钌(II)多吡啶配合物的合成及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文概述了钌多吡啶配合物与DNA作用的研究现状,基础理论和研究方法;合成了文献未报道的五个系列的钌(II)多吡啶配合物,对所合成的配体和配合物进行了表征。研究了配合物的电化学性质和光谱学性质;用电子吸收光谱、流体力学、热变性和光断裂实验系统研究了配合物与DNA的作用方式;采用MTT(3-(4,5-二甲基噻-2)-2,5-二苯基四氮唑溴盐)法研究了配体和配合物的体外细胞毒性;研究了配合物清除羟基自由基的能力。本论文共分为五章。
     第一章概述钌多吡啶配合物的结构特征、与DNA作用的方式、研究方法和研究现状。对钌多吡啶配合物研究的未来方向进行了展望,提出了论文的选题意义。
     第二章以邻菲啰啉为原料,合成了未见报道的含氟配体Fpp(2-(3',3'-二氟-3,4-亚甲基二氧苯基)咪唑并[4,5-f][1,10]邻二氮杂菲)及两个钌(II)多吡啶配合物:[Ru(dmb)_2(Fpp)](ClO_4)_2和[Ru(bpy)_2(Fpp)](ClO_4)_2。用元素分析、电喷雾质谱、核磁共振氢谱对它们进行了表征;用电子吸收光谱、流体力学、热变性和光断裂实验研究了配合物与DNA的作用方式以及作用力的强弱,结果表明两个配合物均以插入方式与DNA结合,作用力的强弱顺序为:[Ru(bpy)_2(Fpp)]~(2+) > [Ru(dmb)_2(Fpp)]~(2+),即辅助配体对其的影响按dmb→bpy顺序由小到大变化,这主要由于辅助配体的疏水性引起的;并通过循环伏安法研究了这些配合物的电化学性质。
     第三章合成了两个新的含氨基配体maip(2-(3-苯胺)咪唑并[4,5-f][1,10]邻二氮杂菲)和paip(2-(4-苯胺)咪唑并[4,5-f][1,10]邻二氮杂菲)及八个钌(II)多吡啶配合物([Ru(bpy)_2(maip)]~(2+), [Ru(bpy)_2(paip)]~(2+), [Ru(dmb)_2(maip)]~(2+), [Ru(dmb)_2(paip)]~(2+), [Ru(phen)_2(maip)]~(2+), [Ru (phen)_2(paip)]~(2+), [Ru(dmp)_2(maip)]~(2+)和[Ru (dmp)_2(paip)]~(2+))。用元素分析、电喷雾质谱、核磁共振氢谱对它们进行了表征;用电子吸收光谱、粘度实验、热变性实验、光断裂实验研究了配合物与DNA作用的方式以及作用力的强弱,
     对于同样含有辅助配体的钌(II)多吡啶金属配合物来说,配体paip与DNA的结合作用比maip的更强,这可能是由于插入配体paip的氨基受对位基团的影响,比maip的氨基受邻位相同基团的影响电子更“富裕”,因而配体和DNA之间电子堆积作用更强,结合得更牢固;用MTT法研究了配体和配合物的体外细胞毒性和IC50值,比较了插入配体取代基位置不同对配合物与DNA作用力大小和抑制肿瘤细胞增殖的影响。我们发现其中有些配合物的IC50值与顺铂的比较接近,如[Ru(phen)_2(paip)]~(~(2+)) (4b)。有的甚至表现出比顺铂更好的活性,如[Ru(dmb)_2(maip)]~(2+) (3a)能有效地抑制BEL-7402肿瘤细胞增殖;依据Feton体系产生羟基自由基的原理,研究了配合物清除羟基自由基的能力。
     第四章合成了一个新的对称配体(2-(3,5-二溴-4-羟基)咪唑并[4,5-f][1,10]菲啰啉, DBHIP)和两个钌(II)多吡啶配合物([Ru(bpy)_2(DBHIP)](ClO_4)_2和[Ru(phen)_2(DBHIP)](ClO_4)_2).用元素分析、电喷雾质谱、核磁共振氢谱和碳谱对它们进行了表征;通过电子吸收光谱、流体力学、热变性和光断裂实验研究了配合物与DNA的作用方式以及作用力的大小,发现这两个化合物与DNA作用力的大小为[Ru(bpy)_2(DBHIP)]~(2+) < [Ru(phen)_2(DBHIP)]~(2+);用MTT法研究了配体和配合物的体外细胞毒性以及IC50值,我们发现这三个化合物中,配体抑制肿瘤细胞增殖的效果最好,配合物1最弱,并研究了配合物清除羟基自由基的能力。
     第五章合成了一个刚性平面配体(ITAP, isatino[1,2-b]-1,4,8,9- tetraazatriphenylene)及其钌(II)多吡啶配合物[Ru(dmb)_2(ITAP)](ClO_4)_2。用元素分析、电喷雾质谱、核磁共振碳谱对它们进行了表征;用循环伏安法研究了配合物的电化学性质;通过电子吸收光谱、流体力学、热变性和光断裂实验研究了配合物与DNA的作用,结果表明配合物以插入方式与DNA结合。
The current situation, the theoretical foundation and research methods of ruthehium polypyridine complexes with DNA were summarized. Five series of novel ligands and their ruthenium(II) complexes were synthesized and characterized. The effect of different complexes on DNA-binding properties was investigated by electronic absorption titration, viscosity measurements, DNA thermal denaturation and photoactivated cleavage experiment. The in vitro cytotoxic activity and the values of IC_(50) of some complexes were eluvateded by the method of MTT. Besides, the apoptosis activity and hydroxyl radical scavenging activity of ligand and their complexes were investigated. This dissertation concretely consists of the following five chapters.
     In chapter 1, the structural character of ruthenium polypyridyl complexes, the interaction modes, study methods and current study situations were summarized. The trend of the research in this field and the significance of these researches dissertation were put forward.
     In chapter 2, a ligand, Fpp (2-(3',3'-difluoro-3,4-methylenedioxyphenyl)imidazo [4,5-f][1,10]phenanthroline) which contains elements of fluorin and oxygen and its ruthenium(II) polypyridyl complexes [Ru(dmb)_2(Fpp)]~(2+) and [Ru(bpy)_2(Fpp)]~(2+) were synthesized and characterized by elemental analysis, ES-MS and ~1H NMR and ~(13)C NMR, their electrochemical behaviors were studied by cyclic voltammetry. DNA-binding properties were investigated by electronic absorption titration, viscosity measurements, DNA thermal denaturation and photoactivated cleavage experiment. The results show that the two complexes combine with DNA in the mode of intercalation, the DNA-binding affinity of the two complexes is [Ru(bpy)_2(Fpp)]~(2+) > [Ru(dmb)_2(Fpp)]~(2+), which implies the effect of the ancillary ligand has an on going trend from dmb→bpy. This may be due to他the difference in hydrophobicity of these ancillary ligands. And the electrochemical behaviors of these complexes were analyzed.
