富氧燃煤锅炉设计研究及其技术经济性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物燃料的大量使用所造成的地球温室效应日益显现。近年来在火力发电领域CO2的捕集、压缩液化与封存技术的研究与工程示范已经成为一项非常重要的任务。富氧燃烧技术又称O2/CO2燃烧技术,或者空气分离/烟气再循环技术,是一种既能直接捕集高浓度CO2,又能综合控制燃煤污染物排放的新一代洁净煤发电技术。
     以300MW燃煤锅炉为研究对象,燃高水分、低硫褐煤,从能量平衡的角度对炉膛辐射、对流受热面、尾部受热面及制粉系统等方面进行了富氧燃烧锅炉系统的概念设计,将空分制氧过程及CO2压缩过程的系统能量进行了回收整合利用;建立了一种改进的宽带关联k模型对富氧燃烧方式下高浓度三原子混合气体的辐射特性进行分析研究;通过数值模拟研究了初始氧浓度对NOx排放量及燃尽率的影响规律;从传热学的基本理论出发,研究了富氧燃烧方式下烟气的对流传热特性;对富氧燃煤锅炉系统的整体经济性进行了分析,综合考虑受热面投资,提出了一项评价锅炉对流受热面经济性的指标——单位传热量的总费用,分析了在不同烟气流速下受热面单位传热量总费用的变化规律,确定出富氧燃烧方式下锅炉受热面的合理布置方式。
     在30%O2/70%CO2混合气氛下,炉膛辐射换热量较空气燃烧增加约7%,其中,三原子气体对辐射换热的贡献由24%左右增加至40%左右;对流换热所占份额相对于空气燃烧减少约9%,锅炉烟气侧的运行阻力大幅减小。随着炉内压力的逐渐升高,三原子气体的辐射强度和发射率均增大,但增大的幅度逐渐减小。
     富氧燃烧方式下,初始高浓度CO2的存在增加了CO形成的机会,还原气氛的形成使得产生的NO被还原降解,30%O2/70%CO2工况下炉膛出口NO排放量为480mg/m3左右,较空气气氛降低约38%。
     富氧燃烧方式下管壁表面换热系数较空气燃烧方式升高。随着烟气流速的增大,换热器单位传热量的总费用先降低后增大;以单位传热量的总费用为目标函数对富氧燃烧方式下锅炉受热面进行优化设计后,锅炉本体尺寸减小,部分过热受热面需移入炉膛上部;数值模拟结果显示炉膛优化设计后,飞灰可燃物的含量较锅炉原始尺寸在相同配风方式下的运行数据有所增大,但仍低于锅炉原始尺寸在空气燃烧方式下的运行数据。
     在我国目前的市场经济条件下,基于当前的煤价,富氧燃烧方式下的脱碳费用较MEA化学吸附法降低约80%,若计及空分制氧及CO2压缩过程的能量整合利用,则富氧燃烧电厂CO2脱除费用进一步降低约23%。
Slather using of the fossil fuel makes the greenhouse effect increasing greatly. The research and demonstration project of the carbon capture and storage (CCS) have become a very important task in the field of thermal power generation. Oxy-fuel combustion technology is also known as O2/CO2 combustion technology, or air separation/flue gas recycling technology, which can trap high concentration CO2 directly without separation and control pollutant emission comprehensively. It is a new generation of clean coal power generation technology.
     In terms of energy balance, a 300MW boiler was taken as the research object for the conceptual design under oxy-fuel combustion on the aspects such as furnace radiation, convection heating surfaces, back-end surfaces, coal pulverizing system and so on. The designed coal was lignite with high moisture and low sulfur. This system recycled the system energy in the courses of generating oxygen by air separation and compressing CO2. An improved wide-band correlated-κdistribution model was developed to calculate the radiation characteristics of the triatomic gases with high concentrations under oxy-fuel combustion. The influence rule of the initial oxygen concentration to NOx emission and burn-out rate were revealed by numerical simulation. From the view of the basic theory of heat transfer, the convective heat transfer characteristic of flue gas under oxy-fuel combustion was analyzed. The whole economy of the oxy-coal fired boiler system was analyzed. By comprehensive consideration of heating surface investment, an index was proposed to evaluate the economy of the boiler convective heating surfaces, defined as the total cost per unit quantity of heat transferred. Variation of the total cost per unit quantity of heat transferred at different gas velocity was obtained. The reasonable arrangement of the boiler heating surfaces under oxy-fuel combustion was determined.
