J], Biochemistry, 1996, 35(49): 15760–15771
    [110] Dong X. Y., Yang H., Sun Y., Lysozyme Refolding with immobilized GroEL column[J], J. Chromatogr. A, 2000, 878: 197–204
    [111] Gao Y. Q., Guan Y. X., Yao S. J., et al., On-column refolding of recombinant human interferon-Y with an immobilized chaperone fragment[J], Biotechnol. Progr., 2003, 19: 915–920
    [112]刘晓光,董晓燕,分子伴侣与蛋白质复性的简介[J],化学工业与工程,2000,17(2):120–124
    [113] Tsamadis, Papageorgakopoulou N. G., Clonis Y. D., Downstream processing of diagnostic enzymes: optimized protocols of the simultaneous separation and purification of lactated chydrogenase and pyruvate kinase from rabbit muscle[J], Bioproc. Engin., 1992, 7: 213–218
    [114] Keruchenko J., Keruchenoko I., Gladilin K., et al., Purification, characterization and preliminary X-ray study of fumarase from saccharomyces cerevisiae[J]. Biochim. Biophys. Acta, 1992, 1122: 85–92
    [115] Herve F., Millot M. C., Eap C. B., et al., Two-step chromatographic purification of human plasma alpha(l)-acid glycoprotein: its application to the purification of rare phenotype samples of the protein and their study by chromatography on immobilized metal chelate affinity adsorbent[J], J. Chormatogr. B, Biomed. Appl., 1996, 678(l): l–14
    [116] Garcia-Diego C., Cuellar J., Preparation and characterization of a dye l–ligand adsorbent for lysozyme adsorption[J]. Chem. Eng. J., 2008, 143(1-3): 337–348
    [117] Wu F. Y., Zhu Y., Jia Z. S., Preparation of dye l–ligand affinity chromatographic packings based on monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their chromatographic properties[J]. J. Chromatogr. A, 2006, 1134(1-2): 45–50
    [118] Shentu J. L., Wu J. M., Song W. H., et al., Chitosan microspheres as immobilized dye affinity support for catalase adsorption[J], Int. J. Biol. Macromol., 2005, 37(1-2): 42–46
    [119] Liu Y. L., Su Y. H., Lai J. Y., In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with usingγ-glycidoxypropyltrimethoxysilane as a crosslinking agent[J], Polymer, 2004, 45(20): 6831–6837
    [120] Liu Y. L., Su Y. H., Lee K. R., et al., Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability[J], J. Membrane Sci., 2005, 252(1-2): 233–238
    [121] Li F., Li J., Zhang S. S., Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol–gel process for protein recognition[J], Talanta, 2008, 74(5): 1247–1255 [122 Li F., Li X. M., Zhang S. S., One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol–gel process[J], J. Chromatogr. A, 2006, 1129(2): 223–230
    [123] Li F., Du P., Chen W., Zhang S. S., Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic–inorganic hybridization combined with sucrose and polyethylene glycol imprinting[J]. Anal. Chim. Acta, 2007, 585(2): 211–218
    [124] Li F., Chen W., Tang C. F., Zhang S. S., Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol–gel process[J], Talanta, 2009, 77(4): 1304–1308
    [1] Nian R., Tan L. H., Yoo I. K., et al. Chaperone-assisted column refolding of gloshedobin with the use of refolding cocktail[J]. J. Chromatogr. A, 2008: 47–58
    [2] Tan H. D., Wang J. X., Zhao Z. B., Purification and refolding optimization of recombinant bovine enterokinase light chain overexpressed in Escherichia coli[J], Protein Expres. Purif., 2007, 56(1): 40–47
    [3] Gusarova V., Vorobjeva T., Gusarov D., et al., Size-exclusion chromatography based on silica-diol for the analysis of the proinsulin fusion protein[J], J. Chromatogr. A, 2007, 1176(1-2): 157–162
    [4] Wang C. Z., Wang L. L., Geng X. D., Renaturation with simultaneous purification of rhG-CSF from Escherichia coli by ion exchange chromatography[J], Biomed. Chromatogr., 2007, 21(12): 1291–1296
    [5] Hutchinson M. H., Chase H. A., Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography[J], J. Chromatogr. A, 2006, 1128(1-2): 125–132
    [6]曹玉华,许晶晶,陈勇等,人CDK4基因的原核表达及重组蛋白的纯化和复性[J],吉林大学学报:理学版,2008,46(5):992–996
    [7] Ana C. A., Cláudia S. O., Silva. M., Affinity-based methodologies and ligands for antibody purification: Advances and perspectives[J], J. Chromatogr. A, 2007, 1160(1-2): 44–55
    [8] Garcia-Diego C., Cuellar J., Preparation and characterization of a dye–ligand adsorbent for lysozyme adsorption[J], Chem. Eng. J., 2008, 143(1-3): 337–348