     In chapter 3, two new ligands maip (2-(3-nitrophenyl)imidazo[4,5-f][1,10] phenanthroline) and paip (2-(4-nitrophenyl)imidazo[4,5-f][1,10] phenanthroline) containing amino and their ruthenium(II) polypyridyl complexes ([Ru(bpy)2(maip)]~(2+), [Ru(bpy)_2(paip)]~(2+), [Ru(dmb)_2(maip)]~(2+), [Ru(dmb)_2(paip)]~(2+), [Ru(dmp)_2(maip)]~(2+), [Ru(dmp)_2(paip)]~(2+), [Ru(phen)_2(maip)]~(2+) and [Ru(phen)_2(paip)]~(2+)) were synthesized and characterized by elemental analysis, ES-MS and 1H NMR. The interaction of these complexes with DNA was investigated by electronic absorption titration, viscosity measurements, DNA thermal denaturation and photoactivated cleavage experiment. Results show that intercalative ligand paip has larger DNA binding affinity than maip, this may ascribe to that paip has richer electron than maip. The cell viability of these complexes was investigated by the method of MTT. The hydroxyl radical scavenging activity was also studied.
     In chapter 4, a novel symmetric ligand DBHIP (2-(3,5-dibromo-4-hydroxyphenyl) imidazo[4,5-f][1,10]phenanthroline) and its ruthenium(II) polypyridyl complexes ([Ru(bpy)_2DBHIP](ClO_4)_2 and [Ru(phen)_2DBHIP](ClO_4)_2) were synthesized and characterized by elemental analysis, ES-MS, 1HNMR and 13C NMR. The DNA-binding properties were studied by electronic absorption titration, viscosity measurements, DNA thermal denaturation and photoactivated cleavage. The results show complex [Ru(phen)_2(DBHIP)]~(2+) has larger DNA affinity than complex [Ru(bpy)_2(DBHIP)]~(2+). Their electrochemical behaviors were also studied by cyclic voltammetry. The cytotoxicity in vitro and the values of IC_(50) of these complexes were obtained by the MTT method. The cytotoxicity of ligand was slightly weakened when the ligand bonded to the metal atom Ru to form complexes. The antioxidant activity of ligang and its complexes against hydroxyl radical scavenging activity was also explored.
     In chapter 5, Ru (II) polypyridyl complex [Ru(dmb)_2ITAP](ClO_4)_2 (ITAP = isatino [1,2-b]-1,4,8,9-tetraazatriphenylene, dmb = 4,4'-dimethyl-2,2'-bipyridine) was synthesized and characterized by elemental analysis, ES-MS and 1H NMR. The electrochemical behaviors of this complex were studied by cyclic voltammetry. The DNA-binding properties were studied by electronic absorption titration, viscosity measurements, DNA thermal denaturation and photoactivated cleavage experiment. The results indicate that [Ru(dmb)_2ITAP](ClO_4)_2 interacts with DNA through intercalation mode.
引文
[1]计亮年,黄锦汪,莫庭焕.生物无机化学导论(第二版).中山大学出版社,2001.
    [2]扬频,高飞,生物无机化学原理,科学出版社,2002.
    [3]刘云军,博士学位论文, 2005.
    [4] A. Sigel, H. Sigel, Met. Ions. Syst., Vol. 33, Marcel Dekker, New York,1996.
    [5] A. M. Pyle, J. K. Barton, Progress in Inorganic Chemistry: Bioinorganic Chemisry, Vol. 38, John Wiley & Sons. Inc.,1990.
    [6] S. R. Rajski, R. M. Williams, Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA, Coord. Chem. Rev., 1998, 216-217, 513-536.
    [7] J. D.沃森,基因的分子生物学[译],科学出版社, 1982.
    [8]王希成,生物化学,清华大学出版社, 2001.
    [9] P. Belmont, J.-F. Constant and M. Demeunynck, Chem., Soc. Rev., 2001, 30, 70.
    [10] J. Seifert, R. E. Connor, J. Am. Chem. Soc., 1999, 121, 2987.
    [11] J. K. Barton, J. J. Dannenberg, A.L. Raphael, J Am Chem Soc 1982, 104, 4867.
    [12] J. K. Barton, A. T. Danishefsky, J. M. Goldberg, J.Am.Chem.Soc.,1984, 106, 2172.
    [13] S. E. Sherman, D. Gibson, A. H. Wang and S. J. Lippard, Science 1985, 230,412.
    [14] D. Hodgson, Prog Inorg Chem 1977, 23,211.
    [15] G. L. Eichhorn and Y. A. Shin J Am Chem Soc 1968, 90, 7323.
    [16] S. Mahadevan, M. Palaniandavar, Electrochemical study of the enantioselective interaction of tri(phen)Ru(II) with calf thymus DNA, J. Inorg. Biochem., 1995, 59(2-3), 161.
    [17] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [18] H. Mei, J. Barton, J. Am. Chem. Soc., 1986, 108, 7414.
    [19] G.Yang, J. Z Wu., L Wang., T X Zeng, L. N Ji., X Tian., J. Inorg. Biochem., 1997, 66 (2), 141.
    [20] D Tamilarasan, R. McMillin, Photophysical studies of copper phenanthrolines boundto DNA, Inorg. Chem., 1990, 29(15), 2798-2802.
    [21] L. A. Lipscomb, F. X. Zhou, S. R. Presnell, R. J. Woo, M. E. Peek, R. R. Plaskon, L. D. Williams, Structure of a DNA-Porphyrin Complex, Biochemistry,1996, 35(9), 2818-2823.
    [22]张黔玲,中山大学博士学位论文,2001.
    [23]刘杰,许东晖,黄锦汪,计亮年,水溶性卟啉及其系列金属配合物的合成、抗癌作用及其作用机制研究,高等学校化学学报,2001, 22(9), 1446-1449.
    [24] J. Liu, X. H. Zhou, L. N. Ji, Synthesis, characterization and antitumor activity of a series of polypyridyl complexes, Metal Based Drugs, 2000, 7(6), 343-348.
    [25] C. V. Kumar, J. K. Barton, N. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc., 1985, 107(19), 5518-5523.
    [26] J. K. Barton, J. J. Dannenberg, A. L. Raphael, Enantiomeric selectivity in binding tris(phenanthroline) zinc(II) to DNA, J. Am. Chem. Soc., 1982, 104(18), 4967-4969.
    [27] Wu, Fu-Hai, Zeng, Cheng-Hui, Liu, Yun-Jun, Guan, Xiao-Yan and He, Li-Xin (2009)'DNA interaction studies of ruthenium(II) polypyridyl complex:[Ru(dmb)2 (ITAP)](ClO4)2(ITAP = isatino1,2-b]-1,4,8,9-tetraazatriphen ylene)', Journal of Coordination Chemistry, 62:21, 3512-3521.