     Compared with air combustion, the radiative heat transfer in the furnace increased by about 7% in 30%O2/70%CO2 atmosphere, among which the contribution of triatomic gases to radiative heat transfer increased from 24% to 40% approximately. The convective heat transfer decreased by 9% compared with air combustion. The operation resistance of flue gas side decreases largely. With the gradual rising of the pressure in the furnace, the radiation intensity and emissivity of triatomic gases increase, but the increasing range deduce.
     Under oxy-fuel combustion, the existence of CO2 with high concentration increase the formation of CO, which promotes the reductive degradation of NO. The furnace outlet NO concentration is about 480mg/m3 under the 30%O2/70%CO2 operating condition, decreased by about 38% compared with air atmosphere.
     Compared with air combustion, the wall surface heat transfer coefficient increased under oxy-fuel combustion. As the gas velocity increasing, the total cost per unit quantity of heat transferred decreases first and then increases. The total cost per unit quantity of heat transferred is regarded as the objective function to exercise optimization design. As a result, boiler body size is reduced and part of the superheaters should be moved to the upper part of the furnace. Simulation results show that the carbon in fly ash increases slightly under this smaller cavity operation compared with that of primary size, which is still lower than the operating data of air combustion with primary boiler size.
     Under our country's present market economy condition, on the basis of the present coal price, the cost of CO2 removal under oxy-fuel combustion decresed by about 80% compared with MEA chemical absorption. When the system energy utilization in the courses of generating oxygen and compressing CO2 is taken into account, the cost of CO2 removal can be reduced by about 23% further under oxy-fuel combustion.
引文
[1]张阿玲,方栋.温室气体C02的控制和回收利用.北京:中国环境科学出版社,1996
    [2]韩才元,徐明厚,周怀春,等.煤粉燃烧.北京:科学出版社,2001
    [3]郑楚光,郑瑛,李帆,等.温室效应及其控制对策.北京:中国电力出版社,2001
    [4]E. Worrell, J. Beer, K. Blok. Improve energy efficiency, decrease CO2 emission. Industry and Environment,1995,17(1):32~35
    [5]刘彦丰,阎维平,丁千岭.控制和减缓程中CO2排放的技术.华北电力大学学报,2000,27(2):36~41
    [6]阎维平.洁净煤发电技术(第二版).北京:中国电力出版社,2008
    [7]何建坤,苏明山.全球气候变化问题与我国能源战略.中国环保产业,2002,35(1):60~63
    [8]EIA,2008, Emission of Greenhouse Gases Report. http://www.eia.doe.gov/oiaf/ 1605/ggrpt/carbon. Html
    [9]梁金修.我国能源供需与新型化能源战略.宏观经济管理,2006,(4):37~41
    [10]菱菱.《京都协议书》下的中国碳交易——记一致人和国际环境科技有限公司.今日中国论坛,2008,(9):50~53
    [11]郑瑛,池保华,王保文,等.燃煤CO2减排技术.中国电力,2006,39(10):92~94
    [12]M.A. Wilson, R.M. Wrubleski, L. Yarborough. Recovery of CO2 from power plant flue gases using amines. Energy Conversion and Management,1992, 33(5-8):325~331
    [13]J.A. Laurmann. Impact of CO2-induced climate change:Strategic issues and their treatment. International Journal of Hydrogen Energy,1983,8(10):829~831
    [14]林汝媒,段立强,金红光.CO2准零排放的IGCC系统探索研究.工程热物理学报,2002,23(6):661~664
    [15]毛玉如,方梦祥,王树荣,等.空气分离/烟气再循环技术的研究进展.锅炉技术,2002,33(3):5~9
    [16]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究.中国电力,1997,30(6):59~62
