多吡啶配体及其配合物的合成、结构与性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,2′-联吡啶及其衍生物和过渡金属有着较强的配合能力,这些配体及其配合物已经得到广泛的研究及应用。配体上电子结构与配合物的光电性质有着密切联系,因此对配体芳香环上的取代基的研究也就越来越受到关注。本文从2,2′-联吡啶出发,合成了一系列具有不同取代基的4,4′-二取代-2,2′-联吡啶衍生物及其与钌(II)的配合物,并对其性质及晶体结构进行了研究。
     以2,2′-联吡啶为起始原料,经N-氧化、硝化、卤代、脱氧及硅化等反应步骤合成得到了一系列4,4′二取代的2,2′-联吡啶衍生物:4,4′-二溴-2,2′-联吡啶、4,4′-二甲氧基-2,2′-联吡啶、4,4′-二(三甲基硅基)-2,2′-联吡啶、4,4′-二硝基-2,2′-联吡啶。其结构通过红外光谱、1H-NMR谱、元素分析等方法进行了表征。通过对这些配体在二氯甲烷溶液中的电子吸收和发射光谱的研究,结果表明不同取代基的吸/给电子能力差异显著影响配体的光学性质。取代基为三甲基硅基的配体呈现出最强的荧光强度,而取代基为硝基的配体则最弱。
     通过合成得到的4,4′-二取代-2,2′-联吡啶衍生物配体与cis-Ru(bpy)2·Cl2·2H2O反应,生成了一系列新型多吡啶钌(II)配合物。其结构通过红外、元素分析、1H-NMR和X-射线衍射等方法进行表征。以乙腈为溶剂,对这些配合物在溶液中的紫外吸收光谱进行了研究,结果表明配体上不同取代基对配合物的光学性质也产生了影响。钌(II)配合物的MLCT谱带在约450 nm,取代基为硝基的配合物吸收最强,而溴取代的配合物最弱。以450 nm为激发波长研究了配合物在乙腈溶液中的荧光性质,钌(II)配合物荧光发射最大波长均在610 nm左右,其中以取代基为三甲基硅基和甲氧基的配合物荧光强度最强,取代基为硝基的配合物荧光最弱。配合物的电化学行为的研究表明,四个配合物在乙腈溶液中都具有不可逆的氧化还原特性。本文还对得到的溴取代和甲氧基取代的2,2′-联吡啶钌(II)配合物的晶体结构进行了探讨。
There are extensive interests in synthesis and properties of 2,2'-bipyridyl derivative with specifical function. Due to their coordinate ability to the metal, they have become one of most popular chelated ligands. Since ligand structure has important effect on electrochemical and photochemical properties of the complexes, many research works focused on substituting groups in aromatic ring. In this paper, a series of 4,4'-substitued-2,2'-bipyridyl and their Ru(II) complexes with electron-donating and electron-withdrawing substituents are synthesized and characterized with 2,2'-bipyridyl as raw material. The properties of ligands and their Ru(II) complexes are investigated in detail. Three crystal structures have been discussed.
     A series of 4,4'-substitued-2,2'-bipyridyl was synthesized by using 2,2'-bipyridyl as the starting material with a successive processes, such as N-oxidation, nitrification, halogenation, deoxygenation and silicification reaction. These ligands, 4,4'-dibromo-2,2'-bipyridyl, 4,4'- dimethoxy-2,2'-bipyridyl, 4,4'-bis(trimethylsilyl)-2,2'-bipyridyl and 4,4'-dinitro-2,2'-bipyridyl, are obtained. They are characterized with IR, 1H-NMR and element analysis. In the solution of methylene chloride, the result of UV-Vis absorption and emission reveals that electranical structure of ligang play an important role to their optical activities. The ligand with trimethylsilyl shows the strongest emission intensity, the poorest to that with nitro.