    [28] P. Lincoln, A. Broon, B. Norden, Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(II) Trischelates Probed by Linear Dichroism: [Ru(phen)2 dppz]2+ and [Ru(phen)2dppz]2+, J. Am. Chem. Soc., 1996, 118(11), 2644-2653.
    [29] M. Eriksson, M. Leijon, C. Hiort, B. Norden, A. Graslund, Binding of .DELTA.- and .LAMBDA.-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR, Biochemistry, 1994, 33(17), 5031-5040.
    [30] F. A. Cotton, Advanced Inorganic Chemistry, 1980, 950.
    [31] P. Lincoln, B. Norden, DNA Binding Geometries of Ruthenium(II) Complexes with 1,10-Phenanthroline and 2,2'-Bipyridine Ligands Studied with Linear Dichroism Spectroscopy. Borderline Cases of Intercalation, J. Phys. Chem. B, 1998, 102(47), 9583-9594.
    [32] H. Y. Mei, J. K. Barton, Chiral probe for A-form helixes of DNA and RNA:tris(tetramethylphenanthroline)ruthenium(II), J. Am. Chem. Soc., 1986, 108(23), 7414-7416.
    [33]吴建中,中山大学博士学位论文,1997.
    [34]朱明华译[美]G. W.尤因著化学分析的仪器方法高等教育出版社1986.
    [35] J. R. Lakowicz, G. Webber, Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules, Biochemistry, 1973, 12(21), 4161-4170.
    [36] R. M. Hartshom, J. K. Barton, Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA, J. Am. Chem. Soc., 1992, 114(15), 5919-5925.
    [37] C. G. Coates, P. L. Callaghan, J. J. McGarvey, J. M. Kelly, P. E. Kruger, M. E. Higgins, J. Raman, Spectrosc., 2000, 31, 283.
    [38] K. Naing, M. Takahashi, M. Taniguchi., A. Yamagishi, Interactions of Enantiomeric Ruthenium (II) Complexes with Polynucleotides as Studied by Circular Dichroism, Electric Dichroism Measurements, and Photolysis, Inorg. Chem., 1995, 34(1), 350-356.
    [39] C. Hiort , B. Norden, A. Rodger , Enantiopreferential DNA binding of [ruthenium(II)(1,10-phenanthroline)3]2+ studied with linear and circular dichroism, J. Am. Chem. Soc., 1990, 112(5), 1971-1982.
    [40] S. D. Choi, S. K. Kim, P. Lincoln, E. Tuite, B. Norden, Binding Mode of [Ruthenium(II) (1,10-Phenanthroline)2L]2+ with Poly(dT*dA-dT) Triplex. Ligand Size Effect on Third-Strand Stabilization, Biochemistry, 1997, 36(1), 214-223.
    [41] M. J. Waring, J. Mol. Biol., 1965, 13, 269.
    [42] A. P. Pasternack, M. Caccam, B. Keogh, T. A. Stephenson, A. P. Williams, F. J. Gibbs, Long-range fluorescence quenching of ethidium ion by cationic porphyrins in the presence of DNA, J. Am. Chem. Soc., 1991, 113(18), 6835-6840.
    [43] B. C. Baguley, M. Le Bret, Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect, Biochemistry, 1984, 23(15), 937-943.
    [44] R. F. Pasternack, E. J. Gibbs, J. J. Villafranca, Interactions of porphyrins with nucleicacids, Biochemistry, 1983, 22(23), 5409-5417.
    [45] R. F. Pasternack, E. J. Gibbs, J. J. Villafranca, Interactions of porphyrins with nucleic acids, Biochemistry, 1983, 22(10), 2406-2414.
    [46] A. Pyle, J. K. Barton, S. J. Lippared, Progress in Inorganic Chemistry, Wiley, New York, 1990, 38, 413.
    [47] D. S. Sigman, A. Mazumber, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93(6), 2295-2316.
    [48] G. Pratviel, J. Bernadou, B. Meunier, Carbon-hydrogen bonds of DNA sugar units as targets for chemical nucleases and drugs,Angew. Chem. Int. Ed. Engl., 1995, 34(7), 746-769.
    [49]周井炎,李庆祥,刘长林,徐辉碧,无机化学学报, 1997, 4, 390.
    [50] C. L. Liu, J. Y. Zhou, H. B. Xu, Interaction of the copper(II) macrocyclic complexes with DNA studied by fluorescence quenching of ethidium, J. Inorg. Biochem., 1998, 71(1-2), 1-6.
    [51] D S Sigma, A Mazumder, D M Perrin. A chemical nuclease [J]. Chem. Rev., 1993, 93(6): 2297-2316.
    [52]沈同,王镜岩,赵邦悌,生物化学,人民教育出版,1983.
    [53] J. K.Barton, J. J.Dannenberg, J. Am. Chem. Soc., 1982, 104, 4867.
    [54] R. M. Scheek, R. Boelens, N. Russo, J. H. van Boom, R. Kaptein, Biochemistry, 1984, 23, 1371.
    [55] D. J. Patel, L. Shapiro, D. Hare, J. Biol. Chem., 1986, 261, 1223.
    [56]杨频,宋宇飞,化学进展, 2000, 12(1), 32.
    [57] J. G. Collins, J. R. Aldrich-Wright, I. D. Greguric, P. A. Pellegrini, Inorg. Chem. 1999, 38, 5502.
    [58]洪显兰,博士学位论文2004.
    [59] S. E. Sherman, D. Gibson, A. H. J. Wang, S. J. Lippard, Crystal and molecular structure of cis-[Pt(NH3)2[d(pGpG)]], the principal adduct formed by cis-diamminedichloroplatinum(II) with DNA, J. Am. Chem. Soc., 1988, 110(22), 7368-7381.
    [60] G. Admirraal, J. L. Van der Veer, R. A. G. De Graaff, J. H. J. Den Hartog, J. Reedijk, Intrastrand bis(guanine) chelation of trinucleoside diphosphate d(CpGpG) to cis-platinum: an x-ray single-crystal structure analysis, J. Am. Chem. Soc., 1987, 109(2), 592-594.
    [61] P. M. Takahara, A. C. Rosenzweig, C. A. Frederick, S. J. Lippard, Crystal struc- ture of double-stranded DNA containing the major adduct of the anticancer drug cisplatin Nature, 1995, 377(6550), 649-652.
    [62] R. M. Wartell, A. S. Benight, Thermal denaturation of DNA molecules: A comparison of theory with experiment, phys. Rep. 1985, 126(2), 67-107.
    [63] D. Poland, H. A. Sheraga, Theory of Helix-coil Transition in Biopolymers: Statistical Mechanics Theory of Order-disorder Transition in Biological Macromolecules, Academic Press, New York, 1970.
    [64] J. K. Barton, Science, 1986, 25, 3549.
    [65] C. V. Kumar, J. K. Barton, N. J.Turro, J. Am. Chem. Soc. 1985, 107, 5518.