    [9] Wu F. Y., Zhu Y., Jia Z. S., Preparation of dye–ligand affinity chromatographic packings based on monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their chromatographic properties[J], J. Chromatogr. A, 2006, 1134(1-2): 45–50
    [10] Shentu J. L., Wu J. M., Song W. H., et al., Chitosan microspheres as immobilized dye affinity support for catalase adsorption[J], Int. J. Biol. Macromol., 2005, 37(1-2): 42–46
    [11] Liu Y. L., Su Y. H., Lai J. Y., In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with usingγ-glycidoxypropyltrimethoxysilane as a crosslinking agent[J], Polymer, 2004, 45(20): 6831–6837
    [12] Liu Y. L., Su Y. H., Lee K. R., et al., Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability[J], J. Membrane Sci., 2005, 252(1-2): 233–238
    [13] Li F., Li J., Zhang S. S., Molecularly imprinted polymer grafted on polysaccharide microspHere surface by the sol–gel process for protein recognition[J], Talanta, 2008, 74(5):1247–1255
    [14] Li F., Li X. M., Zhang S. S., One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol–gel process[J], J. Chromatogr. A, 2006, 1129(2): 223–230
    [15] Li F., Du P., Chen W., Zhang S. S., Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic–inorganic hybridization combined with sucrose and polyethylene glycol imprinting[J], Anal. Chim. Acta, 2007, 585(2): 211–218
    [16] Li F., Chen W., Tang C. F., et al., Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol–gel process[J], Talanta, 2009, 77(4): 1304–1308
    [17] Samejima T., Yang J. T., Reconstitution of acid-denatured catalase[J], J. Biol. Chem., 1963: 363-369
    [18] Aebi H., Catalase in vitro[J], Method. Enzymol., 1984, 105: 121–126
    [19] Bradford M.. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J], Anal. Biochem., 1976, 72(1-2): 248–254
    [20] Prakash K., Prajapati S., Ahmad A., et al., Unique oligomeric intermediates of bovine liver catalase[J], Protein Scien., 2002, 11: 46
    [1] Cheeks M. C., Kamal N., Sorrell A., et al., Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors using monolithic adsorbents[J], J. Chromatogr., A, 2009, 1216, 2705–2711
    [2] Alexandratos S. D., Zhu X. P., High-affinity ion-complexing polymer-supported reagents: Immobilized phosphate ligands and their affinity for the uranyl ion[J], React. Funct. Polym., 2007, 67,375–382
    [3] Dévédec F. L., Bazinet L., Furtos A., et al., Separation of chitosan oligomers by immobilized metal affinity chromatography[J], J. Chromatogr., A, 2008, 1194, 165–171
    [4] Xi F. N., Wu J. M., Lin X. F., Novel nylon-supported organic–inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent[J], J. Chromatogr., A, 2006, 1125, 38–51
    [5] Xi F. N., Wu J. M., Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent[J], J. Chromatogr., A, 2004, 1057, 41-47
    [6] Mourya V. K., Inamdar N. N., Chitosan-modifications and applications: Opportunities galore[J], React. Funct. Polym., 2008, 68, 1013–1051
    [7] Li F., Chen W., Tang C. F., et al., Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol–gel process[J], Talanta, 2009, 77(4): 1304–1308
    [8] Li F., Jiang H. Q., Zhang S. S., An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution[J], Talanta, 2007, 71, 1487–1493
    [9] Xiao Y., Zhou X. H., Synthesis and properties of a novel crosslinked chitosan resin modified by l-lysine[J], React. Funct. Polym., 2008, 68, 1281–1289
    [10] Xi F. N., Wu J. M., Jia Z. S., et al., Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead[J], Process Biochem., 2005, 40, 2833–2840
    [11] Li F., Du P., Chen W., Zhang S. S., Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic–inorganic hybridization combined with sucrose and polyethylene glycol imprinting[J], Anal. Chim. Acta, 2007, 585(2): 211–218
    [12] Li F., Li X. M., Zhang S. S., One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol–gel process[J], J. Chromatogr. A, 2006, 1129, 223–230
    [13] Shi Q. H., Tian Y., Dong X. Y., et al., Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption[J], Biochem. Eng. J., 2003, 16, 317–322
    [14] Shin J. H., Weinman S. W., Schoenfisch M. H., Sol?gel derived amperometric nitric oxide microsensor[J], Anal. Chem., 2005, 77, 3494–3501