    [17]H. Liu, R. Zailani, B.M.Gibbs. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel,2005,.84(16):2109~2115
    [18]H. Leci, K. Yozo and M. Isao. Reactivities of blair athol and nang tong coals in relation to their behavior in PFBC boiler. Fuel,2004,83(16):2151~2156
    [19]毛玉如.循环流化床富氧燃烧技术的试验和理论研究:[博士学位论文].杭州:
    浙江大学,2003
    [20]K. Andersson, F. Johnsson.Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Conversion and Management,2006,47(18-19):3487~3498
    [21]刘忠,宋蔷,姚强,等.O2/CO2燃烧技术及其污染物生成与控制.华北电力大学学报,2007,34(1):82~88
    [22]张科峰.膜法富氧助燃技术提高加热炉热效率.化工科技,2000,8(6):39~42
    [23]沈光林.膜法富氧的应用研究.低温与特气,2000,(3):26~31
    [24]L.H. Liu, S.X. Chu. Verification of numerical simulation method for entropy generation of radiation heat transfer in semitransparent medium. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,103(1):43~56
    [25]C. Gou, R. Cai, H. Hong. An advanced oxy-fuel power cycle with high efficiency. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2006,220(4):315~325
    [26]B.J.P. Buhre, L.K. Elliott, C.D. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science,2005, 31(4):283~307
    [27]D. Shamp, O. Marin, M. Joshi, et al. Oxy-fuel furnace design optimization using coupled combustion/glass bath numerical simulation. Ceramic Engineering and Science Proceedings,1999,20(1):23~36
    [28]Y.C. Zhao, J.Y Zhang, H.T. Liu, et al.Thermodynamic equilium stugy of mineral elements evaporation in O2/CO2 recycle combustion. Journal of Fuel Chemistry and Technology,2006,34(6):641-650
    [29]K. Andersson, B. Nelsen, F. Johnsson, et al. The CO2 avoidance cost of a large scale O2/CO2 power plant. Greenhouse Gas Control Technologies,2005, (7): 1787~1790
    [30]Y. Hu, S. Naito, N. Kobayashi, et al. CO2, NOx and SO2 emission from the combustion of coal with high oxygen concentration gases. Fuel,2000,79(15): 1925~1932
    [31]A.M. Wolsky, E.J. Daniels and B.J. Jody. Recovering CO2 from large and medium size stationary combustors. J. Air Waste Manage. Assoc.,1991, (41):449~454
    [32]H. Herzog, D. Golomb and S. Zemba. Feasibility modeling and ecomomics of sequestering power plant CO2 emissions in the deep ocean. Environment Progress, 1991,10(1):64~74
    [33]沈迪新.控制的可行性、模式和经济性评估.环境科学进展,1994,2(2):47~56
    [34]费维扬,艾宁,陈健.温室气体CO2的捕集和分离——分离技术面临的挑战和机遇.化工进展,2005,24(1):1~4
    [35]MIT The future of coal. Massachusetts Institute of Technology,2007
    [36]R.K. Rathnam, L.K. Elliott, T.F. Wall, et al. Differences in reacting of pulverized coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Processing Technology, 2009,90(6):797~802
    [37]P.A. Bejarano, Y.A. Levendis. Single-coal-particle combustion in O2/N2 and O2/CO2 enviorments. Combustion and Flame,2008,153(1-2):270~287
    [38]K. Andersson, F. Johnsson. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel,2007,86(5-6):656~668
    [39]B.J.P. Buhre, L.K. Elliott, C.D. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science,2005, 31(4):283~307
    [40]N. Gnanapragasam, B. Teddy, M. Rosen. Reducing CO2 emissions for an IGCC power generation system:Effect of variations in gasifier and system operating conditions. Energy Conversion and Management,2009,50(8):1915~1923
    [41]C. Chen, E.S. Rubin. CO2 control technology effects on IGCC plant performance and cost. Energy Policy,2009,37(3):915~924