    [66] A. E. Friedman, C. V. Kumar, N. J. Turro, J. K. Barton, Nucleic Acids Research, 1991, 19(10), 2595.
    [67] A. M. Pyle, E. C. Long, J. K. Barton J. Am. Chem. Soc. 1989, 111, 4520.
    [68] W. J. Mei, J. Liu, K. C. Zheng, L. J. Lin, H. Chao, A. X. Li, F. C. Yun, L.-N. Ji, Dalton Trans., 2003, 1352.
    [69] H. Deng, J. Cai, H. Xu, H. Zhang, L.-N. Ji, Dalton Trans., 2003, 325.
    [70] C.-W. Jiang, H. Chao, X.-L. Hong, H. Li, W.-J. Mei, L.-N. Ji, Inorg. Chem. Comm., 2003, 6, 773.
    [71] A. D. Guerzo, A. K.-D. Mesmaeker, Inorg. Chem., 2002, 41, 938.
    [72] I. Ortmans, S. Content, N. Boutonnet, A. K.-D. Mesmaeker, W. Bannwarth, J.-F. Constant, E. Defrancq, J. Lhomme, Chem. Eur. J., 1999, 5(9), 2712.
    [73] K. Wiederholt, L. W. McLaughlin, Nucleic Acids Research, 1999, 27(12), 2487.
    [74] D. Ossipov, P. I. Pradeepkumar, M. Holmer, J. Chattopadhyaya, J. Am. Chem. Soc., 2001, 123, 3551.
    [75] A. K.-D. M esmaeker, C. Moucheron, N. Boutonnet, J. Phys. Org. Chem., 1999 11,566.
    [76] A. E.Friedman, J. C.Chambron, J. P.Sauvage, N. J Turro, Barton J. K., J. Am. Chem. Soc., 1990, 112, 4960.
    [77] Y. Jenkins, A. E. Friedman, N. J. Turro, J. K. Barton, Biochemistry, 1992, 31, 10809.
    [78] C.Turro, S. H.Bossmann, Y. Jenkin, J. K. Barton, N. J. Turro, J. Am. Chem. Soc., 1995, 117, 9026.
    [79] R. E. Holmlin, P. J. Dandliker, J. K. Barton, Angew. Chem. Int. Ed. Engl., 1997, 36, 2714.
    [80] R. E. Holmlin, J. K. Barton, Inorg. Chem., 1995, 34, 7.
    [81] Y. Jenkins, J. K. Barton, J. Am. Chem. Soc., 1992, 114, 8736.
    [82] X. H. Zou, B. H. Ye, H. Li, Q. L. Zhang, H. Chao, J. G. Liu, L. N. Ji, X. Y. Li, J. Biol. Inorg. Chem. 2001, 6, 143.
    [83] J. G. Liu, B. H. Ye, H. Chao, Q. X. Zhen, L. N. Ji, Chem. Lett. 1999, 1085.
    [84]王湘利博士学位论文2004.
    [85] E. Wong, C. M. Giandomenico, Chem. Rev., 1999, 99, 2451.
    [86] B. K. Keppler, Metal Complexes in Cancer Chemotherapy, VCH Weinheim: Verlagsgesellschaft, 1993.
    [87]汪中明,计亮年,化学进展, 2002, 14(4), 296.
    [88] M. J. Clarke, Coord. Chem. Rev., 2003, 236, 209.
    [89] B. K. Keppler, Prog. Clin. Biochem. Med., 1989, 10, 41.
    [90] C. S. Chow, J. K. Barton, Methods in Enzymol., 1992, 212, 219.
    [91] A. C. G. Hotze, A. H. Velders, F. Ugozzoli, M. Biagini-Cingi, A. M. Manotti- Lanfredi, J. G. Haasnoot, J. Reedijk, Inorg. Chem., 2000, 39, 3838.
    [92] A. H. Velders, H. Kooijman, A. L. Spek, J. G. Haasnoot, D. De Vos, J. Reedijk, Inorg. Chem. 2000, 39, 2966.
    [93] N. W. Luedtke, J. S. Hwang, E. C. Glazer, D. Gut, M. Kol, Y. Tor, ChemBioChem., 2002, 3, 766.
    [1] B. Nordén, P. Lincoln, B. Akerman, E. Tuite, in: A. Sigel, S. Sigel (Eds), Metal Ions in Biological System, Marcel Dekker, New York, 1996, 177.
    [2] S. Delaney, J. Yoo, E. D. A. Stemp, J. K. Barton, Proc. Natl. Acad. Sci. USA 2004, 101, 10511.
    [3] K. E. Erkkila, D. T. Odem, J. K. Barton, Chem. Rev. 1999, 99, 2777.
    [4] C. Metcalf, J. A. Thomas, Chem. Soc. Rev. 2003, 32, 215.
    [5] Y. Xiong, L. N. Ji, Coord. Chem. Rev. 1999, 185, 711.
    [6] R. Blasius, C. Moucheron, A. K. Mesmasker, Eur. J. Inorg. Chem. 2004, 20, 3971.
    [7] D. Lawrence, V. G. Vaidyanathan, B. U. Nair, J. Inorg. Biochem. 2006, 100, 1244.
    [8] H. Xu, K. C. Zheng, Y. Chen, Y. Z. Li, L. J. Lin, H. Li, P. X. Zhang, L. N. Ji, Dalton Trans. 2003, 2260.
    [9] Y. J. Liu, H. Chao, Y. X. Yuan, H. J. Yu, L. N. Ji, Inorg. Chim. Acta. 2006, 359, 3807.
    [10] F. Gao, H. Chao, J. Q. Wang, Y. X. Yuan, B. Sun, Y. F. Wei, B. Peng, L. N. Ji, J. Biol. Inorg. Chem. 2007, 12, 1015.
    [11] Y. J. Jang, B. H. Kwon, B. H. Choi, C. H. Bae, M. S. Seo, W. Nam, S. K. Kim, J. Inorg. Biochem. 2008, 102, 1885.
    [12] L. F. Tan, X. H. Liu, H. Chao, L. N. Ji, J. Inorg. Biochem. 2007, 101, 56.
    [13] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, J. Am. Chem. Soc. 1990, 112, 4960.
    [14] Y. Jenkins, A. E. Friedman, N. J. Turro, J. K. Barton, Biochemistry. 1992, 31, 10809.
    [15] G. A. Neyhart, C. C. Cheng, H. H. Thorp, J. Am. Chem. Soc. 1995, 117, 1463.
    [16] I. Ortmans, C. Moucheron, A. Kirsch-De Mesmaeker, Coord. Chem. Rev. 1998, 168, 233.
    [17] C. C. Cheng, J. G. Goll, G. A. Neyhart, T. W. Welch, P. Singh, H. H. Thorp, J. Am. Chem. Soc. 1995, 117, 2970.