    [15] Liu Y. L., Su Y. H., Lai J. Y., In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with usingγ-glycidoxypropyltrimethoxysilane as a crosslinking agent[J], Polymer, 2004, 45, 6831–6837
    [16] Shirosaki Y., Tsuru K., Hayakawa S., et al., In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes[J], Biomaterials, 2005, 26, 485–493
    [17] Bradford M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J], Anal. Biochem., 1976, 72, 248–254
    [18] Guo T. Y., Xia Y. Q., Hao G. J., et al., Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads[J], Biomaterials, 2004, 25, 5905–5912
    [19] Nash D. C., McCreath G. E., Chase H. A., Modification of polystyrenic matrices for the purification of proteins Effect of the adsorption of poly(vinyl alcohol) on the characteristics of poly(styrene-divinylbenzene) beads for use in affinity chromatography[J], J. Chromatogr., A, 1997, 758, 53–64
    [20] Wan M. W., Petrisor I. G., Lai H. T., et al., Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination[J], Carbohydr. Polym., 2004, 55, 249–254
    [1]贾广宁,重金属污染的危害与防治[J],有色矿冶,2004,20(1):39–42
    [2]张军丽,王汉雄,叶文玉等,新型壳聚糖/纳米二氧化硅杂化材料的制备与性能[J],石油化工,2006,35(1):74–78
    [3]陈驰,但卫华,可生物降解功能纤维的研究进展[J],纺织学报,2006,25(7):14–17
    [4] Rao M., Parwate A. V., Bhole A. G., Removal of Cr6+and Ni2+from aqueous solution using bagasse and ?y ash[J], Waste Manage., 2002, 22 (7), 820–821
    [5] Marshall W. E., Johns M. M., Agricultural by-products as metal adsorbents: sorption properties and resistance to mechanical abrasion[J], J. Chem. Technol. Biotechnol. 1996, 66, 192–198
    [6] Wafwoyo W., Seo C. W., Marshall W. E.,. Utilization of peanut shells as adsorbents for selected metals[J], J. Chem. Technol. Biotechnol., 1999, 74, 1117–1121
    [7] Low K. S., Lee C. K., Leo A. C., Removal of metals from electroplating wastes using banana pith[J], Bioresour. Technol., 1995, 51, 227–231
    [8] Sankararamakrishnan N., Dixit A., Iyengar I., et. al, Removal of hexavalent chromium using a novel cross linked xanthated chitosan[J], Bioresour. Technol., 2006, 97, 2377–2382
    [9] Cheung W. H., Ng J. C. Y., McKay G., Kinetic analysis of the sorption of copper(II) ions on chitosan[J], J. Chem. Technol. Biotechnol., 2003, 78, 562–571
    [10] Jeon C., Holl W. H., Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan[J], Hydrometallurgy, 2004,71, 421–428
    [11] Huang C., Chung Y. C., Ming R. L., Adsorption of Cu(II) and Ni(II) by palletized biopolymer[J], J. Hazard. Mater., 1996, 45, 265–277
    [12] Wu F. C., Tseng R. L., Juag R. S., Comparative adsorption of metal and dye on ?ake-and bead-types of chitosans prepared from fishery wastes[J], J. Hazard. Mater. B, 2000, 73, 63–75
    [13] Veera M. B., Krishnaiah A., Jonathan L. T., et al, Removal of hexavalent chromium from wastewater using new composite chitosan biosorbent[J], Environ. Sci. Technol., 2003, 37 (19), 4449–4456
    [14] Sameem H., Krishnaiah A., Tushar K. G., et al, Adsorption of chromium(IV) on chitosan coated perlite[J], Sep. Sci. Technol., 2003, 38 (15), 3375–3393
    [15] Kalyani S., Priya J. A., Rao P. S., et al, Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent[J], Sep. Sci. Technol., 2005, 40, 1483–1495
    [16] Chui V. W. D., Mok K. W., Ng C. Y., et al, Removal and recovery of copper(II), chromium(III), and nickel(II) from solutions using crude shrimp chitin packed in small columns[J], Environ. Int., 1996, 22, 463–466
    [17] Tseng R. L.,Wu F. C., Juang R. S., Pore structure and metal adsorption ability of chitosans prepared from fishery wastes[J], J. Environ. Sci. Heal A , 1999, 34, 1815–1828
    [18] Wan N. W. S., Kamari A., Koav Y. J., Equilibrium and kinetics studies of adsorption of copper(II) on chitosan and chitosan/PVA beads[J], Int. J. Biol. Macromol., 2004, 34, 155–161
    [19] Schmuhl R., Krieg H. J. M., Keizer K., Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies[J], Water SA., 2001, 27 (1), 79–86
    [20] Bassi R., Prasher S. O., Simpson B. K., Effects of organic acids on the adsorption of heavy metals ions by chitosan ?akes[J], J. Environ. Sci. Heal. A, 1999, 34, 289–294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700