    [42]S. Hjartstam, K. Andersson, F. Johnsson, et al. Combustion characteristics of lignite-fired oxy-fuel flames. Fuel,2009,88(11):2216~2224
    [43]M. Liszka, A. Ziebik. Coal-fired oxy-fuel power unit——Process and system analysis. Energy,2010,35(62):943~951
    [44]倪维斗,李政,郑洪韬,等.以氧吹煤气化为核心的多联产能源系统.中美清洁能源技术论坛,北京,2001
    [45]E. Henrich, S. Burkle, Z.L. Meza-Renken, et al. Combustion and gasification kinetics of pyrolysis chars from waste and biomass. Journal of Analytical and Applied Pyrolysis,1999,49(1-2):221~241
    [46]O. Gohlke, M. Busch. Reduction of combustion by-products in WTE plants:O2 enrichment of underfire air in the MARTIN SYNCOM process. Chemosphere. 2001,42(5-7):545~550
    [47]M. Kira, T. Doi, S. Tsuneizum, et al. Development of a new stoker incinerator for municipal solid wastes using oxygen enrichment. MHI Techniocal Review,2001, 38(2):78~81
    [48]D. Toporov, P. Bocian, P. Heil, et al. Detailed investigation of a pulverized fuel swirl flame in O2/CO2 atmosphere. Combustion and Flame,2008,155(4):605~ 618
    [49]M. Okawa, N. Kimura, T. Kiga, et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2. Energy Conversion and Management,1997, 38(1):123~127
    [50]D.C. Park, S.J. Day, P.F. Nelson. Nitrogen release during reaction of coal char
    with O2, C02 and H20. Proceedings of the Combustion Institute,2005,30(2): 2169-2175
    [51]J.I. Hayashi, T. Hirama, R. Okawa, et al. Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed. Fuel,2002, (81):1179~1188
    [52]Y.W. Tan, E. Croiset, A. Mark, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel,2006,85(1):507~512
    [53]L. Wang, D.C. Haworth, S.R. Turns, et al. Interactions among soot, thermal radiation and NOX emissions in oxygen-enriched turbulent nonpremixed flames:a computational fluid dynamics modeling study. Combustion and Flame,2005, 141(1-2):170~179
    [54]B. Horbaniuc, O. Marin, G. Dumitrcu, et al. Oxygen-enriched combustion in supercritical steam boilers. Energy,2004,29(3):427~448
    [55]林汝谋,金红光,蔡替贤.新一代能源动力系统的研究方向与进展.动力工程,2003,23(3):2370-2376
    [56]S. Kishimoto, T. Hirata, M. lijima, et al. Current status of MHI's CO2 recovery technology and optimization of CO2 recovery plant with a PC fired power plant. Energy Procedia,2009,1(1):1091~1098
    [57]C.S. Wang, G.E. Berry, K.C. Chang, et al. Combustion of pulverized coal using waste carbon dioxide and oxygen. Combustion and Flame,1988,72(3):301~310
    [58]S.L. Kokal, S.G. Sayegh. Phase behavior correlation of CO2/heavy oil mixtures for enhanced oil recovery. Fluid Phase Equilibria,1989,52:283~290
    [59]E. Croiset, K. Thambimuthu, A. Palmer. Coal combustion in O2/CO2 mixtures compares with air. Canadian Journal of Chemical Engineering,2000,78(2):402~ 407
    [60]K. Okazaki, T. Ando. NOx reduction mechanism in coal combustion with recycled CO2. Energy,1997,22(2/3):207~215
    [61]刘彦丰.煤粉在高浓度CO2下的燃烧与气化:[博士学位论文].保定:华北电力大学,2001
    [62]N. Kimura, K. Omata, T. Kiga, et al. The characteristics of pulverized coal combustion with oxygen/fuel gas recycle for CO2 recovery. Second International Conference on Carbon Dioxide Removal, October,1994, Kyoto, Japan