     The Ru(II) complexes have been alslo synthesized through the reaction between a series of 4,4'-substitued-2,2'-bipyridyl and cis-Ru(bpy)_2·Cl2·2H_2O. They are characterized with IR, element analysis, 1H-NMR, UV-Vis, emission spectra and X-ray diffraction. The UV-Vis spectra of Ru(II) complexes were collected in acetonitrile. The complexes with nitro and bromine atoms show the strongest and the poorest absorption respectively, while the MLCT bands at about 450 nm. Excitated at 450 nm, Ru(II) complexes sent emission at about 610 nm. The trimethylsilyl -substituented complex shows the strongest emission intensity, the weekest emission intensity for the nitro-substituented complex. The investigation of electrochemical behavior showed that these four Ru(II) complexes are irreversible in acetonitrile with LiCl·H_2O as the supporting electrolyte. We have also acheived single crystal materials of [Ru(bpy)_2(4,4′-dibromo-2,2′- bpy)]~(2+)·2(PF6-) and [Ru(bpy)_2(4,4-dimethoxy-2,2′-bpy)]~(2+)·2(PF6-). Some information of structure is shown in detail.
引文
[1]大木道则,金岡祐一,吉田善一.含氮有机化合物概论.安守忠译. [M]北京:科学出版社, 1983. 1-8
    [2] Maestri M, Armaroli N, Balzani V, et al. Complexes of the ruthenium(II)-2,2:6',2''- terpyridine family. effect of electron-accepting and -donating substituents on the photophysical and electrochemical properties. Inorg. Chem., 1995, 34: 2759-2767
    [3] Hammarstron L, Barigelletti F, Flamigni L, et al. A study on delocalization of MLCT excited states by rigid bridging ligands in homometallic dinuclear complexes of ruthenium(II). J. Phys. Chem. A., 1997, 101: 9061-9069
    [4] Albano G B V, Constable E C. Photoinduced processes in 4'-(9-anthryl)-2,2:6',2''- terpyridine, its protonated forms and Zn(II), Ru(II) and Os(II) complexes. Inorg. Chem. Acta, 1998, 277: 225-231
    [5] Mutai T, Cheon J, Arita S, et al. Phenyl-substituted 2,2:6',2''-terpyridine as a new series of fluorescent compounds-their photophysical properttes and fluorescence tuning. J. Chem. Soc. Perkin Trans., 2001, 2: 1045-1050
    [6] Armaroli N, Cola L D, Balzani V, et al. Absorption and luminescence properties of 1,10-phenanthroline, 2,9-diphenyl-1,10-phenanthroline, 2,9-dianisyl-1,10-phenanthroline and their protonated forms in dichloromethane solution. J. Chem. Soc. Faraday Trans., 1992, 88: 553-556
    [7] Joshi H S, Jamshidi R. Conjugated 1,10-Phenanthrolines as Tunable Fluorophores. Angew. Chem. Int. Ed, 1999, 38: 2721-2725
    [8] Olson E J C, Hu D. Tricyclo-DNA: A Phosphodiester-Backbone Based DNA Analog Exhibiting Strong Complementary Base-Pairing Properties. J. Am. Chem. Soc., 1997, 119: 11458-11459
    [9] Miller M T, Gantzel P K, Karpishin T B. Structures of the Copper(I) and Copper(II) Complexes of 2,9-Diphenyl-1,10-phenanthroline: Implications for Excited-State Structural Distortion. Inorg. Chem., 1998, 37: 2285-2290
    [10] Borgarello E, Kiwi J. Photochemical cleavage of water by photocatalysis. Nature, 1981, 289: 158-160
    [11] Nazeerudin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarhoxylate) ruthenimn(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc., 1993, 115(14): 6382-6390
    [12] Wang P, Zakeemddin S M, Moser J E, et al. Stable new sensitizer with improved light Harvesting for nanocrysmlline dye-sensitized solar cells. Adv. Mater., 2004, 16: 1806- 1811