    [18] K. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 1999, 99, 2777.
    [19] C. Moucheron, A. Kirsch-De Mesmaeker, J. M. Kelly, J. Photochem.Photobiol. B. 1997, 40, 91.
    [20] B. Norden, P. Lincoln, B. Akerman, E. Tuite, DNA Interactions with Substitution inert Transition Metal Ion Complexes, Marcel Dekker, New York, 1996.
    [21] C. Moucheron, A. Kirsch-De Mesmaeker, J. M. Kelly, Struct. Bond. 1998, 92, 163.
    [22] C. W. Crean, Y. T. Kavanagh, C. M. O_Keeffe, M. P. Lawler, C. Stevenson, R. J. H. Davies, P. H. Boyle, J. M. Kelly, Photochem. Photobiol. Sci. 2002, 1, 1024.
    [23] M. J. Clarke, Coord. Chem. Rev. 2002, 232, 69.
    [24] H. Ali, J. E. Van Lier, Chem. Rev. 1999, 99, 2379.
    [25] C. X. Zhang, S. J. Lippard, Curr. Opin. Chem. Biol. 2003, 7, 481.
    [26] A. B. Tossi, J. M. Kelly, J. Photochem. Photobiol. 1989, 49, 545.
    [27] F. O. Reilly, J. Kelly, A. Kirsch-De Mesmaeker, Chem Commun. 1996, 9, 1013.
    [28] A. Kirsch-De Mesmaeker, C. Moucheron, N. Boutonnet, J. Phys. Org. Chem. 1998, 11, 566.
    [29] A. Hergeta-Bravo, M. E. Jimenez-Hernandez, F. Montero, E. Oliveros, G. Orellana, J. Phys. Chem. B. 2002, 106, 4010.
    [30] F. Gao, H. Chao, F. Zhou, X. Chen, Y. F. Wei, L. N. Ji, J. Inorg. Biochem. 2008, 102, 1050.
    [31] E. Alessio, G. Balducci, A. Lutman, G. Mestroni, H. Calligaris, W. M. Attia, Inorg. Chim. Acta. 1993, 203, 205.
    [32] E. Alessio, G. Mestroni, A. Bergamo, G. Sava, Curr. Top. Med. Chem. 2004, 4, 1525.
    [33]刘云军博士学位论文2005.
    [34] M. E. Reichmann, S. A. Rice, C. A. Thomas, P. Doty, A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid, J. Am. Chem. Soc., 1954, 76(11), 3047-3053.
    [35] M. J. Waring, J. Mol. Biol, 1965, 13, 219.
    [36] S. Satyanaryana, J. C. Dabrowial, J. B. Chaires, Tri(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding, Biochemistry., 1993, 32(10), 2573-2584.
    [37] S. Satyanaryana, J. C. Dabrowial, J. B. Chaires, Neither . DELTA.-nor . LAMBDA.tris (phenanthroline)ruthenium(II) binds to DNA by classical intercalation, Biochemistry,1992, 31(39), 9319-9324.
    [38] J. B. Bolger, A. Gourdon, E. Ishow, J. P. Launay, Mononuclear and Binuclear Tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) Ruthenium and Osmium Complexes, Inorg. Chem., 1996, 35(10), 2937-2944.
    [39] S. Tysoe, A. Baker, T. C. Strekas, Spectroscopic investigation of differential binding modes of .DELTA.- and .LAMBDA.-Ru(bpy)_2(ppz)~(2+) with calf thymus DNA, J. Phys. Chem., 1993, 97(8), 1707-1711.
    [40] M. T. Carter, M. Rodriguez, A. Bard, J. Am. Chem. Soc. 1989, 111, 8901.
    [41] A. B. Tossi, J. M. Kelly, Photochem. Photobiol., 1989, 49, 545.
    [42] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [43] C. V. Kumar, J. K. Barton, J. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc., 1985, 107(19), 5518-5523.
    [44] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, A molecular light switch for DNA: Ru(bpy)_2(dppz)~(2+), J. Am. Chem. Soc., 1990, 112(12), 4960-4962.
    [45] I. Haq, P. Lincoln, D. Suh, B. Norden, B. Z. Choedhry, J. B. Chaires, Interaction of .DELTA.- and .LAMBDA.-[Ru(phen)_2DPPZ]~(2+) with DNA: A Calorimetric and Equilibrium Binding Study, J. Am. Chem. Soc., 1995, 117(17), 4788-4796.
    [46] G. A. Neyhat, N. Grover, S. R. Smith, W. A. Kalsbeck, T. A. Fairly, M. Cory, H. H. Thorp, Binding and kinetics studies of oxidation of DNA by oxoruthenium(IV), J. Am. Chem. Soc., 1993, 115(11), 4423-4428.
    [47] D. S. Sigman, A. Mazumder, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93(6), 2295-2316.
    [48] C. C. Cheng, Y. N. Kuo, K. S. Chuang, C. F. Luo, W. J. Wang, A New CoII Complex as a Bulge-Specific Probe for DNA, Angew. Chem. Int. Ed., 1999, 38(9), 1255-1257.
    [49] R. P. Hickerson, R. J. Perez, C. J. Burrows, DNA Damage from Sulfite AutoxidationCatalyzed by a Nickel(II) Peptide, J. Am. Chem. Soc., 1997, 119(7), 1501-1506.
    [50] D. S. Sigman, T. W. Bruice, A. Mazumder, Acc. Chem. Rev., 1993, 26, 98.
    [51] T. D. Tullins, Ann. Rev. Biophys. Chem., 1989, 18, 213.
    [52] D. R. Graham, D. S. Sigman, Anion binding in macrobicyclic metal cryptate complexes: copper(II)-BISTREN, Inorg. Chem., 1984, 23(10), 1588-1591.
    [53] P. B. Dervan, Science, 1986, 232, 464.
    [54] T. Matsumura-Inoue, H. Tomoro, M. Kasai, T. Tominiga-Morimoto. J. Electroanal. Chem. 1979, 95, 109.
    [55] Y. J. Liu, X. Y. Wei, F. H. Wu, W. J. Mei, L. X. He, Spectrochimica Acta Part A. 2008, 70, 171.
    [56] S. Baitalik, U. Fl?rke, K. Nag. J. Chem. Soc., Dalton Trans. 1999, 719.
    [57] J. G. Liu, Q. L. Zhang, X. F. Shi, L. N. Ji. Inorg. Chem. 2001, 40, 5045.
    [58] Y. J. Liu, W. J. Mei, J. Z. Lu, H. J. Zhao, L. X. He, F. H. Wu, J. Coord. Chem. 2008, 61(20), 3213.
    [59] A. W. Wallace, W. R. Murphy, J. D. Peterson, Electrochemical and photophysical properties of mono- and bimetallic ruthenium(II) complexes, Inorg. Chim. Acta., 1989, 166(1), 47-54.
