利用部分相干光冷却中性原子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,激光冷却原子的研究与应用越来越受到关注,并且取得了丰硕的成果。在以往的研究中,用于冷却原子的激光均为相干光。本硕士学位论文利用部分相干光作为冷却中性原子的光源,研究了相干性对冷却原子的影响,从实验上得到了冷原子的温度随激光相干性的变化关系,并从理论上作了分析。
     本文的主要内容如下:
     第一章回顾了激光冷却原子的发展历程,概述了本文的研究的背景、研究目的和意义。并简要地描述了本文的主要工作。
     第二章从Rb原子的能级结构、光与原子的相互作用、磁光阱和偏振梯度冷却等出发,对激光冷却原子的基础理论进行概述。
     第三章首先对部分相干光的理论和特性作了简单介绍,然后介绍了部分相干光的产生机制。我们利用晶体来调制冷却激光的相位分布,从而改变了冷却激光的空间相干性。通过改变加在晶体上的外加电压,激光的相干度可以被控制。
     第四章对激光冷却原子所涉及的实验的各个部分进行了详细的介绍,包括激光系统中的饱和吸收、磁光阱、TOF温度测量法等。接下来介绍了实验的过程包括实验光路图的搭建。最后对所得的实验结果进行了分析。通过对比不同相干度的激光所捕获的冷原子的温度的差别,得出激光相干度对冷原子的影响。
     最后,总结全文,提出存在的不足之处以及需要改进的地方。
In the recent twenty years, the researches on laser cooling and trapping neutral atoms and related applications attracted more and more attentions, and many fruitful results have been achieved. However, in the previous studies, the laser beams used to cool atoms are usually coherent. In this thesis, the cooling and trapping neutral atoms by partially coherent laser beams is investigated. The influences of coherence degree of laser beam on the temperature of cold atoms in the MOT is obtained experimentally. The results are analyzed theoretically. The main contents of the thesis are as follows:
     In the first chapter, an introduction to the historical background and developments of laser cooling is presented. Then the research background and the purpose of this study are introduced briefly.
     In the second chapter, the atomic energy level structure of rubidium atom is discussed. The basic principle of the interaction force between atom and laser, the laser cooling and trapping in magneto-optical trap are introduced briefly.
     In chapter 3, the theory and method to obtain partially coherent light is introduced. We use the crystal to modulate the phase distribution of the laser. By changing the voltage applied on the crystal, the degree of coherence of laser beam can be controlled.
     In chapter 4, the experimental setup of laser cooling is described. Each parts of the experimental setup are introduced in detail, including the main structures and the operating principles of the semiconductor diode laser system, frequency stabilization, magnetic system, and time-of-flight measurement method of the temperature of cold atoms. Then the experimental procedure and results of cooling atom by partially coherent laser in the magneto-optical trap are presented. By analyzing the results, we find out that with the decrease of the coherence degree of the laser beam, the temperature of cold atoms in the MOT increases.
     In chapter 5, a brief conclusion is presented. The main results of the thesis are summarized and an outlook is given.
引文
[1]D. J. Wineland and H. Dehmelt, "Proposed 1014 Δv/v laser fluorescence spectroscopy on Tl+Mono-ion oscillator Ⅲ," Bull. Am. Phys. Soc.1975,20,637.
    [2]T.W. Hansch and A.L. Schawlow "Cooling of Gases by Laser Radiation" Opt. Comm.1975, 13,68.
    [3]王义遒,原子的激光冷却与陷俘,北京:北京大学出版社,2007,1-9,18-58,90-110,197-200,291-297.
    [4]林强,叶兴浩,现代光学基础与前沿,北京:科学出版社,2010,73-83,295-325.
    [5]陈君,相干及部分相干物质波的传输特性研究[博士学位论文],杭州,浙江大学,2008.
    [6]Angela S. Mellish and Andrew C. Wlison, A Simple Laser Cooling and Trapping Apparatus for Undergraduate Laboratories, Physics Department,2002,70(9),965-971.
    [7]Kalle-Antti Suominen, Theories for Cold Atomic Collisions in Light Fields, Topical Review, 1996,29:5981-6007.
    [8]Krzysztof Kowalski, etc, A System for Magneto Optical Cooling and Trapping of Rb Stoms, OpticaApplicata,2006, Vol.ⅩⅩⅩⅥ, No.4,1-9.
    [9]Jerzy Zachorowski, etc, Magneto-Optical Trap for Rubidium Atoms, Optica Applicata,1998, Vol,ⅩⅩⅧ, No.3, str.239.
    [10]张毓英,邵义全.光学实验.北京:电子工业出版社,1989.104-105.