    [13] Klein C, Nazeeruddin M K, Liska P, et al. Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Inorg. Chem., 2005, 44(2): 178-180
    [14] Wang P, Klein C, et al. A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells. J. Am. Chem. Soc., 2005, 127(3): 808-809
    [15] Lee J K, Handy E S. Thin film light emitting devices from an electroluminescent ruthenium complex. Appl Phys Lett., 1996, 699(12): 1686-1688
    [16] Handy E S. Electroluminescence from triplet metal-ligand charge-transfer excited state oftransition metal complexes. J. Am. Chem. Soc., 1999, 121: 3525-3528
    [17] Rudmann H. High-efficiency light-emitting devices based on derivatives of the tris(2,2'-bipyridyl)ruthenium(II)complex. J. Am. Chem. Soc., 2002, 124: 4918-4921
    [18] Stefan B, Jason A B, George G M, et al. Electroluminescence in Ruthenium(II) Complexes. J. Am. Chem. Soc., 2002, 124: 13624-13628
    [19] Jiang X Z, Brenden C. Red electrophosphorescence from osmium complexes. Appl. Phys. Lett, 2002, 80(5): 713-715
    [20] Jiang X Z, Brenden C. Red-emitting electroluminescent devices based on osmium- complexes-doped blend of poly(vinylnaphthalene) and 1,3,4- oxadiazole derivative. Appl. Phys. Lett., 2002, 81: 3125-3127
    [21] Bernhard S, Gao X C, Malliaras G G, et al. Efficient Electroluminescent Devices Based on a Chelated Osrnium(II)Complex. Adv. Mater., 2002, 14: 433-436
    [22] Kido J, Nagai K, Ohashie Y. Eleelroluminescenee in a Terbium Complex. Chem. Lett., 1990, 19(4): 657-660
    [23] Kido J, Nagai K, Okamoto Y. Electrohuniuescence from Polysilane Film Doped with Eunopiurn Complex. Chem. Lett., 1991, 20(7): 1267-1269
    [24] Beiju S, Ambili Raj D B, Reddy M L P, et al. Synthesis, Crystal Structure, andLuminescent Properties of Novel Eu~(3+) Heterocyclic p-Diketonate Complexes with Bidentate Nitrogen Donors. Inorg. Chem., 2006, 45: 1065-1069
    [25] Claudio P, Fabio M, Riccardo P, et al. Syntheses, spectroscopic characterization and X-ray structural studies of lanthanide complexes with adamantly substituted 4-acylpyrazol-5-one. Inorganica Chimica Acta, 2006, 359: 4063-4070
    [26] Westerlund F, Norden B. Meso Stereoisomer as a Probe of Enantioselective Threading Intercalation of Semirigid Ruthenium Complex [μ-(11,11'-bidppz)(phen)4 Ru2]4+. J. Phys. Chem., 2003, 107: 11784-11793
    [27] David L C, Daniel H H, Edgardo J M, et al. A New Class of DNA Metallobinders Showing Spectator Ligand Size Selectivity: Binding of Ligand-Bridged Bimetallic Complexes of Ru(II) to Calf Thymus DNA. J. Am. Chem. Soc., 1993, 115: 6424-6425
    [28] Stemp E D A, Arkin M R, J Barton K. Oxidation of Guanine in DNA by Ru(phen)2 (dppz)3+ Using the Flash-Quench Technique. J. Am. Chem. Soc., 1997, 119: 2921-2925
    [29] Ossipov D, Pradeepkumar P I, Holmer M, et al. Synthesis of [Ru(phen)2dppz]~(2+)-Tethered Oligo-DNA and Studies on the Metallointercalation Mode into the DNA Duplex. J. Am. Chem. Soc., 2001, 123: 3551-3562
    [30] Lincoln P, Anders B, Bengt N. Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(II) Trischelates Probed by Linear Dichroism: [Ru(phen)2DPPZ]~(2+) and [Ru(phen)2BDPPZ]~(2+). J. Am. Chem. Soc., 1996, 118: 2644-2653
    [31] Bjorn O, Lincoln P, Bengt N. Enantioselective DNA Threading Dynamics by Phenazine- Linked [Ru(phen)2dppz]~(2+) Dimers. J. Am. Chem. Soc., 2001, 123: 3630-3637