    [1] K. E. Erkkila, D. T. Odem, J. K. Barton, Chem. Rev. 99 (1999) 2777–2796.
    [2] Y. J. Liu, C. H. Zeng, Z. H. Liang, J. H. Yao, H. L. Huang~c, Z. Z. Li, F. H. Wu Synthesis of ruthenium(II) complexes and characterization of their cytotoxicity in vitro, apoptosis, DNA-binding and antioxidant activity, Eur. J. Med. Chem, 2010,
    [3] Y. Xiong, L.N. Ji, Coord. Chem. Rev. 185 (1999) 711–733.
    [4] R. Blasius, C. Moucheron, A.K. Mesmasker, Eur. J. Inorg. Chem. (2004) 3971–3979.
    [5] Y. T. Sun, S. Y. Bi, D. Q. Song, C. Y. Qiao, D. Mu, H. Q. Zhang, Sens. Actuators B 129(2008) 799–810.
    [6] D. L. Arockiasamy, S. Radhika, R. Parthasarathi, B. U. Nair, Eur. J. Med. Chem. 44(2009) 2044–2051.
    [7] Y.J. Liu, C.H. Zeng, F.H. Wu, J.H. Yao, L.X. He, H.L. Huang, J. Mol. Struct. 932(2009) 105–111.
    [8] F. Gao, H. Chao, F. Zhou, X. Chen, Y.F. Wei, L. N. Ji, J. Inorg. Biochem. 102 (2008) 1050–1059.
    [9] J. Liu, W.J. Zheng, S. Shi, C.P. Tan, J.C. Chen, K.C. Zheng, L.N. Ji, J. Inorg. Biochem.102 (2008) 193–202.
    [10] H. J. Yu, S. M. Huang, L. Y. Li, H. N. Jia, H. Chao, Z. W. Mao, J. Z. Liu, L. N. Ji, J. Inorg. Biochem. 103 (2009) 881–890.
    [11] L. F. Tan, X. L. Liang, X. H. Liu, J. Inorg, Biochem 103 (2009) 441–447.
    [12] L. M. Chen, J. Liu, J. C. Chen, S. Shi, C. P. Tan, K. C. Zheng, L. N. Ji, J. Mol. Struct. 881(2008) 156–166.
    [13] T. R. Krugh, J. W. Neely, Biochemistry 12 (1973) 4418–4425.
    [14] T. Mosmann, J. Immunol. Methods 65 (1983) 55.
    [15] D. L. Spector, R.D. Goldman, L.A. Leinwand (Eds.), Cells: A Laboratory Manual,vol. 1, Cold Spring Harbor Laboratory Press, New York, 1998 (Chapter 15).
    [16] T.R. Li, Z.Y. Yang, B.D. Wang, D.D. Qin, Eur. J. Med. Chem. 43 (2008) 1688.
    [17] W. Paw, R. Eisenberg, Synthesis, Characterization, and Spectroscopy of Dipyrid- ocatecholate Complexes of Platinum, Inorg. Chem., 1997, 36(11), 2287-2293.
    [18] E. A. Steck, A. R. Day, Reactions of Phenanthraquinone and Retenequinone with Aldehydes and Ammonium Acetate in Acetic Acid Solution, J. Am. Chem. Soc., 1943, 65(3), 452-456.
    [19] F. H. Wu, C. H. Zeng, Y. J. Liu, X. Y. Guan, and L. X. He, (2009)'DNA interaction studies of ruthenium(II) polypyridyl complex : Ru(dmb)_2(ITAP)](ClO_4)_2 (ITAP = isatino[1,2-b]-1,4,8,9-tetraazatripheny- lene)', Journal of Coordination Chemistry,62:21,3512-3521.
    [20] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Zelewsky, Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coord. Chem. Rev., 1988, 84, 85-277.
    [21] S. Zalis, V. Drchal, A model calculation of redox potential sequence of systems with mutually interacting redox centers: M(bpy)_3~((2-n)+_ systems ARTICLE, Chem. Phys., 1987, 118(3), 313-323.
    [22] S. Tysoe, A. Baker, T. C. Strekas, Spectroscopic investigation of differential binding modes of .DELTA.- and .LAMBDA.-Ru(bpy)_2(ppz)~(2+) with calf thymus DNA, J. Phys. Chem., 1993, 97(8), 1707-1711.
    [23] M. T. Carter, M. Rodriguez, A. Bard, J. Am. Chem. Soc. 1989, 111, 8901.
    [24] A. B. Tossi, J. M. Kelly, Photochem. Photobiol., 1989, 49, 545.
    [25] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [26] C. V. Kumar, J. K. Barton, J. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc., 1985, 107(19), 5518-5523.
    [27] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, A molecular light switch for DNA: Ru(bpy)_2(dppz)~(2+), J. Am. Chem. Soc., 1990, 112(12), 4960-4962.
    [28] S. Satyanaryana, J. C. Dabrowial, J. B. Chaires, Tri(phenanthroline)ruthenium (II) enantiomer interactions with DNA: Mode and specificity of binding, Biochemistry.,1993, 32(10), 2573-2584.
    [29] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [30] I. Haq, P. Lincoln, D. Suh, B. Norden, B. Z. Choedhry, J. B. Chaires, Interaction of .DELTA.- and .LAMBDA.-[Ru(phen)_2DPPZ]~(2+) with DNA: A Calorimetric and Equilibrium Binding Study, J. Am. Chem. Soc., 1995, 117(17), 4788-4796.
    [31] G. A. Neyhat, N. Grover, S. R. Smith, W. A. Kalsbeck, T. A. Fairly, M. Cory, H. H. Thorp, Binding and kinetics studies of oxidation of DNA by oxoruthenium(IV), J. Am. Chem. Soc., 1993, 115(11), 4423-4428.
    [32] C. C. Cheng, Y. N. Kuo, K. S. Chuang, C. F. Luo, W. J. Wang, A New CoII Complex as a Bulge-Specific Probe for DNA, Angew. Chem. Int. Ed., 1999, 38(9), 1255-1257.
    [33] D. S. Sigman, A. Mazumder, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93(6), 2295-2316.
    [34] D. S. Sigman, T. W. Bruice, A. Mazumder, Acc. Chem. Rev., 1993, 26, 98.
    [35] R. P. Hickerson, R. J. Perez, C. J. Burrows, DNA Damage from Sulfite Autoxidation Catalyzed by a Nickel(II) Peptide, J. Am. Chem. Soc., 1997, 119(7), 1501-1506.
    [36] T. D. Tullins, Ann. Rev. Biophys. Chem., 1989, 18, 213.
    [37] P. B. Dervan, Science, 1986, 232, 464.
    [38] D. R. Graham, D. S. Sigman, Anion binding in macrobicyclic metal cryptate complexes: copper(II)-BISTREN, Inorg. Chem., 1984, 23(10), 1588-1591.
