氮化镓异质结电子输运特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三族氮化物半导体材料因其诸多优点,成为了近年来研究的热点,其中GaN基高电子迁移率晶体管(HEMT)具有广泛的应用前景。本论文的主要研究内容是GaN-HEMT中的基本结构--氮化镓异质结--中二维电子气的子带能级、面密度、分布、以及其被散射所限制的迁移率的情况。
     首先使用自洽求解泊松方程和薛定谔方程的方法分析计算了AlGaN/GaN异质结中二维电子气的子带能带和电子分布情况,计算中使用了全新的利用肖特基势垒高度确定费米能级的方法。
     然后介绍了较为重要的散射机制如界面粗糙散射、合金无序散射、极性光学声子散射的处理方法,并利用电子平均热动能对温度的依赖关系,得到了温度对缺陷散射强度的影响。
     最后提出了两种全新的散射机制,表面粗糙散射和界面失配位错散射,对其做了详尽的说明和计算,结果表明它们对电子的散射都有显著的作用。所使用的处理方法可以适用于氮化镓异质结以外的其他的异质结体系。
     本论文的工作对器件设计和相应的实验工作有很好的指导意义。
Group III nitride semiconductor materials have received much attention, and become a research hot spot in recent years. GaN-based high electron mobility transistors (HEMT) have broad potential application prospects. The main contents of this thesis is to investigate the sub-band energy levels, the density, the distribution, and the mobility of two dimensional electron gas (2DEG) in group III nitride heterojunctions, which is from basic structure of GaN-HEMTs.
     First of all, by solving the Poisson equation and Schrodinger equation self-consistently, we obtain the sub-band energy levels and electron distribution of2DEG. Schottky barrier height was using to determine the Fermi energy level, which is a new method for that.
     In the following chapter, several important scattering mechanisms, such as interface roughness scattering, alloy disorder scattering, polar optical phonon scattering are introduced. The dependence of defect scattering rate to temperature was studied by taking the dependence of the electron thermal kinetic energy on temperature into account.
     Finally, two new scattering mechanisms, surface roughness scattering and interfacial misfit dislocation scattering, are presented with detailed description and calculation. Results show that they play significant roles to scatter the electron. The used method of treatment can be applied not only to GaN heterojunction but also to other type heterojunction systems.
     Work of this thesis is a good guidance for application.
引文
[1]S. Strite and H. Morkor, GaN, A1N, and InN:A review, J. Vac. Sci. Technol. B,1992,10, 1237-1266.
    [2]O. Ambacher, Growth and application of group Ⅲ-nitride, J. Phys. D:Appl. Phys.,1998,31, 2653-2710.
    [3]U. K. Mishra, P. Parikh, Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proceedings of the IEEE,2002,90,1022-1031.
    [4]L. F. Eastman, U. K. Mishra, The toughest transistor yet [GaN transistors], IEEE Spectrum, 2002,39,28-33.
    [5]Yi Zhou, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams, Minseo Park, N. Mark Williams, Andrew Hanser, High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate, Solid-State Electrons,2006,50,1744.
    [6]E. O. Johnson, Physical limitations on frequency and power parameters of transistors, RCA Rev.,1963,26,163.
    [7]A. J. Baliga, Power semiconductor device figure of merit for high frequency application, IEEE Electron Device Lett,1989,10,155.
    [8]S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode:the complete story, New York: Springer,2000.
    [9]S. Nakamura, T. Mukai, M. Senoh, High-Power GaN P-N Junction Blue-Light-Emitting Diodes, Jpn. J. Appl. Phys,1991,30, L1998.
    [10]S. J. Pearton, F. Ren, A. P. Zhang, K. P. Lee, Fabrication and performance of GaN electronic devices, Mat. Sci. Eng. R,2000,30,55-212.
    [11]Y. F. Wu, A. Saxler, M. Moore, et al,30-W/mm GaN HEMTs by field plate optimization, Electron Device Letters,2004,25,117-119.
    [12]M. Higashiwaki, T. Mimura, T. Matsui, AlGaN/GaN heterostructure field-effect transistors on 4H-SiC substrates with current-gain cutoff frequency of 190GHz, Appl. Phys. Express,2008, 1,021103.
    [13]张金凤,郝跃,GaN高电子迁移率晶体管的研究进展,电子电力技术,2008,42,63-66.
    [14]Chen Chi, Hao Yue, Feng Hui, et al., An X-band four-way combined GaN solid-state power amplifier, J. Semicond.,2010,31,015003.
    [15]B. H. Chu, B. S. Kang, F. Ren, et al., Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on gate region, Appl. Phys. Lett., 2008,93,042114.
    [16]Yu-Lin Wang, B. H. Chu, K. H. Chen, et al., Botulinum toxin detection using AlGaN/GaN high electron mobility, Appl. Phys. Lett.,2008,93,262101.
    [17]Yu-Lin Wang, B. H. Chu, K. H. Chen, et al., Fast detection of a protozoan pathogen perkinsus marinus using AlGaN/GaN high electron mobility transistors, Appl. Phys. Lett.,2009,94, 243901.
    [18]S. C. Hung, B. H. Chou, C. Y. Chang, et al., Minipressure sensor using AlGaN/GaN high electron mobility transistors, Appl. Phys. Lett.,2009,94,043903.
    [19]E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes and P. Gilbart. Ⅲ nitride and UV detection. J. Phys:Condens. Matter,2001,13,7115-7137.
    [20]C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer, Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave measurement, Appl. Phys. Lett.,1998,72,2400-2402.
    [21]Y. Nanishi, Present status and challenges of AlGaN/GaN HFETs, in 7th International Conference on Solid-State and Integrated Circuits Technology Proceeding,2004.
    [22]R. Juza, H. Hahn, Uber die Kristallstrukturen von Cu3N, GaN und InN metallamide and metallnitride, Z. Anorg. Allgem. Chem,1938,239,282-287.
    [23]S. C. Jain, M. Willander, J. Narayan, et al., Ⅲ-nitrides:Growth, characterization, and properties, J. Appl. Phys.,2000,87,965-1006.
    [24]W. J. Fan, M. F. Li, T. C. Chong, et al., Electronic properties of zinc-blende GaN, A1N, and their alloys Ga1-xAlxN, J. Appl. Phys.,1996,79,188-194.
    [25]Z. W. Chen, M. Y. Lv, L. X. Li, et al., Theoretical investigations on electronic and optical properties of rock-salt gallium nitride, Thin Solid Films,2006,515,2433-2436.
    [26]O. Ambacher, J. Smart, J. R. Shealy, et al, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga- face AlGaN/GaN heterostructures, J. Appl. Phys.,1999,85,3222-3233.
    [27]W. C. Johnson, J. B. Parsons, et al., Eptixial growth and structure characterization of single GaN, J. Phys. Chem.,1932,36,2561.
    [28]R. Juza, H. Hahn, Uber die Kristallstrukturen von Cu3N, GaN und InN Metallamide und Metallnitride, Zeitschr. Anorgan. Allgem. Chem.,1938,239,282.
    [29]E. Tiede, M. Thimann, and K. Sensse, Uber phosphorescenzfahiges, durch Silicium aktiviertes Aluminiumnitrid, Chem. Berichte,1928,61,1568.
    [30]V. A. Sukhoveyev, V. A. Ivantsov, I. P. Nikitina, GaN 20 mm diameter ingots grown from melt-solution by seeded technique, MRS Internet J Nitride Semicond Res,2000, W6.
    [31]D G Zhao, S J Xu, M H Xie, and S Y Tong, Stress and its effect on optical properties of GaN epilayers grown on Si(111),6H-SiC(0001), and c-plane sapphire, Appl. Phys. Lett.,2003,83, 677.
    [32]S. Guha and N. A. Bojarczuk, Ultraviolet and violet GaN light emitting diodes on silicon, Appl. Phys. Lett.,1998,72,415-417.
    [33]C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, Growth of InGaN/GaN mulitiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy, Appl. Phys. Lett.,1999,75,1494-1496.
    [34]J. W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. A. Khan, J. E. Van Nostrand, and R. Gaska, Selectiv area deposited blue GaN-InGaN multiple-quantum well light emitting diodes over silicon substrates, Appl. Phys. Lett.,2000,76,273-275.
    [35]A. Dadgara, M. Poschenriedera, J. Blasinga, O. Contrerasb, MOVPE growth of GaN on Si(111) substrates, J. Crystal Growth,2003,248,556-562.
    [36]A. Mills, Expanding horizons for nitride devices and materials, III-Vs Review,2006.
    [37]T. Ishii, Y. Tazoh, and S. Miyazawa, Single-crystal growth of LiGaO2 for a substrate of GaN thin films, J. Crystal Growth,1998,186,409-419.
    [38]H. Ohsato, T. Kato, S. Koketsu, R. D. Saxena, and T. Okuda, Epitaxial orientation and a growth model of (0001) GaN thin film on (111) spinel substrate, J. Crystal Growth,1998, 189/190,202-207.
    [39]F. Hamdani, M. Yeadon, David J. Smith, H. Tang, W. Kim, A. Salvador, A. E. Botchkarev, J. M. Gibson, A. Y. Polyakov, M. Skowronski, and H. Morkor, Microstructure and optical properties of epitaxial GaN on ZnO (0001) growth by reactive molecular beam epitaxy, J. Appl. Phys.,1998,83,983-990.
    [40]Sangbeom Kang, William A. Doolittle, April S. Brown, Stuart R. Stock, Electrical and structural characterization of AlxGa1-xN/GaN heterostructures grown on LiGaO2 substrates, Appl. Phys. Lett.,1999,74,3380-3382.
    [41]L. K. Li, B. Turk, W. I. Wang, S. Syed, D. Simonian, H. L. Stormer, High electron mobility AlGaN/GaN heterostructures grown on sapphire substrates by molecular-beam epitaxy, Appl. Phys. Lett.,2000,76,742-744.
    [42]X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng, J. M. Li, Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates, Solid-State Electronics,2005,49,1387-1390.
    [43]H. P. Maruska and J. J. Tietjen, The preparation and properties of Vapor-deposited single-crystal-line GaN, Appl. Phys. Lett.,1969,15,327-329.
    [44]Wei Zhang and B. K. Meyer, Growth of GaN quasi-substrates by hydride vapor phase epitaxy, Phys. Stat. Sol. (c),2003,0,1571-1582.
    [45]H. Amano, N. Sawaki, and I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of high quality GaN film using A1N buffer layer, Appl. Phys. Lett.,1986,48,353-355.
    [46]尹志军,氮化镓材料的厚膜生长研究[硕士学位论文],中国科学院合肥物质科学研究院,2007.
    [47]S. Hiyamizu, T. Mimura, T. Fuiji, et al., High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface, Appl. Phys. Lett.,1980,37,805-807.
    [48]T. Mimura, S. Hiyamizu, T. Fujii, et al., A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions, Jpn. J. Appl. Phys.,1980,19, L225-L227.
    [49]O. Ambacher, B. Foutz, J. Smart, et al., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN geterostructures, J. Appl. Phys.,2000,87,334-344.
    [50]M. Asif Khan, A. Bhattarai, J. N. Kuznia, et al., High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction, Appl. Phys. Lett.,1993,63,1214-1215.
    [51]P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Von Hove, and J. Redwing, Piezoelectric charge densities in AlGaN/GaNHFEMTs, Electron. Lett.,1997,33,1230-1231.
    [52]L. Hsu and W. Walukiewicz, Effects of piezoelectric field on defect formation, charge transfer, and electron transport at GaN/AlxGa1-xN interfaces, Appl. Phys. Lett.,1998,73,339-341.
    [53]J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Polarization effects, surface states, and the source electrons in AlGaN/GaN heterostructure field effect transistors, Appl. Phys. Lett.,2000,77,250-252.
    [54]彭英才,赵新为,傅广生,低维半导体物理,国防工业出版社,2011,80-81.
    [55]F. F. Fang, W. E. Howard, Negative field-effect mobility on (100) Si surface, Phys. Rev. Lett., 1966,16,797-799.
    [56]刘红侠,卢风铭,王勇淮,宋大建,武毅,AlGaN/GaN异质结中二维电子气多子带解析建模,西安电子科技大学学报(自然科学版),2011,38,147-151.
    [57]B. K. Ridley, B. E. Foutz, L. F. Eastman, Mobility of electrons in bulk GaN and AlxGa1-xN/GaN heterostructures, Physical Review B,2000,61,16862.
    [58]张金凤,郝跃,张进城,倪金玉,变Al组分AlGaN/GaN结构中的二维电子气迁移率,中国科学E辑,2008,38,949-958.
    [59]A. Asgari, S. Babanejad, and L. Faraone, Electron mobility, Hall scattering factor, and sheet conductivity in AlGaN/AlN/GaN heterostructures, J. Appl. Phys.,2011,110,113713
    [60]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. Denbaars, J. S. Speck, U. K. Mishra, Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy, J. Appl. Phys.,1999,86,4520-4526.
    [61]C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, K. Maranowski, J. P. Ibbetson, S. Keller, P. M. Metroff, S. P. DenBaars, U. K. Mishra, J. S. Speck, High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Lett.,1999,74,3528-3530.
    [62]R. Gaska, M. S. Shur, A. D. Bykhovski, A. O. Orlov, G. L. Snider, Electron mobility in modulation-doped AlGaN-GaN heterostructures, Appl. Phys. Lett.,1999,74,287-289.
    [63]S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, Y. F. Wu, Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures, J. Appl. Phys.,1999,86,5850-5857.
    [64]H. Brooks, C. Herring, Scattering by ionized impurities in semiconductors, Phys. Rev.,1951, 83,879.
    [65]F. Stern, Two-subband screening and transport in (001)silicon inversion layers, Surf. Sci., 1978,73,197.
    [66]F. Stern, W. E. Howard, Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit, Phys. Rev.,1967,163,816.
    [67]P. J. Price, Two-dimensional electron transport in semiconductor layers Ⅱ:Screening, J. Vac. Sci. Technol.,1981,19,599.
    [68]G. Bastard, Energy levels and alloy scattering in InP-In(Ga)As heterojunctions, Appl. Phys. Lett.,1983,43,591.
    [69]D. K. Ferry, S. M. Goodnick, J. Bird, Transport in Nanostracture (Second Edition), Cambridge Univercity Press,94-98.
    [70]D. Jena, A. C. Gossard, U. K. Mishra, Dislocation scattering in a two-dimensional electron gas, Appl. Phys. Lett.,2000,76,1707.
    [71]D. Jena, Y. Smorchkova, C. Elsass, A. C. Gossard, U. K. Mishra, Electron transport and intrinsic mobility Limits in two-dimensional electron gases of Ⅲ-Ⅴ nitride heterostructures, arXiv:cond-mat/0103461 [cond-mat.mtrl-sci].
    [72]Xiaoqing Xu, Xianglin Liu, Xiuxun Han, Hairong Yuan, Jun Wang, Yan Guo, Huaping Song, Gaolin Zheng, Hongyuan Wei, Shaoyan Yang, Qinsheng Zhu, and Zhanguo Wang, Dislocation scattering in AlxGa1-xN/GaN heterostructures, Appl. Phys. Lett.,2008,93,182111.
    [73]Xiaoqing Xu, Xianglin Liu, Shaoyan Yang, Jianming Liu, Hongyuan Wei, Qinsheng Zhu, and Zhanguo Wang, Dislocation core effect scattering in a quasitriangle potential well, Appl. Phys. Lett.,2009,94,112102.
    [74]M. A. Stroscio, M. Dutta, Phonons in nanostructures, Cambridge University Press,2001.
    [75]Y. Qu, S. L. Ban, Electron mobility in wurtzite nitride quantum wells limited by optical-phonons and its pressure effect, Eur. Phys. J. B,2009,69,321-329.
    [76]屈媛,班士良,纤锌矿氮化物量子阱中光学声子模的三元混晶效应,物理学报,2010,7,4863-4873.
    [77]L. S. Yu, D. J. Qiao, Q. J. Xing, S. S. Lau, K. S. Boutros, Appl. Phys. Lett.,1998,73,238.
    [78]G. Wannier, Phys. Rev.,1937,52,91.
    [79]J. P. Ibbetson, P., T. Fini, K. D. Ness; S. P. Denbaars, J. S. Speck, and U. K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostruction field effect transistors, Appl. Phys. Lett.,2000,77,250-252.
    [80]文军,超晶格量子阱中束缚态的能级结构,徐州师范大学学报(自然科学版),2011,29,62-64.
    [81]Tsuneya Ando, Alan B. Fowler, and Frank Stern, Electronic properties of two-dimensional systems, Reviews of Modern Physics,1982,54,466-468.
    [82]白鲜萍,班士良,AlxGa1-xAs/GaAs异质结中电子迁移率的压力效应,半导体学报,2005,26,2422-2427.
    [83]冯振宇,班士良,压力下应变纤锌矿有限厚势垒异质结中杂质态的结合能,内蒙古大学学报(自然科学版),2010,41,509-516.
    [84]K. Hirakawa, H. Sakaki, Mobility of the two-dimensional electron gas at selectively doped n-type AlGaAs/GaAs heterojunction with controlled electron concentrations, Phys. Rev. B, 1986,33,8291.
    [85]D Delagebeaudeuf, N T Linh, Metal-(n) AlGaAs-GaAs Two-Dimensional Electron Gas FET, IEEE Trans Electron Devices,1982,29,955-960.
    [86]T J Drummond, H Morkoc, K Lee, et al., Model for Modulation Doped Field Effect Transistor, IEEE Electron Device Letters,1982,3,338-341.
    [87]K Lee, M S Shur, T J Drummond, et al., Current-Voltage and Capacitance-Voltage Characteristics of Modulation-Doped Field-Effect Transistors, IEEE Trans Electron Devices, 1983,30,207-212.
    [88]A J Shey, W H Ku, On the charge control of the two-dimensional electron gas for analytic modeling of HEMTs, Electron Device Letters,1988,9,624-626.
    [89]A J Shey, W H Ku, Analytical current-voltage characteristics model for high electron mobility transistors based on nonlinear charge-control formulation, IEEE Trans Electron Devices,1989, 36,2299-2306.
    [90]K Y Tong, Accurate charge control model for MODFET including subthreshold region, Electronics Letters,1991,27,668-669.
    [91]N DasGupta, A DasGupta, Analytical expression for sheet carrier concentration vs gate voltage for HEMT modeling, Solid-State Electronics,1993,36,201-203.
    [92]Rashmi, A. Kranti, S. Haldar, et al., An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs, Solid-State Electronics,2002,46,621-630.
    [93]D. K. Ferry, S. M. Goodnick, J. Bird, Transport in Nanostracture (Second Edition), Cambridge Univercity Press,80-93.
    [94]Y F Zhang, Y Smorchkova, C Elsass, et al., Polarization effects and transport in AlGaN/GaN system, J. Vac. Sci. Tech B,2000,18,2322-2327.
    [95]D Jena, I P Smorchkova, A C Gossard, et al., Electron transport in Ⅲ-Ⅴ nitride two-dimensional electron gases, Phys. Stat. Sol. (b),2001,228,617-619.
    [96]R Oberhuber, G Zandler, P Vogl, Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors, Appl. Phys. Lett.,1998,73,818-820.
    [97]J M Li, J J Wu, X X Han, Y W Lu, X L Liu, Q S Zhu, and Z G Wang, Semicond. Sci. Tech, 2005,20,1207.
    [98]B. L. Gelmont, M. Shur, and M. Stroscio, Polar opticalphonon scattering in three and two dimensional electron gases, J. Appl. Phys.,1995,77,657.
    [99]M. E. Levinshtein, S. L Rumyantsev, M. S. Shur, Properties of advanced semiconductor materials GaN, A1N, InN, BN, SiC, SiGe, New York:John Wiley & Sons Inc,2001.
    [100]C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, Electrical Transport Properties of Single GaN and InN Nanowires, J. Electronic Materials, 2006,35,738.
    [101]J. W. Matthews and A. E. Blakeslee, Defects in epitaxial multilayers:I. Misfit dislocations, J. Crystal Growth,1974,27,118.
    [102]R. People and J. C. Bean, Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructure, Appl. Phys. Lett.,1985,47,322.
    [103]A. Fischer, H. Kuhne, and H. Richter, New Approach in Equilibrium Theory for Strained Layer Relaxation, Phys. Rev. Lett.,1994,73,2712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700