    [63]T. Nozaki, S. Takano, T. Kiga, et al. The analysis of the flame in O2/CO2 pulverized coal combustion. Second International Symposium on CO2 Fixation and Efficient Utilization of Energy, October,1995, Kyoto, Japan
    [64]T. Kiga, S. Takano, N. Kimura, et al. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy Conversion and Management,1997,38(1):129~134
    [65]S. Nakayama, Y. Noguchi, T. Kiga, et al. Pulverized coal combustion in O2/CO2 mixtures on a power plant for CO2 recovery. Energy Conversion and Management, 1992,33(5-8):379~386
    [66]A.M. Walsky. A new method of CO2 recovery.79th Annual Meeting of the Air Pollution Control Assoiation, Minneapolis, Minnesota, June 22~27,1986
    [67]S. Takano, T. Kiga, Y. Endo, et al. CO2 recovery from PCF power plant with O2/CO2 combustion process, IHI Engineering Review,1995,28(4):446~450
    [68]K. Okazaki, S. Takano, T. Kiga. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture. Energy Conversion and Management, 1992,33:459~466
    [69]N. Kimura, K. Omata, T. Kiga. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management,1995, 36(6-9):805~808
    [70]F. Normann, K. Andersson, B. Lecner, et al. Emission control of nitrogen oxides in the oxy-fuel process. Process in Energy and Combustion Science,2009,35(5): 385~397
    [71]薛世达.节能的低NOx燃烧器.煤气与热力,1984,(2):34-37
    [72]张永照,牛长山.环境保护与综合利用.北京:机械工业出版社,1982
    [73]徐文彬.NOx大气化学概论及全球NOx释放源综述.地质地球化学,1999,27(3):86~91
    [74]H. Liu, K. Okazak. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOX in O2/CO2 coal combustion with heat recirculation. Fuel,2003,82(11): 1427~1436
    [75]Y.H. Li, L.R. Radovic, G.Q Lu, et al. A new kinetic model for the NO-carbon reaction. Chemical Engineering Science,1999,54(19):4125~4136
    [76]H. Stadler, D. Ristic, M. Forster, et al. NOx-emission from flameless coal combustion in air Ar/O2 and CO2/O2. Proceedings of the Combustion Institute, 2009,32(2):3131~3138
    [77]H. Liu, R. Zailani, M.G. Bernard. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel,2005,84(7-8):833~840
    [78]N. Yabe. An analysis of CO2 emission of Japanese industries during the period between 1985 and 1995. Energy Policy,2004,32(5):595~610
    [79]E. Furimsky. Assessment of coal combustion in O2+CO2 by equilibrium calculations. Fuel Processing Technology,2003,81(1):23~34
    [80]Y. Kitaga, H. Azuma, M. Kiyota. Effects of temperature, CO2/O2 concentration and light intensity on cellular multiplication of microalgae, Euglena gracilis. Advances in Space Research,2005:35(9):1584~1588
    [81]C.M. Chen, C.S Zhao, C. Liang, et al. Calcination and sintering characteristics of
    limestone under O2/CO2 combustion atmosphere. Fuel Processing Technology, 2007,88(2):171~178
    [82]H Liu, S. Katagiri, U. Kaneko, et al. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion. Fuel,2000,79(8):945~953
    [83]H Liu, S. Katagiri, K. Okazzki. Decomposition behavior and mechanism of calcium sulfate under the condition of O2/CO2 pulverized coal combustion. Chemical Engineering Communications,2001,187:199~214
    [84]H. Liu, S. Katagiri, K. Okazaki. Drastic SOx removal and influences of various factors in O2/CO2 pulverized coal combustion system. Energy and Fuels,2001, 15(2):403~412