    [39] K. Tsai, T.G. Hsu, K.M. Hsu, H. Cheng, T.Y. Liu, C.F. Hsu, C.W. Kong, Free Radical.Biol. Med. 31 (2001) 1465.
    [1] A. Sigel, H. Sigel. (Eds), vol. 33, Marcel Dekker, New York (1996) 177-252.
    [2] L. N. Ji, X. H. Zou, J. G. Liu, J. G., Coord. Chem. Rev. 216-217 (2001) 513-536.
    [3] F. Gao, H. Chao, F. Zhou, Y. X. Yuan, B. Peng, L. N. Ji, J. Inorg. Biochem. 100 (2006) 1487-1494.
    [4] P. P. Pelligrini, J. R. Aldrich-Wright, Dalton Trans. (2003) 176-183.
    [5] L. F. Tan, X.H. Liu, H. Chao, L. N. Ji, J. Inorg. Biochem. 101 (2007) 56-63.
    [6] P. U. Maheswari, M. Palaniandavar, Inorg. Chim. Acta 357 (2004) 901-912.
    [7] V. G. Vaidyananthan, B. H. Nair, Dalton Trans. (2005) 2842-2848.
    [8] C. Metcalfe, J. A. Thomas, Chem. Soc. Rev. 32 (2003) 215-224.
    [9] K. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 99 (1999) 2777-2796.
    [10] B. Norden, P. Lincoln, B. Akerman, E. Tuite, Met. Ions. Biol. Syst. 33 (1996) 177-252.
    [11] X. W. Liu, L. C. Xu, H. Li, H. Chao, K. C. Zheng, L. N. Ji, J. Mol. Struc. 920 (2009) 163-171.
    [12] H. J. Yu, S. M. Huang, L. Y. Li, H. N. Ji, H. Chao, Z. W. Mao, J. Z. Liu, L.N. Ji, J.Inorg. Biochem, 103 (2009) 881-890.
    [13] H. J. Shi, Y. Chen, F. Gao, H. J. Yu, G. Y. Li, H. Chao, X. F. Shi, L. N. Ji, J. Mol. Struc. 892 (2008) 485-489.
    [14] L. F. Tan, X. L. Liang, X. H. Liu, J. Inorg. Biochem, 103 (2009) 441-447.
    [15] D.L. Arochiasamy, S Radhika, R. Parthasathi, B.N. Nair, Eur. J. Med. Chem, 44 (2009) 2044-2051.
    [16] X. J. Yang, C. Janiak, J. Heinze, F. Drepper, P. Meyer, H. Piotrowski, P. Klufers, Inorg. Chim. Acta, 318 (2001) 103-116.
    [17] P. J. Dandliker, R. E. Holmline, J. K. Barton, Scince, 275 (1997) 1465-1468.
    [18] C. P. Tan, J. Liu, L. M. Chen, S. Shi, L. N. Ji, J. Inorg. Biochem, 102 (2008) 347-358.
    [19] J. Liu, W. J. Zheng, S. Shi, C. P. Tan, J. C. Chen, K. C. Zheng, L. N. Ji, J. Inorg. Biochem, 102 (2008) 193-202.
    [20] W. Paw, R. Eisenberg, Synthesis, Characterization, and Spectroscopy of Dipyridocate- cholate Complexes of Platinum, Inorg. Chem., 1997, 36, 2287-2293.
    [21] T. Mosmann, J. Immunol. Methods, 1983, 65, 55.
    [22] D. L. Spector, R. D. Goldman, L. A. Leinwand (Eds.), Cells: A Laboratory anual,vol. 1, Cold Spring Harbor Laboratory Press, New York, 1998 (Chapter 15).
    [23] T. R. Li, Z. Y. Yang, B. D. Wang, D. D. Qin, Eur. J. Med. Chem. 2008, 43, 1688.
    [24] E. A. Steck, A. R. Day, J. Am. Chem. Soc, 1943, 65, 452.
    [25] Y. J. Liu, X. Y. Wei, F. H. Wu, W. J. Mei, L. X. He, Spectrochimica Acta Part A, 2008, 70, 171.
    [26] S. Shi, J. Liu, J. Li, K. C. Zheng, C. P. Tan, L. M. Chen, L. N. Ji, J. Chem. Soc, Dalton Trans, (2005) 2038-2046.
    [27]刘云军,博士学位论文,2005.
    [28] M. T. Carter, M. Rodriguez, A. Bard, J. Am. Chem. Soc. 1989, 111, 8901.
    [29] S. Satyanaryana, J. C. Dabrowial, J. B. Chaires, Tri(phenanthroline)ruthenium (II) enantiomer interactions with DNA: Mode and specificity of binding, Biochemistry., 1993, 32(10), 2573-2584.
    [30] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, Ectroscopy topoisomerisation and thermal denaturation, NA study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spucleic Acids Res., 1985, 13(17), 6017-6034.
    [31] A. B. Tossi, J. M. Kelly, Photochem. Photobiol., 1989, 49, 545.
    [32] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, A molecular light switch for DNA: [Ru(bpy)_2(dppz)]~(2+), J. Am. Chem. Soc., 1990, 112, 4960-4962.
    [33] C. V. Kumar, J. K. Barton, J. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc., 1985, 107(19), 5518-5523.
    [34] G. A. Neyhat, N. Grover, S. R. Smith, W. A. Kalsbeck, T. A. Fairly, M. Cory, H. H. Thorp, Binding and kinetics studies of oxidation of DNA by oxoruthenium(IV), J. Am. Chem. Soc., 1993, 115(11), 4423-4428.
    [35] I. Haq, P. Lincoln, D. Suh, B. Norden, B. Z. Choedhry, J. B. Chaires, Interaction of .DELTA.- and .LAMBDA.-[Ru(phen)_2DPPZ]~(2+) with DNA: A Calorimetric and Equilibrium Binding Study, J. Am. Chem. Soc., 1995, 117(17), 4788-4796.
    [36] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [37] C. C. Cheng, Y. N. Kuo, K. S. Chuang, C. F. Luo, W. J. Wang, A New CoII Complex as a Bulge-Specific Probe for DNA, Angew. Chem. Int. Ed., 1999, 38(9), 1255-1257.
    [38] D. S. Sigman, A. Mazumder, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93(6), 2295-2316.
    [39] D. S. Sigman, T. W. Bruice, A. Mazumder, Acc. Chem. Rev., 1993, 26, 98.
    [40] R. P. Hickerson, R. J. Perez, C. J. Burrows, DNA Damage from Sulfite Autoxidation Catalyzed by a Nickel(II) Peptide, J. Am. Chem. Soc., 1997, 119(7), 1501-1506.
    [41] T. D. Tullins, Ann. Rev. Biophys. Chem., 1989, 18, 213.
    [42] P. B. Dervan, Science, 1986, 232, 464.
    [43] D. R. Graham, D. S. Sigman, Anion binding in macrobicyclic metal cryptate complexes: copper(II)-BISTREN, Inorg. Chem., 1984, 23(10), 1588-1591.
    [1] C. J. Burrows, S. E. Rokita. Acc. Chem. Res., 27, 295 (1994).
    [2] A. M. Pyle, J. K. Barton. In Progress in Inorganic Chemistry, S.J. Lippard (Ed.), Vol. 38, p. 413, Wiley,New York (1990).
    [3] T. D. Tullius. Metal–DNA Chemistry, ACS Symposium Series, Vol. 402, American Chemical Society, Washington, DC (1989).
    [4] A. R. Banerjee, J. A. Jaeger, D. H. Turner. Biochemistry, 32, 153 (1993).
    [5] A. E. Friedman, C. V. Kumar, N. J. Turro, J. K. Barton. Nucleic Acids Res., 19, 2595 (1991).
    [6] J. C. Chambron, J. P. Sauvage, E. Amouyal, P. Koffi. New J. Chem., 9, 527 (1985).
    [7] Y. Jenkins, A. E. Friedman, N. J. Turro, J. K. Barton. Biochemistry, 31, 10809 (1992).
    [8] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton. J. Am. Chem. Soc., 112, 4960(1990).
    [9] P. B. Dervan. Science, 232, 464 (1986).
    [10] C. H. Zimmer, U. Wahnert. Prog. Biophys. Mol. Biol., 47, 31 (1986).
    [11] F. Gao, H. Chao, F. Zhou, Y. X. Yuan, B. Peng, L. N. Ji. J. Inorg. Biochem., 100, 1487 (2006).
    [12] Y. J. Liu, W. J. Mei, J. Z. Lu, H. J. Zhao, L. X. He, F. H. Wu. J. Coord. Chem., 61(20), 3213 (2008).
    [13] Y. J. Liu, H. Chao, Y. X. Yuan, H. J. Yu, L. N. Ji. Inorg. Chim. Acta, 359, 3807 (2006).
    [14] L. F. Tan, F. Wang, H. Chao, Y. F. Zhou, C. Wen. J. Inorg. Biochem., 101(4), 700 (2007).
    [15] W. J. Mei, J. Liu, H. Chao, L. N. Ji. Transition Met. Chem., 28, 852 (2003).
    [16] D. Magda, M. Wright, R. A. Miller, J. L. Sessler, P.I. Sansom. J. Am. Chem. Soc., 117, 3629 (1995).
    [17] S. Swavey, K. J. Brewer. Inorg. Chem., 41, 6196 (2002).
    [18] W. Paw, R. Eisenberg, Synthesis, Characterization, and Spectroscopy of Dipyridocate- cholate Complexes of Platinum, Inorg. Chem., 1997, 36(11), 2287-2293.
    [19] G. F. Smith, F. W. Cogle. J. Org. Chem., 65, 452 (1943).
    [20] J. Bolger, A. Gourdon, E. Ishow, J. P. Launay. Inorg. Chem., 35(10), 2937 (1996).
    [21] S. Tysoe, A. Baker, T. C. Strekas, Spectroscopic investigation of differential binding modes of .DELTA.- and .LAMBDA.-Ru(bpy)_2(ppz)~(2+) with calf thymus DNA, J. Phys. Chem., 1993, 97(8), 1707-1711.
    [22] M. T. Carter, M. Rodriguez, A. Bard, J. Am. Chem. Soc. 1989, 111, 8901.
    [23]刘云军博士学位论文2005.
    [24] S. Satyanaryana, J. C. Dabrowial, J. B. Chaires, Tri(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding, Biochemistry., 1993, 32(10), 2573-2584.
    [25] A. B. Tossi, J. M. Kelly, Photochem. Photobiol., 1989, 49, 545.
    [26] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [27] C. V. Kumar, J. K. Barton, J. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc., 1985, 107(19), 5518-5523.
    [28] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, A molecular light switch for DNA: Ru(bpy)_2(dppz)~(2+), J. Am. Chem. Soc., 1990, 112(12), 4960-4962.
    [29] J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Ohuigin, A study of the interaction of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy topoisomerisation and thermal denaturation, Nucleic Acids Res., 1985, 13(17), 6017-6034.
    [30] I. Haq, P. Lincoln, D. Suh, B. Norden, B. Z. Choedhry, J. B. Chaires, Interaction of .DELTA.- and .LAMBDA.-[Ru(phen)_2DPPZ]~(2+) with DNA: A Calorimetric and Equilibrium Binding Study, J. Am. Chem. Soc., 1995, 117(17), 4788-4796.
    [31] G. A. Neyhat, N. Grover, S. R. Smith, W. A. Kalsbeck, T. A. Fairly, M. Cory, H. H. Thorp, Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV), J. Am.Chem. Soc., 1993, 115(11), 4423-4428.
    [32] D. L. Boger, B. E. Fenk, S. R. Brunette, W. C. Tse, M. P. Hedrick. J. Am. Chem. Soc., 123, 5878 (2001).
    [33] C. M. Dupureur, J. K. Barton. Inorg. Chem., 36, 33 (1997).
    [34] C. V. Kumar, E. H. Asuncion. J. Am. Chem. Soc., 115, 8547 (1993).
    [35] R. P. Hickerson, R. J. Perez, C. J. Burrows, DNA Damage from Sulfite Autoxidation Catalyzed by a Nickel(II) Peptide, J. Am. Chem. Soc., 1997, 119(7), 1501-1506.
    [36] D. S. Sigman, A. Mazumder, D. M. Perrin, Chemical nucleases, Chem. Rev., 1993, 93(6), 2295-2316.
    [37] C. C. Cheng, Y. N. Kuo, K. S. Chuang, C. F. Luo, W. J. Wang, A New CoII Complex as a Bulge-Specific Probe for DNA, Angew. Chem. Int. Ed., 1999, 38(9), 1255-1257.
    [38] D. R. Graham, D. S. Sigman, Anion binding in macrobicyclic metal cryptate complexes: copper(II)-BISTREN, Inorg. Chem., 1984, 23(10), 1588-1591.
    [39] D. S. Sigman, T. W. Bruice, A. Mazumder, Acc. Chem. Rev., 1993, 26, 98.
    [40] P. B. Dervan, Science, 1986, 232, 464.
    [41] T. D. Tullins, Ann. Rev. Biophys. Chem., 1989, 18, 213.
    [42] C. V. Kumar, J. K. Barton, J. J. Turro, Photophysics of ruthenium complexes bound to double helical DNA, J. Am. Chem. Soc., 1985, 107(19), 5518-5523.
    [43] J. E. B. Johnson, R. R. Ruminski. Inorg. Chim. Acta, 208, 231 (1993).
    [44] Y. J. Liu, X. Y. Wei, F. H. Wu, W. J. Mei, L.X. He. Spectrochim. Acta, Part A, 70, 171 (2008).
    [45] L. F. Tan, H. Chao. Inorg. Chim. Acta, 360, 2016 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700