    [32] O'Regan B, Michael G. A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature, 1991, 353: 737-740
    [33] Alan E F, Jean C C, Jean P S, et al. Molecular“Light Switch”for DNA: Ru(bpy)2(dppz)~(2+). J. Am. Chem. Soc., 1990, 112: 4960-4962
    [34] Catharina H, Lincoln P. DNA Binding ofΔ- andΛ-[Ru(phen)2dppz]~(2+). J. Am. Chem. Soc., 1993, 115: 3448-3454
    [35] Liu Y, Abdellatif C, Natalya N D, et al. Chemical Control of the DNA Light Switch: Cycling the Switch ON and OFF. J. Am. Chem. Soc., 2005, 127: 10796-10797
    [36] Angel A M, Cindy A P, Joanne D, et al. Inorganic-Organic Hybrid Luminescent Binary Probe for DNA Detection Based on Spin-Forbidden Resonance Energy Transfer. J. Am.Chem. Soc., 2007, 129: 8680-8681
    [37] Cendrine P, Jean P L, Marc B, et al. Long-Range Electronic Coupling in Bis(cyclometalated) Ruthenium Complexes. J. Am. Chem. Soc., 1998, 120: 3717-3725
    [38] Sandrine F, Christophe C, Jean P L. Molecular Wires Built from Binuclear Cyclometalated Complexes. J. Am. Chem. Soc., 2003, 125: 5880-5888
    [39] Anne C R, Jean P L. Intervalence Electron Transfer in Pentaammineruthenium Complexes of Dipyridylpolyenes, Dipyridylthiophene, and Dipyridylfuran. Inorg. Chem., 1994, 33: 1325-1329
    [40] Schwab P F H, Levin M D, Josef M. Molecular Rods. 1. Simple Axial Rods. Chem. Rev., 1999, 99: 1863-1933
    [41] Baitalik S, Wang X Y, Schmehl R H. A Trimetallic Mixed Ru(II)/Fe(II) Terpyridyl Complex with A Long-Lived Excited State in Solution at Room Temperature. J. Am. Chem. Soc., 2004, 126: 16304-16305
    [42] Steve W, Nunzio S, Arianna B, et al. Rodlike Bimetallic Ruthenium and Osmium Complexes Bridged by Phenylene Spacers. Synthesis, Electrochemistry, and Photophysics. Inorg. Chem., 2005, 44(13): 4706-4718
    [43] Anthony H, Muriel H, Pierre J, et al. Conformational Control of Intramolecular Electron Transfer in Calix[4]diquinones and Their Cationic Complexes. J. Am. Chem. Soc., 1999, 121: 14-27
    [44] Vincenzo B, Alberto J, Margherita V. Luminescent and Redox-Active Polynuclear Transition Metal Complexes. Chem. Rev. 1996, 96: 759-833
    [45] Joe O, Masayuki T, Takeshi I, et al. Redox-Responsive Molecular Switch for Intramolecular Energy Transfer. J. Am. Chem. Soc., 1997, 119: 7895-7896
    [46] Licheng S, Helena B, Roman D, et al. Binuclear Ruthenium-Manganese Complexes as Simple Artificial Models for Photosystem II in Green Plants. J. Am. Chem. Soc., 1997, 119: 6996-7004
    [47] Anthony H, Raymond Z. Making photoactive molecular-scale wires. Chem. Commun., 1996: 1707-1716
    [48]苏成勇,潘梅.配位超分子结构化学基础与进展. [M]北京:科学出版社, 2010. 1-13
    [49] Jesse L C R, Andrew R M. Hydrogen Sorption in Functionalized Metal-Organic Frameworks. J. Am. Chem. Soc., 2004, 126: 5666-5667
    [50] Li H L, Davis C E, Thomas L G, et al. Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn_3(BDC)_3·6CH_3OH(BDC=1,4-Benzenedicarboxylate). J. Am. Chem. Soc., 1998, 120: 2186-2187
    [51] Mohamed E, Kim J, Michael O K, et al. Cu_2[o-Br-C_6H_3 (CO_2)_2]_2(H_2O)2·(DMF)_8(H_2O)_2: A Framework Deliberately Designed To Have the NbO. Structure Type., 2002, 124(3): 276-277
    [52] Yaghi O M, Davis C E. Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)-Benzenetricarboxylate Network. J. Am. Chem. Soc. 1997, 119: 2861-2868
    [53] Yaghi O M, Li H L, Groy T L. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid. J. Am. Chem. Soc., 1996, 118: 9096-9101
    [54] Li H L, Eddaoudi M, Groy T L, et al. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC)(BDC=1,4- Benzenedicarboxylate). J. Am. Chem. Soc., 1998, 120: 8571-8572
    [55] Li H L, Eddaoudi M, Richardson D A, et al. Porous Germanates: Synthesis, Structure, and Inclusion Properties of Ge_7O_(14).5F_2·[(CH_3)2NH_2]_3(H_2O)_(0.86). J. Am. Chem. Soc., 1998, 120: 8567-8568
    [56] Dai J C, Wu X T, Fu Z Y, et al. Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)-Trimesate Coordination Polymers with Different Coordination Architectures. Inorganic Chemistry, 2002, 41(6): 1391-1396
    [57] Long D L, Blake A J, Champness N R, et al. Lanthanide co-ordination frameworks of 4,4'-bipyridine-N,N'-dioxide. Chem. Commun., 2000, 1369-1370
    [58] Dai Z, Chen X B, Shi Z, et al. Hydrothermal Syntheses and Crystal Structures of Complex-Linked Three- Dimensional Coordination Vanadium Selenites: M(4,4'-bipy) (H_2O) V_2Se_2O_(10)(M=Co,Ni). Inorg. Chem., 2003, 42(3): 908-912
    [59] Chen W, Wang J Y, Chen C, et al. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates. Inorg. Chem., 2003, 42(4): 944-946
    [60] Shi Z, Li G G, Zhang D, et al. A Vanadium(IV) Phosphite with a Pillared Layered Structure: Hydrothermal Synthesis and Characterization of (VO)_4(4,4'-bpy)_2(HPO_3)_4. Inorg. Chem., 2003, 42(7): 2357- 2361
    [61] Tong M L, Ye B H, Cai J W, et al. Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structures of [M(4,4'-bpy)_2(H_2O)_2](ClO_4)_2·(2,4'-bpy)_2·H_2O and [Cu(4,4'-bpy)_2 (H_2O)_2](ClO_4)_4·(4,4'-H_2Bpy)(M=CdII, ZnII and bpy=Bipyridine). Inorg. Chem., 1998, 37: 2645-2650
    [62] Fujita M, Kwon Y J, Washizu S, et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J. Am. Chem. Soc., 1994, 116: 1151-1152
    [63] Yaghi O M, Li H L, Groy T L. A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)2.5(H_2O)_2(ClO_4)_2·1.5(4,4'-bpy)·2H_2O. Inorg. Chem., 1997, 36: 4292-4293
    [64] Chen B L, Ockwig N W, Fronczek F R, et al. Transformation of a Metal-Organic Framework from the NbO to PtS Net. Inorg. Chem., 2005, 44(2): 181-183
    [65] Sabri C, Robert J D. Inorganic-organic hybrids derived from oxovanadium sulfate motifs: synthesis and characterization of [VIVO(μ_3-SO_4)(2,2'-bpy)]. Chem. Commun., 2001: 1930-1931
    [66] Susan L, Mehmet K. Novel 2-fold Interpenetrating Diamondoid Coordination Polymers: [Cu(3,3'-bipyridine)2]X(X = BF4-, PF6-). Inorg. Chem., 1997, 36: 6138-6140
    [67] Leonard R M, Subramanian S, Michael J Z. Interwoven Two- and Three-dimensional Coordination Polymers Through Self-assembly of CuI Cations with Linear Bidentate Ligands. J. Chem. Soc., Chem. Commun., 1994: 1325-1326
    [68] Lin Z E, Zhang J. Ga(2,2'-bipy)(HPO_4)(H_2PO_4): First Layered Inorganic-Organic Hybrid Gallium Phosphate with a Neutral Framework. Inorganic Chemistry, 2004, 43(2): 797-801
    [69] Eiji O. Rencent Japanese work on the chemistry of pyridine 1-oxide and relates compounds. J. Org. Chem., 1953,18: 534-551
    [70] Haginiwa. J. Chem. Abstr., 1966, 50: 3435-2440
    [71] Petra W, Georg C D, Eddy R M, et al. Ligand Effects in the Palladium-Catalyzed Reductive Carbonylation of Nitrobenzene. Organometallics., 1994, 13: 4856-4869