    [85]E. Croiset, K.V. Thambimuthu. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel,2001,80(14):2117~2121
    [86]E. Croiset, K.V. Thambimuthu. Coal combustion with flue gas recirculation for CO2 recovery. Fuel and Energy Abstracts,2000,41(4):240
    [87]Lunbo Duan, Changsui Zhao, Wa Zhou, et al. Sulfur evolution from coal combustion in O2/CO2 mixture. Journal of analytical and Applied Pyrolysis,2009, 86(2):269~273
    [88]Vattenfall to build CO2-free coal-fired demostation [EB/OL]. http://www. odernpowersystems. com
    [89]J. Gibbins. Immediate strategies of CO2 capture. GCEP International Workshop on Clean Coal Technology Development——CO2 Mitigation, Capture, Utilization and Sequestration. August,2005. Beijing, China
    [90]于岩.O2/CO2燃烧技术中NOx排放特性的实验研究及机理分析:[硕士学位论文].保定:华北电力大学,2003
    [91]王宏,邱建荣,郑楚光.燃煤在O2/CO2方式下NOx生成特性的研究.燃料化学学报,2001,29(5):458~462
    [92]王宏,邱建荣,郑楚光.燃煤在O2/CO2方式下SO2生成特性的研究.华中科技大学学报,2002,30(1):100~102
    [93]徐敏,邱建荣,李骏.CH4火焰中CO2对NO行为影响的实验研究.华中科技大学学报,2002,30(10):17~19
    [94]骆仲泱,毛玉如,吴学成,等.O2/CO2气氛下煤燃烧特性试验研究与分析.热力发电,2004,(6):14~18
    [95]刘彦丰,方立军,李永华,等.变氧浓度下煤焦燃烧的实验与模拟.中国工程热物理学会燃烧学第十届年会,2001
    [96]韩亚芬.富氧条件下煤燃烧特性的热重法实验基研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2008
    [97]李庆钊,赵长遂,武卫芳,等.O2/CO2气氛下煤粉燃烧反应动力学的试验研究.动力工程,2008,28(3):447~452
    [98]邹维祥.富氧燃烧方式下煤粉燃烧特性研究:[硕士学位论文].武汉:华中科技大学,2007
    [99]刘彦,周俊虎,方磊.O2/CO2气氛下煤粉燃烧及固硫特性研究.中国电机工程学报,2004,24(8):224~228
    [100]姜秀民,李巨斌,邱健荣,等.超细煤粉的物理特性及其对燃烧性能的影响.燃料化学学报,2000,(2):75~79
    [101]姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析.中国电机工程学报,2002,22(12):143~146,161
    [102]姜秀民,杨海平,李巨斌,等.煤粉超细化对炉内受热面积灰与结渣的影响.热能动力工程,2002,17(3):36~39,105
    [103]刘彦丰,阎维平,宋之平.炭/碳粒在O2/CO2气氛中燃烧速率的研究.工程热物理学报,1999,20(11):769~772
    [104]刘靖昀.富氧环境下煤粉燃烧特性试验研究:[硕士学位论文].杭州:浙江大学,2006
    [105]樊越胜,邹峥,高巨宝,等.富氧气氛中煤粉燃烧特性改善的实验研究.西安交通大学学报,2006,40(1):18~21
    [106]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究.中国电机工程学报,2005,25(24):118~121
    [107]孟德润,赵翔,周俊虎,等.煤在O2/CO2中燃烧的NOx释放规律.化工学报,2005,56(12):2410~2414
    [108]张利琴,宋蔷,吴宁,等.煤烟气再循环富氧燃烧污染物排放特性研究.中国电机工程学报,2009,29(29):35~40
    [109]李振山,房凡,蔡宁生.高浓度CO2下CaCO3循环煅烧试验与模拟.热能动力工程,2007,22(6):642~646
    [110]彭世尼,黄蓉,黄山,等.过剩空气系数与富氧燃烧对理论燃烧温度影响的数值计算.能源技术,2007,28(1):17~18
    [111]杨浩林,赵黛青,鲁冠军.稀释燃料对富氧扩散燃烧中NOx生成的抑制作用.热能动力工程,2006,21(1):43~47
    [112]刘彦.O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究:[博士学位论文].杭州:浙江大学,2004
    [113]张礼知,王宏,张庆丰,等.O2/CO2气氛下燃煤的钙基脱硫规律的实验研究.燃料化学学报,2000,28(12):508~512
    [114]周英彪,郑瑛,张礼知,等.空气与O2+CO2气氛下钙基脱硫剂固硫规律的实验研究.热能动力工程,2001,16(7):409~411
    [115]董学文,王宏,邱建荣,等.不同气氛下燃煤SO2的排放规律研究.环境科学学报,2003,23(3):322~326
    [116]王宏,张礼知,邱建荣,等.高CO2浓度下钙基吸收剂脱硫的实验研究.工程热物理学报,2001,22(3):374~377
    [117]王宏,张礼知,陆晓华,等.02/C02方式下钙基吸收剂在脱硫过程中微观结构变化的研究.工程热物理学报,2001,22(1):127-129
    [118]J. Krzywanski, T.C. kiert, W. Muskala, et al. Modeling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler:part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions. Fuel Processing Technology,2010,91(3): 364~368
    [119]C.D. Sheng, Y. Li. Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel,2008,87(7):1297~1305
    [120]A. Suriyawong, J.H.J. Christopher, Jingkun Jiang, et al. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2-CO2 coal combustion. Fuel,2008,87(6):673~682
    [121]C.D. