还原屏障控制重金属污染的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采矿废弃物中的硫化矿物在遇到空气和水后会氧化产生酸性矿山废水(Acid Mine Drainage, AMD)。酸性矿山废水的pH非常低,且其中含有大量的重金属和硫酸盐。酸性矿山废水对矿区周围环境的污染已经成为全世界采矿工业共同面临的严峻问题。
     目前,解决酸性矿山废水污染问题的方法主要包括两大类,一类是从源头上控制酸性矿山废水的产生;另一类是对已产生的酸性矿山废水进行生物或化学处理。从源头上控制酸性矿山废水的产生是现在解决酸性矿山废水污染问题的优先选择。顶部覆盖、加碱混合处置、喷洒灭菌剂抑制细菌活动等都是常用的酸性矿山废水源头控制方法。分选出产酸能力极强的采矿废弃物,并利用设置了完备衬垫系统的包封设施对它们进行填埋处置,是一种新的酸性矿山废水源头控制方法。现在,用于包封采矿废弃物的衬垫系统主要有压实粘土衬垫(Compacted Clay Liner, CCL)、土工合成粘土衬垫(Geosynthetic Clay Liner, GCL)和土工膜(Geomembrane, GM)。
     “还原屏障”是由兰州大学提出的针对采矿废弃物处置场开发的新型屏障系统。它是一种具有微生物活性、内部处于强烈还原状态的低渗透性屏障。它不仅可以通过极低的渗透系数来限制重金属污染物的迁移,还可以利用自身内部微生物呼吸作用所导致的强烈还原环境实现对重金属污染物的固定。本研究的目标是评价城市污水处理厂污泥作为还原屏障制作材料的可行性以及污泥还原屏障在采矿废弃物处置场底部使用的可靠性。
     在本研究中,通过批式吸附试验和厌氧微生物培养试验两种方法揭示了污泥对重金属的阻滞机制。批式吸附试验结果表明污泥对重金属具有较强的吸附能力,其对Zn2+和Cd2+的吸附量分别达到了13.62 mg·g-1和15.60 mg·g-1。厌氧微生物培养试验的结果表明,微生物呼吸作用可以将污泥悬液由氧化态驱动到强烈还原态,进而促使污泥悬液体系内硫酸盐还原反应发生,最终导致污泥悬液内重金属离子浓度降低。
     使用柔性壁渗透仪对污泥试样的渗透系数进行了测定。试验结果表明,污泥试样的渗透系数小于1.0×10-7 cm/s,达到了采矿废弃物处置场的防渗设计标准。污泥试样内的微生物活动会降低自身的渗透系数。
     通过渗透试验研究了污泥试样与酸性孔隙液之间的相容性。试验结果表明,在酸性孔隙液的渗透作用下,污泥试样的渗透系数会逐渐增大。
     本研究的结果表明,污泥是还原屏障合适的制作材料。污泥还原屏障的强烈还原状态有助于全面降低重金属的活动性,实现固定重金属的环境工程目标。在酸性孔隙液作用下,污泥还原屏障渗透系数有增大的趋势。因此,污泥还原屏障在用于AMD控制时,需要通过添加其它碱性物质来弥补其长期酸缓冲能力的不足。
Acid mine drainage (AMD) generated from the natural oxidation of mine wastes and rocks enriched in metals sulfide minerals. This waste water is characterized by a low pH and elevated concentration of heavy metals and sulfates, all of which have a detrimental effect on the ecosystems of mining districts. AMD from mine waste is a serious environmental problem associated with mining industry around the world.
     Strategies for mitigating the contamination resulted from AMD include source control and treatment of the contaminate water through chemical or biological methods. Prevention of the formation of AMD is generally a favorable option. Past prevention efforts generally include covering the mine wastes, co-disposal with alkaline material, inhibiting the growth of bacterial by spraying batericides, and so on. Segregating the most hazardous material and then disposal of them in a lined contained facility is an innovative technique to preclude the formation of AMD. Liner systems that have been widely used to contain mine waste include compacted clay liner (CCL), geosynthetic clay liner (GCL) and geomembrane (GM), and so on.
     Reduced liner (RL) is proposed by Lanzhou University, China as a new type containment system for mine wastes. It does not only have a low hydraulic conductivity as traditional hydraulic barrier but also posses strong reducing environment, where favor the formation of precipitation of metal sulfide. The objective of this study is to investigate the potential of municipal sewage sludge as construct material for RL and to assess the long-term integrity of the RL serving at mine waste dump site.
     Batch sorption test and anaerobic microbial incubation test were conducted to investigate the retardation mechanisms of heavy metals maybe occurred in sewage sludge suspensions. The results of batch sorption indicated that sewage sludge possessed strong adsorption capability for Zn2+ and Cd2+, which of 13.62 mg·g-1 and 15.60 mg·g-1, respectively. Anaerobic microbial incubation test results showed that microorganisms occurring in sewage suspensions can induce the redox condition of sewage sludge suspensions changed from oxidized state to strong reduced state and then promote the formation of sulfide mineral. The strong reducing condition established in sewage sludge suspension promoted the concentrations of heavy metals decrease to a lower level.
     The hydraulic conductivity of compacted sewage sludge was determined using flexible-wall permeameters. The measured hydraulic conductivity of compacted sewage sludge was lower than the regulatory specifications of 1.0×10-7cm/s for landfill site. Microorganism activity occurred in sewage sludge has the ability to decrease the hydraulic conductivity of compacted sewage sludge.
     The compatibility of the compacted sewage sludge with acidic pore water spiked with heavy metals was assessed through hydraulic conductivity test. Test results indicated that the permeation of acidic pore water tend to increase the hydraulic conductivity of compacted sewage sludge.
     The results of this study suggest that sewage sludge is a suitable material for constructing RL. Compacted sewage sludge can provide overall anaerobic reduction condition which decrease the mobility of heavy metals, displaying a potential application in pollution control engineering. With respected to the increase in hydraulic conductivity due to acidic pore water, further research clearified that the addition of alkaline material is needed to enhance the acid compatibility of compacted sewage sludge if used to control AMD.
引文
[1]Lottermoser B G. Mine Wastes[M]. New York:Springer,2007.91-101.
    [2]Johnson D B, Hallberg K B. Acid mine drainage remediation options:a review[J]. Sci Total Environ,2005,338(1-2):3-14.
    [3]袁先乐,徐克创.我国金属矿山固体废弃物处理与处置技术进展[J].金属矿山,2004,336(6):46-49.
    [4]丛志远,赵峰华.酸性矿山废水研究的现状及展望[J].中国矿业,2003,12(3):15-18.
    [5]Skousen J G, Sexstone A, Ziemkiewicz P F. Acid mine drainage control and treatment[C]. 2000.
    [6]Neculita C M, Zagury G J, Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria:critical review and research needs[J]. J Environ Qual,2007, 36(1):1-16.
    [7]Tuttle J H, Dugan P R, Randles C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure[J]. Appl Microbiol,1969,17(2):297-302.
    [8]Waybrant K R, Blowes D W, Ptacek C J. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage[J]. Environ Sci Technol,1998,32(13): 1972-1979.
    [9]Waybrant K R, Ptacek C J, Blowes D W. Treatment of mine drainage using permeable reactive barriers:column experiments[J]. Environ Sci Technol,2002,36(6):1349-1356.
    [10]Benner S G, Blowes D W, Ptacek C J. A full-scale porous reactive wall for prevention of acid mine drainage[J]. Ground Water Monit R,1997,17(4):99-107.
    [11]Christensen B, Laake M, Lien T. Treatment of acid mine water by sulfate-reducing bacterial; results from a bench scale experiment[J]. Water Res,1996,30(7):1617-1624.
    [12]赵玲,王荣锌,李官,等.矿山酸性废水处理及源头控制技术展望[J].金属矿山,2009(7):131-135.
    [13]Rowe R K. Some Factors affecting geosynthetics used for geoenvironmental applications[Z]. Thomas Telford, London:2006.
    [14]Yanful E K, Shikatani K S, Quirt D H. Hydraulic conductivity of natural soils permeated with acid mine drainage[J]. Can Geotech J,1995,32(4):624-646.
    [15]Frempong E M. Compatibility of tropical clayed soil liners with industrial and domestic leachate[D]. The University of Western Ontario,2006.
    [16]Lange K, Rowe R K, Jamieson H. Metal retention in geosynthetic clay liners following permeation by different mining solutions[J]. Geosynthectics International,2007,14(3): 178-198.
    [17]Shackelford C D, Sevick G W, Eykholt G R. Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions[J]. Geotext Geomembranes,2009.
    [18]Lange K, Rowe R K, Jamieson H. The potential role of geosynthetic clay liners in mine water treatment systems[J]. Geotext Geomembranes,2010,28:199-205.
    [19]Gulec S B, Benson C H, Edil T B. Effect of acidic mine drainage on the mechanical and hydraulic properties of three geosynthetics[J]. J Geotech Geoenviron,2005,131(8):937-950.
    [20]Yeheyis M B. Evaluation of coal fly ash for use in mine waste management[D]. The University of Western Ontario,2008.
    [21]张虎元.废弃物处置场还原屏障(国家自然科学基金申请书)[Z].兰州大学,2006.
    [22]董兴玲.还原屏障控制重金属活动性的生物地球化学机理[D].兰州大学,2008.
    [1]矿产资源综合利用手册[M].北京:科学出版社,2000.
    [2]丛志远,赵峰华.酸性矿山废水研究的现状及展望[J].中国矿业,2003,12(3):15-18.
    [3]Lottermoser B G. Mine Wastes[M]. New York:Springer,2007.91-101.
    [4]Ferguson K D, Erickson P M. Pre-mine prediction of acid mine drainage[M]. Environmental management of solid waste, dredged material and mine tailings, Salomons W, Forstner U, Berlin Herdelberg New York:Springer,1988.24-43.
    [5]Ribet I, Ptacek C J, Blowes D W, et al. The potential for metal release by reductive dissolution of weathered mine tailings[J]. J Contam Hydrol,1995,17(3):239-273.
    [6]Fortin D, Davis B, Southam G, et al. Biogeochemical phenomena induced by bacterial within sulfidic mine tailings[J]. J Ind Microbiol Biot,1995,14(2):178-185.
    [7]Yanful E, St-Arnaud L C. Migration of acidic pore waters at the Waite Amulet tailirrgs site near Rouyn-Noranda, Quebec, Canada[J]. Can Geotech J,1992,29:466-476.
    [8]Frempong E M. Compatibility of tropical clayed soil liners with industrial and domestic leachate[D]. The University of Western Ontario,2006.
    [9]Christensen B, Laake M, Lien T. Treatment of acid mine water by sulfate-reducing bacterial; results from a bench scale experiment[J]. Water Res,1996,30(7):1617-1624.
    [10]Lange K, Rowe R K, Jamieson H. Metal retention in geosynthetic clay liners following permeation by different mining solutions[J]. Geosynthectics International,2007,14(3): 178-198.
    [11]Kashir M, Yanful E K. Hydraulic conductivity of bentonite permeated with acid mine drainage[J]. Can Geotech J,2001,38(5):1034-1048.
    [12]陈凤梅.EGSB反应器生物处理酸性矿山废水工艺条件研究[D].太原理工大学,2007.
    [13]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [14]Cravott C A. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine[J]. Ground Water,1998,35(6):9-19.
    [15]Santos A, Alonso E, Callejon M, et al. Heavy metal content and speciation in groundwater of the Guadiamar river basin[J]. Chemosphere,2002,48:279-285.
    [16]Tuttle J H, Dugan P R, Randles C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure[J]. Appl Microbiol,1969,17(2):297-302.
    [17]Ledin M, Pedersen K. The environmental impact of mine wastes-roles of microorganisms and their significance in treatment of mine wastes[J]. Earth-Sci Rev,1996,41(1-2):67-108.
    [18]Yanful E K, Riley M D, Woyshner M R, et al. Construction and monitoring of a composite
    soil cover on an experimental waste-rock pile near Newcastle, New Brunswick, Canada[J]. Can Geotech J,1993,30:588-599.
    [19]Adu-Wusu C, Yanful E K. Performance of engineered test covers on acid generating waste rock at Whistle mine, Ontario[J]. Can Geotech J,2006,43:1-18.
    [20]Meek F A. Evaluation of acid prevention techniques used in surface mining[Z]. Pittsburgh: 1994.
    [21]赵玲,王荣锌,李官,等.矿山酸性废水处理及源头控制技术展望[J].金属矿山,2009(7):131-135.
    [22]陈谦,杨晓松,吴义千,等.有色金属矿山酸性废水成因及系统控制技术[J].矿冶,2005,14(4):71-74.
    [23]鲁安怀.环境矿物材料基本性能-无机界矿物天然自净功能[J].岩石矿物学杂志,2001,20(4):317-381.
    [24]Ledin M, Pedersen K. The environmental impact of mine wastes-Roles of microorganisms and their significance in treatment of mine wastes[J]. Earth-Sci Rev,1996,41:67-108.
    [25]Peppas A, Komnitsas K, Halikia I. Use of organic covers for acid mine drainage control[J]. Miner Eng,2000,13(5):563-574.
    [26]Wolkersdorfer C, Bowell R. Contemporary Reviews of Mine Water Studies in Europe, Part 2[J]. Mine Water and the Environment,2005,24:2-37.
    [27]Xenidis A, Mylona E, Paspaliaris I. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes[J]. Waste Manage,2002,22:631-641.
    [28]Doye I, Duchesne J. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings[J]. Journal of Environmental Engineering,2005,131(8): 1221-1229.
    [29]Yeheyis M B. Evaluation of coal ash for use in mine waste management[D]. London:The University of western Ontario,2008.
    [30]Canty G A. Utilization of coal combustion by-products for in situ treatment of acidic mine waters[D]. University of Oklahoma Graduate College,1999.
    [31]国家环境保护总局,国家质量监督检疫总局.一般工业固体废物贮存、处置场污染控制标准[S].北京:2002.
    [32]李斌.尾矿库环保防渗措施设计探讨[J].有色冶金设计与研究,2009,30(1):10-11.
    [33]Rowe R K, Quigley R M, Brachman R W I, et al. Barrier systems for waste disposal[M]. London and New York:Taylor& Francis Group,2004.
    [34]Pandian N S, Sridharan A, Rajasekhar C. Heavy metal retention behavior of clayey soiIs[J]. J Test Eval,2001,29(4):361-371.
    [35]Yong R N, Warith M A, Boonsinsuk P. Migration of leachate solution through clay liner and substrate[Z]. Conway:American Society for Testing and Materials,1986208-225.
    [36]Thornton S F, Lerner D N, Tellam J H. Attenuation of landfill leachate by clay liner materials in laboratory columns:2. Behaviour of inorganic contaminants[J]. Waste Management and Research,2001,19:70-88.
    [37]Griffin R A, Shimp N F, Steele J D, et al. Attenuation of pollutants in municipal landfill leachate by passage through clay[J]. Environ Sci Technol,1976,10(13):1262-1268.
    [38]刘长礼,张云,张胜,等.填埋场粘性土防渗层中强化微生物对垃圾污染物的净化作用[J].地球科学进展,2004,19(s1):506-510.
    [39]Yanful E K, Shikatani K S, Quirt D H. Hydraulic conductivity of natural soils permeated with acid mine drainage[J]. Can Geotech J,1995,32(4):624-646.
    [40]Yanful E K H M D W. The impact of synthetic leachate on the hydraulic conductivity of a smectitic till underlying a landfill near Saskatoon, Saskatchewan[J]. Can Geotech J,1990, 27(4):507-519.
    [41]Frempong E M, Yanful E K. Tropical soils-acid mine drainage interactions:breakthrough curves and some transport parameters[J]. Journal of Environmental Engineering,2007, 133(7):733-741.
    [42]Shackelford C D, Sevick G W, Eykholt G R. Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions[J]. Geotext Geomembranes,2009.
    [43]Lange K, Rowe R K, Jamieson H. The potential role of geosynthetic clay liners in mine water treatment systems[J]. Geotext Geomembranes,2010,28:199-205.
    [44]钱学德,郭志平,施建勇,等.现代卫生填埋场的设计与施工[M].北京:中国建筑工业出版社,2001.
    [45]The feasibility of lining tailing impoundment[R]. Office of Solid Waste U S Environmental Protection Agency.
    [46]Shackelford C D. Waste-Soil interactions that alter hydraulic conductivity[M]. Hydraulic conductivity and waste containment transport in soil ASTM STP 1142, Daniel D E, Trautwein S J, Philadelphia:American Society for Testing and Materials,1994.
    [47]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [48]Mitchell J K. Fundamentals of Soil behavior[M]. New York:John Wiley& Sons, Inc.,1993.
    [49]Shackelford C D. Waste-soil interactions that alter hydraulic conductivity[Z]. Philadelphia: American Society for Testing and Materials,1994.
    [50]余杰,田宁宁,王凯军.我国污泥处理处置技术政策探讨[J].中国给水排水,2005,21(8):84-87.
    [51]周立祥,胡霭堂,戈乃玢,等.城市污泥土地利用研究[J].生态学报,1999,19(2):185-193.
    [52]李磊.污泥固化处理技术及重金属污染控制研究[D].河海大学,2006.
    [53]伊军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2004.
    [54]Lim S, Jeon W, Lee J, et al. Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess[J]. Water Res,2002,36(17):4177-4184.
    [55]Kim E, Cho J, Yim S. Digested sewage sludge solidification by converter slag for landfill cover[J]. Chemosphere,2005,59(3):387-395.
    [56]Herrmann I, Svensson M, Ecke H, et al. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners[J]. Water Res,2009,43:3541-3547.
    [57]黄川,马培东,王里奥,等.消化污泥作为垃圾填埋场覆盖材料的研究[J].环境污染与防治,2007,29(3):197-199.
    [58]李淑展.污水厂脱水污泥制陶质地砖及填埋场防渗衬层材料研究[DJ.湖南大学,2007.
    [59]刘福东.填埋场固化污泥屏障材料的阻滞特性研究[D].中南大学,2008.
    [60]唐圣钧.污泥作为生活垃圾填埋场日覆盖材料的工程应用研究[D].同济大学,2004.
    [61]Daniels W, K H. The feasibility of large-scale sewage sludge/compost utilization on central Appalachian surface mined lands.[C]. Morgantown, West Virginia:West Virginia University: 1999.
    [1]沈照理,朱宛华,钟佐桑.水文地球化学基础[M].北京:地质出版社,1993.
    [2]于天仁.土壤化学原理[M].北京:科学出版社,1987.
    [3]Gambrell R P, Patrick Jr W H. Chemical and microbiological properties of anaerobic soils and sediments[M]. Plant life in anaerobic environments, Ann Arbor, MI:Ann Arbor Science Pulishers, Inc,1978.375-423.
    [4]Masscheleyn P H, Delaune R D, Patrick Jr W H. Arsenic and Selenium Chemistry as Affected by Sediment Redox Potential and pH[J]. Journal of Environmental Qaulity,1991, 20:522-527.
    [5]Chuan M C, Shu G Y, Liu J C. Solubility of heavy metals in a contaminated soil:effects of redox potential and pH[J]. Water Air Soil Pollut,1996,90(3-4):543-556.
    [6]Patrick W H J, Mahapatra I C. Transformation and availability of nitrogen and phosphorus in waterlogged soils[J]. Advance in Agronomy,1968,20:323-359.
    [7]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2000.
    [8]Catallo W J. Hourly and daily variation of sediment redox potential in tidal wetland sediments[R]. U.S. Geological Survey, Biological Resources Division. National Wetlands Research Center:Lafayette, LA,1999.
    [9]郭学军,黄巧云,赵振华,等.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110.
    [10]Tuttle J H, Dugan P R, Randles C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure[J]. Appl Microbiol,1969,17(2):297-302.
    [11]Neculita C M, Zagury G J, Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria:critical review and research needs[J]. J Environ Qual,2007, 36(1):1-16.
    [12]李亚新,苏冰琴.利用硫酸盐还原菌处理酸性矿山废水研究[J].中国给水排水,2000,16(2):13-16.
    [13]Stigliani S. Biogeodynamics of pollutants in soils and sediments[M]. Heidelberg: Springer-Verlage,1995.
    [14]龙於洋.生物反应器填埋场中Cu和Zn迁移转化机理研究[D].浙江大学,2009.
    [15]Kjeldsen P, Barlaz M A, Rooker A P, et al. Present and long-term composition of MSW landfill leachate:a review[J]. Crit Rev Env Sci Tec,2002,32(4):297-336.
    [16]Christensen T H, Kjeldsen P, Bjerg P L, et al. Biogeochemistry of landfill leachate plumes[J]. Appl Geochem,2001,16(7-8):659-718.
    [17]Suna Erses A, Onay T T. In situ heavy metal attenuation in landfills under methanogenic
    conditions[J]. J Hazard Mater,2003, B99:159-175.
    [18]Christensen T H, Kjeldsen P, Albrechtsen H, et al. Attenuation of landfill leachate pollutants in aquifers[J]. Crit Rev Env Sci Tec,1994,24(2):119-202.
    [19]Birch L, Hanselmann K W, Bachofen R. Heavy metal conservation in lake cadagno sediments:historical records of anthropogenic emissions in a meromictic alpine lake[J]. Water Res,1996,30(3):679-687.
    [20]Pagnanelli F, Moscardini E, Giuliano V, et al. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area:pollution detection and affinity series[J]. Environ Pollut,2004,132:189-201.
    [21]路永正,董德明,付尧,等.氧化与还原条件下伊通河长春区段沉积物重金属形态特征的对比研究[J].高等学校化学学报,2006,27(3):449-453.
    [22]Waybrant K R, Blowes D W, Ptacek C J. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage[J]. Environ Sci Technol,1998,32(13): 1972-1979.
    [23]Permeable reactive barrier technologies for contaminant remediation[R]. United States Environmental Protection Agency,1998.
    [24]董军,赵勇胜,黄奇文,等.用双层PRB技术处理垃圾填埋场地下水污染的可行性研究[J].环境科学学报,2004,24(6):1021-1026.
    [25]杜连柱,张兰英,王立东,等.PRB技术对地下水中重金属离子的处理研究[J].环境污染与防治,2007,29(8):578-582.
    [26]Ludwig R D, Mcgregor R G, Blowes D W, et al. A permeable reactive barrier for treatment of heavy metals[J]. Ground Water,2002,40(1):59-66.
    [27]Benner S G, Blowes D W, Ptacek C J. A full-scale porous reactive wall for prevention of acid mine drainage[J]. Ground Water Monit R,1997,17(4):99-107.
    [28]Benner S G, Blowes D W, Gould W D, et al. Geochemistry of a permeable reactive barrier for metals and acid mine drainage[J]. Environ Sci Technol,1999,33(6):2793-2799.
    [29]Sheoran A S, Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review[J]. Miner Eng,2006,19:105-116.
    [30]Hawkins W B, Rodgers Jr. J H, Gillespie Jr. W B, et al. Design and Construction of Wetlands for Aqueous Transfers and Transformations of Selected Metals[J]. Ecotox Environ Safe, 1997,36(3):238-248.
    [31]Hulshof A H M, Blowes D W, Ptacek C J, et al. Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent[J]. Environ Sci Technol,2003,37(21): 5027-5033.
    [32]Sturman P J. Control of acid rock drainage from mine tailings through the addition of dissolved organic carbon[D]. Montana State University,2004.
    [33]郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [34]陈涛,吴燕玉,张学询.张士灌溉区镉土改良和水稻镉污染防治研究[J].环境科学,1980,1(5):7-11.
    [35]Lawrence A W, Mccarty P L. The role of sulfide in preventing heavy metal toxicity in anaerobic treatment[Z]. Bal Harbour, Fla:1964.
    [36]谢经良,张延青,彭忠,等.厌氧条件下硫酸盐对重金属形态的转化作用[J].青岛建筑工程学院学报,2003,24(2):1-7.
    [37]安淼,周琪,李永秋.城市污泥中重金属的形态分布和处理方法的研究[J].农业环境科学学报,2003,22(2):199-202.
    [38]张志凡,王光辉,于冰,等.城市污泥中重金属稳定性的研究[J].矿冶,2007,16(3):69-72.
    [1]Roehl K E, Czurda K. Diffusion and solid speciation of Cd and Pb in clay liners[J]. Appl Clay Sci,1998,12:387-402.
    [2]Rouse J V, Pyrih R Z. Geochemistry[M]. Geotechnical Practice for Waste Disposal, Daniel D E, London:Chapman& Hall,1993.
    [3]Lake C B, Rowe R K. The 14-year performance of a compacted clay liner used as part of a composite liner system for a leachate lagoon[J]. Geotechnical and Geological Engineering, 2005,23(6):657-678.
    [4]Rowe R K, Quigley R M, Brachman R W I,et al. Barrier systems for waste disposal[M]. London and New York:Taylor& Francis Group,2004.
    [5]刘长礼,张云,张胜,等.填埋场粘性土防渗层中强化微生物对垃圾污染物的净化作用[J].地球科学进展,2004,19(s1):506-510.
    [6]Yanful E K, Shikatani K S, Quirt D H. Hydraulic conductivity of natural soils permeated with acid mine drainage[J]. Can Geotech J,1995,32(4):624-646.
    [7]Thornton S F, Lerner D N, Tellam J H. Attenuation of landfill leachate by clay liner materials in laboratory columns:2. Behaviour of inorganic contaminants[J]. Waste Management and Research,2001,19:70-88.
    [8]Lister S K, Line M A. Potential utilisation of sewage sludge and paper mill waste for biosorption of metals from polluted waterways[J]. Bioresource Technol,2001,79:35-39.
    [9]Solari P, Zouboulis A I, Matis K A, et al. Removal of toxic metals by biosorption onto nonliving sewage sludge[J]. Sep Sci Technol,1996,31(8):1075-1092.
    [10]Theodoratos P, Moirou A, Xenidis A, et al. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities[J]. J Hazard Mater,2000, B77: 177-191.
    [11]Gulnaz O, Saygideger S, Kusvuran E. Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study[J]. J Hazard Mater,2005, B120: 193-200.
    [12]Choi S B, Yun Y. Biosorption of cadmium by various types of dried sludge:An equilibrium study and investigation of mechanisms[J]. J Hazard Mater,2006, B138:378-383.
    [13]Chalermyanont T, Arrykul S, Charoenthaisong N. Transport of heavy metals and chemical compatibility of hydraulic conductivity of a compacted sand-bentonite mixture[J]. Songklanakarin J. Sci. Technol.,2008,30(2):269-276.
    [14]Tanchuling M A, Khan M R A, Kusakabe O. Zinc sorption in clay using batch equilibrium and column leaching tests[J]. Materials and Geoenvironment,2003,50(1):381-384.
    [15]Chalermyanont T, Arrykul S, Charoenthaisong N. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals [J]. Waste Manage,2008,10(15):126-150.
    [16]Shirvani M, Shariatmadari H, Kalbasi M, et al. Sorption of cadmium on palygorskite, sepiolite and calcite:Equilibria and organic ligand affected kinetics[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,287:182-190.
    [17]Hakanoren A, Kaya A. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites[J]. J Hazard Mater,2006, B131:59-65.
    [18]Charlatchka R, Cambier P. Influence of reducing conditions on solubility of trace metals in contaminated soils[J]. Water Air Soil Pollut,2000,118(1-2):143-167.
    [19]Griffin R A, Shimp N F, Steele J D, et al. Attenuation of pollutants in municipal landfill leachate by passage through clay[J]. Environ Sci Technol,1976,10(13):1262-1268.
    [20]Wolf D C, Dao T H, Scott H D, et al. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties[J]. J Environ Qual,1989,18(1):39-44.
    [21]Tuominen L, Kairesalo T, Hartikainen H. Comparison of methods for inhibiting bacterial activity in sediment[J]. Appl Environ Microb,1994,60(9):3454-3457.
    [22]Zagury G J, Kulnieks V I, Neculita C M. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacterial in acid mine drainage treatment[J]. Chemosphere,2006,64(6):944-954.
    [23]Neculita C M, Zagury G J, Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria:critical review and research needs[J]. J Environ Qual,2007, 36(1):1-16.
    [24]Amos P W, Younger P L. Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate[J]. Water Res,2003,37(1):108-120.
    [25]Qu X, He P, Shao L, et al. Heavy metals mobility in full-scale bioreactor landfill:Initial stage[J]. Chemosphere,2008,70:769-777.
    [26]龙於洋.生物反应器填埋场中Cu和Zn迁移转化机理研究[D].浙江大学,2009.
    [27]Zhang Y, Jiang J, Chen M. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash[J]. Journal of Environmental Sciences,2008,20:1398-1402.
    [28]章骅,何品晶,李忻洁,等.模型化研究pH对垃圾焚烧飞灰金属浸出的影响机制[J].环境科学,2008,29(1):268-272.
    [29]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [30]Connell W E, Patrick Jr W H. Sulfate reduction in soil:Effects of redox potential and pH[J]. Science,1968,159(3810):86-87.
    [31]Waybrant K R, Blowes D W, Ptacek C J. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage[J]. Environ Sci Technol,1998,32(13): 1972-1979.
    [32]Neculita C M, Zagury G J. Biological treatment of highly contaminated acid mine drainage in batch reactors:long-term treatment and reactive mixture characterization[J]. J Hazard Mater, 2008,157(2-3):358-366.
    [33]Gadd G M. Microbial influence on metal mobility and application for bioremediation[J]. Geoderma,2004,122(2-4 SPEC. IIS):109-119.
    [34]郭学军,黄巧云,赵振华,等.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110.
    [1]Frempong E M. Compatibility of tropical clayed soil liners with industrial and domestic leachate[D]. The University of Western Ontario,2006.
    [2]Shackelford C D. Waste-soil interactions that alter hydraulic conductivity[Z]. Philadelphia: American Society for Testing and Materials,1994.
    [3]American Society for Testing and Materials. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter[S]. ASTM Committee D18 on Soil and Rock,2003.
    [4]国家环境保护总局,国家质量监督检疫总局.一般工业固体废物贮存、处置场污染控制标准[S].北京:2002.
    [5]张鹏,吴志超,陈绍伟,等.污水厂污泥作填埋场覆盖材料的试验研究[J].环境科学研究,2002,15(2):45-47.
    [6]李淑展,施周,谢敏.污水厂污泥制备垃圾填埋场防渗衬层材料研究[J].中国给水排水,2006,22(23):43-46.
    [7]Allison L E. Effect of microorganisms on permeability of soil under prolonged submergence[J]. Soil Sci,1947,63:439-450.
    [8]Magesana G N, Williamson J C, Sparling G P, et al. Hydraulic conductivity in soils irrigated with wastewaters of differing strengths:Field and laboratory studies[J]. Aust J Soil Res,1999, 37:391-420.
    [9]张建,邵长飞,黄霞,等.污水土地处理工艺中的土壤堵塞问题[J].中国给水排水,2003,19(3):17-20.
    [10]Rowe R K. Long-term performance of contaminant barrier systems[J]. Geotechnique,2005, 55(9):631-678.
    [11]Kima G, Leeb S B, Kim Y K. Subsurface biobarrier formation by microorganism injection for contaminant plume control[J]. J Biosci Bioeng,2006,101(2):142-148.
    [12]Reynolds W D, Brown D A, Mathur S P, et al. Effect of in-situ gas accumulation on the hydraulic conductivity of peat[J]. Soil Sci,1992,153:397-408.
    [13]Seki K, Miyazaki T, Nakano M. Effect of microorganisms on hydraulic conductivity decrease in infiltration[J]. Eur J Soil Sci,1997,49:231-236.
    [14]Baveye P, Vandevivere P, Hoyle B L, et al. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials[J]. Critical. Review in. environmental. Science and. Technology,1998,28(2):123-191.
    [15]Wu J, Giu S, Stahl P, et al. Experimental study on the reduction of soil hydraulic conductivity by enhanced biomass growth[J]. Soil Sci,1997,162(10):741-748.
    [16]Okubo T, Matsumoto J. Effect of infiltration rate on biological clogging and water quality changes during artifical recharge[J]. Water Resour Res,1979,15(1536-1542).
    [17]Taylor S W. Biofilm growth and the related chagnes in the physical properties of a porous medium 1. experimental investigation [J]. Water Resour Res,1990,26(9):2153-2159.
    [18]Mitchell J K, Carlossantamarina J. Biological considerations in Geotechnical Engineering[J]. J Geotech Geoenviron,2005,131(10):1222-1233.
    [19]Griffin R A, Shimp N F, Steele J D, et al. Attenuation of pollutants in municipal landfill leachate by passage through clay[J]. Environ Sci Technol,1976,10(13):1262-1268.
    [20]Yanful E K, Shikatani K S, Quirt D H. Hydraulic conductivity of natural soils permeated with acid mine drainage[J]. Can Geotech J,1995,32(4):624-646.
    [21]Dennis M L, Turner J P. Hydraulic Conductivity of Compacted Soil Treated with Biofilm[J]. J Geotech Geoenviron,1998,124(2):120-127.
    [22]Martin G R, Yen T F, Karimi S. Application of Biopolymer Technology in Silty Soil Matrices to Form Impervious Barriers[Z]. Barton, ACT:Institution of Engineers Australia: National conference publication,1996814-819.
    [23]Kim G. Hydraulic conductivity change of bio-barrier formed in the subsurface by the adverse conditions including freeze-thaw cycles[J]. Cold Reg Sci Technol,2004,38:153-162.
    [24]Daniels J L, Cherukuri R. Enfluence of biofilm on barrier material performance[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2005,9(4):245-252.
    [25]Kamon M, Zhang H Y, Katsumi T, et al. Redox effect on the hydraulic conductivity of clay liner[J]. Soil Found,2002,42(6):79-91.
    [26]Hunter R J. Introduction to Modern Colloid Science[M]. New York:Oxford University press, 1993.
    [27]Kashir M, Yanful E K. Hydraulic conductivity of bentonite permeated with acid mine drainage[J]. Can Geotech J,2001,38(5):1034-1048.
    [28]Zhang H. Redox effects on heavy metal mobility and hydraulic conductivity of clay liners at landfill sites[D]. Kyoto University,2002.
    [1]Bowders J J, Daniel D E, Broderick G P, et al. Methods for testing the compatibility of clay liners with landfill leachate[M]. Hazardous and Industrial Solid Waste Testing:Fourth Symposium, ASTM STP 886, J. K. Petros, Jr., W. J. Lacy, R. A, Conway, Philadelphia:American Society for Testing and Materials,1986.233-250.
    [2]Rowe R K, Quigley R M, Brachman R W I, et al. Barrier systems for waste disposal [M]. London and New York:Taylor& Francis Group,2004.
    [3]Rowe R K. Long-term performance of contaminant barrier systems[J]. Geotechnique,2005, 55(9):631-678.
    [4]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [5]Griffin R A, Shimp N F, Steele J D, et al. Attenuation of pollutants in municipal landfill leachate by passage through clay[J]. Environ Sci Technol,1976,10(13):1262-1268.
    [6]Allison L E. Effect of microorganisms on permeability of soil under prolonged submergence[J]. Soil Sci,1947,63:439-450.
    [7]Yanful E K, Shikatani K S, Quirt D H. Hydraulic conductivity of natural soils permeated with acid mine drainage[J]. Can Geotech J,1995,32(4):624-646.
    [8]Gipson A H J. Permeability Testing on Clayey Soil and Silty Sand-Bentonite Mixture Using Acid Liquor[M]. Hydraulic Barriers in Soil and Rock, ASTM STP 874, A I J, R K F, N J C, et al, Philadelphia:American Society for Testing and Materials,1985.140-154.
    [9]Frempong E M, Yanful E K. Tropical soils-acid mine drainage interactions:breakthrough curves and some transport parameters[J]. Journal of Environmental Engineering,2007, 133(7):733-741.
    [10]Kashir M, Yanful E K. Hydraulic conductivity of bentonite permeated with acid mine drainage[J]. Can Geotech J,2001,38(5):1034-1048.
    [11]Lange K, Rowe R K, Jamieson H. Metal retention in geosynthetic clay liners following permeation by different mining solutions[J]. Geosynthectics International,2007,14(3): 178-198.
    [12]Magesana G N, Williamson J C, Sparling G P, et al. Hydraulic conductivity in soils irrigated with wastewaters of differing strengths:Field and laboratory studies[J]. Aust J Soil Res,1999, 37:391-420.
    [13]张建,邵长飞,黄霞,等.污水土地处理工艺中的土壤堵塞问题[J].中国给水排水,2003,19(3):17-20.
    [14]Rowe R K. Long-term performance of contaminant barrier systems[J]. Geotechnique,2005, 55(9):631-678.
    [15]Kima G, Leeb S B, Kim Y K. Subsurface biobarrier formation by microorganism injection
    for contaminant plume control[J]. J Biosci Bioeng,2006,101(2):142-148.
    [16]Reynolds W D, Brown D A, Mathur S P, et al. Effect of in-situ gas accumulation on the hydraulic conductivity of peat[J]. Soil Sci,1992,153:397-408.
    [17]Seki K, Miyazaki T, Nakano M. Effect of microorganisms on hydraulic conductivity decrease in infiltration[J]. Eur J Soil Sci,1997,49:231-236.
    [18]Baveye P, Vandevivere P, Hoyle B L, et al. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials[J]. Critical. Review in. environmental. Science and. Technology,1998,28(2):123-191.
    [19]Wu J, Giu S, Stahl P, et al. Experimental study on the reduction of soil hydraulic conductivity by enhanced biomass growth[J]. Soil Sci,1997,162(10):741-748.
    [20]Okubo T, Matsumoto J. Effect of infiltration rate on biological clogging and water quality changes during artifical recharge[J]. Water Resour Res,1979,15(1536-1542).
    [21]Taylor S W. Biofilm growth and the related chagnes in the physical properties of a porous medium 1. experimental investigation[J]. Water Resour Res,1990,26(9):2153-2159.
    [22]Mitchell J K, Carlossantamarina J. Biological considerations in Geotechnical Engineering[J]. J Geotech Geoenviron,2005,131(10):1222-1233.
    [23]Dennis M L, Turner J P. Hydraulic Conductivity of Compacted Soil Treated with Biofilm[J]. J Geotech Geoenviron,1998,124(2):120-127.
    [24]Martin G R, Yen T F, Karimi S. Application of Biopolymer Technology in Silty Soil Matrices to Form Impervious Barriers[Z]. Barton, ACT:Institution of Engineers Australia: National conference publication,1996814-819.
    [25]Kim G. Hydraulic conductivity change of bio-barrier formed in the subsurface by the adverse conditions including freeze-thaw cycles[J]. Cold Reg Sci Technol,2004,38:153-162.
    [26]Daniels J L, Cherukuri R. Enfluence of biofilm on barrier material performance[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2005,9(4):245-252.
    [27]Kamon M, Zhang H Y, Katsumi T, et al. Redox effect on the hydraulic conductivity of clay liner[J]. Soil Found,2002,42(6):79-91.
    [28]刘长礼,张云,张胜,等.填埋场粘性土防渗层中强化微生物对垃圾污染物的净化作用[J].地球科学进展,2004,19(s1):506-510.
    [29]Zhang H. Redox effects on heavy metal mobility and hydraulic conductivity of clay liners at landfill sites[D]. Kyoto University,2002.
    [30]Shackelford C D. Waste-soil interactions that alter hydraulic conductivity[Z]. Philadelphia: American Society for Testing and Materials,1994.
    [31]Daniel D E. Clay liners[M]. Geotechnical Practice for Waste Disposal, Daniel D E, London:Chapman& Hall,1993.
    [32]罗春泳.粘土的环境土工特性及垃圾填埋场衬垫性状研究[D].浙江大学,2004.
    [33]Kashir M, Yanful E K. Compatibility of slurry wall backfill soils with acid mine drainage[J]. Adv Environ Res,2000,4(3):251-268.
    [34]Frempong E M. Compatibility of tropical clayed soil liners with industrial and domestic leachate[D]. The University of Western Ontario,2006.
    [35]Frempong E M, Yanful E K. Interactions between three tropical soils and municipal solid waste landfill leachate[J]. J Geotech Geoenviron,2008,134(3):379-396.
    [36]Rozada F, Otero M, N A M, et al. Adsorption of heavy metals onto sewage sludge-derived materials[J]. Bioresource Technol,2008,99:6332-6338.
    [37]Otero M, Rozada F, Moran A, et al. Removal of heavy metals from aqueous solution by sewage sludge based sorbents:competitive effects[J]. Desalination,2009,239:46-57.
    [38]Gulnaz O, Saygideger S, Kusvuran E. Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study[J]. J Hazard Mater,2005, B120: 193-200.
    [39]吴海锁,张鸿,张爱茜,等.活性污泥对重金属离子混合物的生物吸附[J].环境化学,2002,21(6):528-532.
    [40]蔡春光.胞外多聚物对污泥絮凝性能、颗粒化及重金属吸附的基础研究[D].上海交通大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700