    [72] Craig J C, Purushothaman K K. J. Org. Chem., 1970, 35: 1721-1732
    [73] Tenud L F, Seibl S, Eschenmoser J A. Helu. Chim. Acta. , 1970, 53: 2059-2061
    [74] David W, Woodward R B. Studies of 2,2'-Bipyridyl N,N'-Dioxides. J. Org. Chem., 1983,48: 284-285
    [75] Konno H, Kobayashi A, Sakamoto K, et al. Synthesis and properties of [Ru(tpy)(4,4'-X2bpy) H]~+(tpy=2,2':6',2''-terpyridine,bpy=2,2'-bipyridine, X=H and MeO), and their reactions with CO2. Inorganica Chimica Acta, 2000, 299: 155–163
    [76] Shklover V, Nesper R, Zakeeruddin S M, et al. Crystal structure of tris (4,4'- dimethoxy-2,2'-bipyridine)iron(II)bis(hexafluorophosphate), solvate with N-methyl-2- pyrrolidone. Inorganica Chimica Acta, 1996, 247: 237-245
    [77] Xue W M , Chan C W, Su Z M, et al. Spectroscopic and Excited-State Properties of Luminescent Rhenium(I) N-Heterocyclic Carbene Complexes Containing Aromatic Diimine Ligands. Organometallics, 1998, 17: 1622-1630
    [78] Yuichiro H, Nobuko O K, Hideki S, et al. Simultaneous Tuning of Activity and Water Solubility of Complex Catalysts by Acid-Base Equilibrium of Ligands for Conversion of Carbon Dioxide. Organometallics, 2007, 26: 702-712
    [79] Marc D W, David J B, Richard A A. Coordination Complexes of Decamethylytterbocene with 4,4'-Disubstituted Bipyridines: An Experimental Study of Spin Coupling in Lanthanide Complexes. Organometallics, 2006, 25: 3228-3237
    [80] Anna B, Giovanna B, Alessandra C, et al. Synthesis and Luminescent Properties of Novel Lanthanide(III)β-Diketone Complexes with Nitrogen p,p'-Disubstituted Aromatic Ligands. Inorg.Chem., 2005, 44(6): 1818-1825
    [81] Zhang D, Eric J D, Edward L C. Syntheses, Characterizations, and Properties of Electronically Perturbed 1,1'-Dimethyl-2,2'-bipyridinium Tetrafluoroborates. J. Org. Chem., 2006, 71: 315-319
    [82] Zhang D, Joo P T, Chen L, et al. Clennan. Experimental and Computational Studies of Nuclear Substituted 1,1'-Dimethyl-2,2'-Bipyridinium Tetrafluoroborates. J. Phys. Chem., 2007, 111: 13567-13574
    [83] Henri A, Robert B. Synthesis and characterization of halo, cyanato, thiocyanato and selenocyanato molybdenum(VI) dioxo and dioxo-μ-oxo complexes. Transition Metal Chemistry, 2006, 31: 681-689
    [84] Wehman P, Dol G C, Moorman E R, et al. Ligand Effects in the Palladium-Catalyzed Reductive Carbonylation of Nitrobenzene. Organometallics, 1994, 13: 4856-4869
    [85] Purrello R, Gurrieri S, Lauceri R. Surface electrochemistry and electrocatalytic activity ofion detection. Coord. Chem. Rev., 1999, 190: 683-706
    [86] Wenkert D, Woodward R B. The Synthesis of Some 4,4'-Disubstituted 2,2'-Bipyridines. J. Org. Chem., 1983, 80: 2745-2785
    [87]杜作栋,陈剑华,贝小来,周重光.有机硅化学. [M]北京:高等教育出版社, 1990. 1-5
    [88] Sabine C, Philippe G, Yves F. First Regioselective C-2 Lithiation of 3- and 4-Chloropyridines. Eur. J. Org. Chem., 2001: 603-606
    [89] Elena M, Carla B, Fabrice C, et al. Converting Core Compounds into Building Blocks: The Concept of Regiochemically Exhaustive Functionalization. Eur. J. Org. Chem., 2005: 2116-2123
    [90] Daniel L C, Jason M N, Ibrahim D B. Regioselective lithium-halogen exchange and palladium-catalyzed cross-coupling reactions of 2,4-dihaloquinolines. Tetrahedron Letters, 2005, 46: 6697-6699