    [11]章志鸣,沈元华,陈慧芬,光学,北京:高等教育出版社2000,101-105.
    [12]吕百达,激光光学光束描述、传输变换与光腔技术物理(第三版),北京,高等教育出版社,2003
    [13]Yangjian Cai, Qiang, Lin, Propagation of Partially Coherent Twisted Anisotropic Gaussian-Schell Model Beams in Spatial-frequency Domain, Chinese Physics Letters,19(9), 1287-1290,2002.
    [14]Ligang Wang, Nianhua Liu, Qiang Lin, Shiyao Zhu, Effect of Coherence on the Superluminal Propagation of Light Pulse Through Anomalously Dispersive Media with Gain, Europhysics Letters,60(6),834-840,15 Dec.2002.
    [15]Yangjian Cai, Qiang Lin, Focusing Properties of Partially Coherent Twisted Anisotropic Gaussian-Schell Model Beams, Optics Communications,215/4-6,239-245,13 JAN 2003.
    [16]Qiang Lin, Ligang Wang, Shiyao Zhu, Partially Coherent Light Pulse and Its Propagation, Optics Communications,219/1-6 pp 65-70,15 April 2003.
    [17]Qiang Lin, Generation and Transformation of Partially Coherent Laser Beams, Review of Laser Engineering, Vol.32, No.4,247-251, Topical issue on "Advanced Laser Beam with Distributed Phase and Polarization". April,2004.
    [18]Di Ge, Yangjian Cai, Qiang Lin, Partially Coherent Flat-topped Beam and Its Propagation, Appl. Opt.-LP,43(24),4732-4738,20 August 2004.
    [19]Di Ge, Yangjian Cai, Qiang Lin, Propagation of Partially Polarized Gaussian Schell-model Beams in Anomalously Dispersive Media, Optik,2004,115(7),305-310.
    [20]Qiang Lin and Ligang Wang, Generation of Partially Coherent Laser Beam Directly from Spatial-temporal Phase Modulated Optical Resonators, Journal of Modern Optics,2003, 50(5):743-754.
    [21]蔡阳健,林强,部分相干平顶高斯光束的传输特性,光电子·激光,2001,12(12):1301-1304
    [22]范安辅,王志伟,孙年春,与原子相互作用的相干光场的相位涨落和相干性的时间特性,物理学报,1995,44(4):536-588.
    [23]刘晓云,部分相干光传输的理论和实验研究[硕士学位论文],泉州,华侨大学,2006.
    [24]王飞,部分相干光的相关理论和实验研究,杭州,浙江大学,2008.
    [25]潘留占,部分相干光及其光谱变化的研究,成都,四川大学,2003.
    [26]徐延亮,部分相干光模式分解和传输特性的研究,四川,西南交通大学,2008.
    [27]文侨,部分相干光的传输特性研究,成都,四川大学,2005.
    [28]吴运梅,部分相干光传输特性的研究,四川,西南交通大学,2007.
    [29]Turunen J., Friberg A. T., Matrix representation of Gaussian Schell-model beams in optical system. Opt. & Laser Tech.,1986,68:6.
    [30]Friberg A. T., Turunen J., Imaging of Gaussian schell-model sources. J. Opt. Soc. Am. A 1988;5:713-720.
    [31]M Zahid, M.S. Zubairya. Optics communications,1989, v70,5,361-364.
    [32]Suye Lu, Baida Lu, Optics communications,2007, v279,1,150-159.
    [33]Agrawal G. P., Wolf E. Propagation-induced polarization changes in partially coherent optical beams. J. Opt. Soc. Am. A 2000; 17:2019-2023.
    [34]Zhong Y., Cui Z., Shi J,Qu J., Polarization properties of partially coherent electromagnetic elegant Laguerre-Gaussian beams in turbulent atmosphere. Appl. Phys. B.2011; 102: 937-944.
    [35]Wolf E., Red shifts and blue shifts of spectral lines emitted by two correlated sources. Phys. Rev. Lett.56,1370(1986)
    [36]Zhu S., Cai Y., Spectral shift of a twisted electromagnetic Gaussian Schell-model beam focused by a thin lens. Appl. Phys. B.2010; 99:317-323.
    [37]Gbur G,Wolf E. Spreading of partially coherent beams in random media. J. Opt. Soc. Am. A 2002; 19:1592-1600.
    [38]Salem M, Shirai T, Dogarin A, Wolf E. Long-distance propagation of partially coherent beams through atmospheric turbulence. Opt. Commun.2005; 216:261-267.
    [39]Shirai T, Dogariu A, Wolf E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence. Opt. Lett.2003; 28:610-612.
    [40]Eyyuboglu TH, Baykal Y. Transmittance of partially coherent cosh-Gaussian, cos-Gaussian and annular beams inturbulence. Opt. Commun.2007; 278:17-22.
    [41]Eyyubog lu HT, Baykal Y, Cai Y. Complex degree of coherence for partially coherent general beams in atmospheric turbulence. J. Opt. Soc. Am. A 2007; 24:2891-900.
    [42]Eyyubog-lu HT, Baykal Y, Cai Y. Degree of polarization for partially coherent general beams in turbulent atmosphere. Appl. Phys. B.2007; 89:91-98.
    [43]Ji X, Chen X, Lu B. Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence. J Opt. Soc. Am. A 2008; 25:21-29.
    [44]Ricklin J. C., Davidson F. M., Atmospheric turbulence effects on a partially coherent Gaussian beam implications for free-space laser communication. J. Opt. Soc. Am. A 2002; 19:1794-1802;
    [45]Jennifer C. R., Frederic, M. D., Atmospheric optical communication with a Gaussian Schell beam. J. Opt. Soc. Am. A 2003; 5:856-866.
    [46]Gennady P. Berman, Alan R. Bishop, Boris M. Chernobrod, Dinh C. Nguyen, Vyacheslav N. Gorshkov, Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam. Opt. Commun. 2007; 280:264-270.
    [47]Dubois F., Joannes L., Legros Jean-Claude, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt.1999; 38:34.
    [48]陈晓莉,王培吉,对晶体电光调制实验中输出光波曲线特性的理论分析,实验技术与管理,2008,25(1):34-37.
    [49]Chengliang Zhao, Yangjian Cai, etc. Radiation Force of Coherent and Partially Coherent Flat-topped Beams on a Rayleigh Particle, Optics Express,2009,17(3),1753-1765.
    [50]Betty Lise Anderson and Lawrence J. Pelz, Spatial-coherence modulation for optical interconnections, Applied Optics,1995,34(32):7443-7450.
    [51]Sergey A. Ponomarenko, Emil Wolf, Coherence Properties of Light in Young's Interference Pattern Formed with Partially Coherent Light, Optics Communications,1999,170:1-8.
    [52]K. B. MacAdam, A. Steinbach, and C. Wieman. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for cs and rb. American Journal of Physics,1992,60:1098-1111.
    [53]M PREVEDELLI, T FREEGARDE, and TW HANSCH. Phase-locking of grating-tuned diode-lasers.APPLIED PHYSICS B-LASERS AND OPTICS,1995,60(2-3, Suppl. S):S241-S248.
    [54]魏荣,小型喷泉钟的初步实验,上海,中国科学院上海光机所,2002.
    [55]韩顺利,拉曼脉冲型原子干涉仪的基础研究,杭州,浙江大学,2010.
    [56]T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, G.M. Tino, " Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor:a new scheme for laser frequency locking" Eur. Phys. J. D 2003,22,279-283
    [57]G.Wasik,W. Gawlik,J.Zzachorowski,W.Zzawadzki, " Laser frequency stabilization by Doppler-free magnetic dichroism" Appl. Phys. B,2002,75,613-619
    [58]Monroe C,Robinson H,Wieman C, " Observation of the cesium clock transition using laser-cooled atoms in a vapor cell" Opt.Lett.,1991,16,50
    [59]Monroe C, Swann W, Robinson H, Wieman C," Very cold trapped atoms in a vapor cell" Phys. Rev. Lett.,1999,65,1571
    [60]Permyakova O I,Yakovlev A V, Chapovsky P L" Measurement of the lifetime of rubidium atoms in a dark magneto-optical trap ", Quantum Electron.,2008,38,884
    [61]Hai-chao Zhang, Peng-fei Zhang, etc, Optimized Temperature Measurement with Time-of-flight Method, Optics Communications,2009,282:3278-3281
    [62]Tomasz M Brzozowski, etc, Time-of-flight measurement of the Temperature of Cold Atoms for Short Trap-probe Beam Distances, J. Opt. B:Quantum Semiclass. Opt,2002,4:62-66.
    [63]何军,王婧等,采用短程飞行时间吸收谱测量冷原子温度时参数误差的影响,物理学报,2008,57(10):6221-6226
    [64]T. M. Brzozowski, M Maczynska, M Zawada,J Zachorowski,W Gawlik, " Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances", J. Opt. B:Quantum Semiclass. Opt.,2002,4,62
    [65]H C Zhang, P F Zhang, X P Xua, F Cheng, Y Z Wang, " Optimized temperature measure-ment with time-of-flight method ", Opt. Commun.,2009,282,3278
    [66]E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, "Trapping of Neutral Sodium Atoms with Radiation Pressure ",Phys. Rev. Lett.,1987,59,2631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700