    [91] Wang D X, Niua Y Z, Wang Y K, et al. Tetrahedral silicon-centered imidazolyl derivatives: Promising candidates for OLEDs and fluorescence response of Ag(I)ion. Journal of Organometallic Chem., 2010, 695: 2329-2337
    [92] Sakurai H, Okada A, Kira M, et al. Trimethylsilyl sodium. A new preparation and some reactions involving a facile electron transfer from trimethylsilyl anion to naphthalene. Tetrahedron Letters, 1971, 12(19): 1511-1514
    [93] Sakurai H, Okada A. Silylanions: II. A new Si-Si/Si-Si redistribution of hexaalkyldisilanes catalyzed by silyl anions. Journal of Organometallic Chemistry, 1972, 35(1): C13-C14
    [94] Sakurai H, Nishi W, Keni C, et al. New method of preparing silyl substituted carbanions by base catalyzed cleavage of carbon silicon bonds.Application to synthesis of olefins. Tetrahedron Letters, 1973, 42: 4193-4196
    [95] Sakurai H, Ogi K. Electron spin resonance study of a bridgehead silyl radical. Chemistry Letters, 1974, 8: 891-892
    [96] Sakurai H, Kondo F. Chemistry of organosilicon compounds. LXXX. Useful modifications in the preparation of trimethylsilylsodium trimethylsilylpotassium. Journal of Organometallic Chemistry, 1975, 92: C46-C48
    [97] Sakurai H, Uchida T. Chemistry of organosilicon compounds. LXXXV. An electron spin resonance study on photo-induced radicals of (p- nitrobenzyl) trimethylsilane and relatednitrobenzene derivatives. Journal of Organometallic Chemistry, 1976, 107(1): 15-22
    [98] Sakurai H, Nakadaira Y. Chemistry of organosilicon compounds. CXXIX. Evidence for formation of free silyl radicals in the photolysis of aryldisilanes. Journal of Organometallic Chemistry, 1980, 184(2): C36-C40
    [99] Al P, Roberto A R. A Novel Type of Nucleophilic Substitution Reactions on Nonactivated Aromatic Compounds and Benzene Itself with Trimethylsiliconide Anions. Org. Lett., 2001, 3(8): 1197-1200
    [100]陈寿山,张正之,王序昆等.金属有机化合物合成手册. [M]北京:化学工业出版社, 1986. 94-96
    [101]杨天林主编.配位化学导论. [M]银川:宁夏人民出版社, 2007. 212-229
    [102] Sullivan B P, Salmon D J, Meyer T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium. Inorg. Chem., 1978, 17(12): 3334-3341
    [103]章慧.配位化学-原理与应用. [M]北京:化学工业出版社, 2009. 203-213
    [104]邹红海,伊冬梅主编.仪器分析. [M]银川:宁夏人民出版社, 2007. 316-318
    [105]金斗满,朱文祥主编.配位化学研究方法. [M]北京:科学出版社, 1996. 423-425
    [106] Yang X J, Janiak C, Peter K. Heteroptic 5,5’-disubstituted-2,2’-bipyridine complexes of ruthenium(II): spectral, electrochemical, and sturcutral investigations. Inorg. Chim. Acta, 2001, 318: 103-116
    [107]金斗满,朱文祥主编.配位化学研究方法. [M]北京:科学出版社, 1996. 327-337
    [108] Vivian W-W Y, Vicky W-M L, Cheung K-K. Synthesis, Photophysics, Electrochemistry, and Reactivity of Ruthenium(II) Polypyridine Complexes with Organoplatinum (II) Moieties. Crystal Structure of [Ru(bpy)2(μ-2,3-dpp)PdCl2]2+. Organometallics, 1997, 16: 2833-2841
    [109] Biner M, Burgi H B, Ludi A, et al. Crystal and Molecular Structures of [Ru(bpy)3] (PF6)2. J. Am. Chem. Soc., 1992, 114: 5197-5203
    [110] Benjamin J C, Thomas J M, White P S. Control of Axial Ligand Substitution in trans-Bis(2,2’-bipyridine)ruthenium(II) Complexes. Crystal and Molecular Structure of trans-(4-Ethylpyridine)(dimethylsulfoxide)-bis(2,2’-bipyridine)ruthenium(II) Hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2. Inorg. Chem., 1993, 32: 4012-4020

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700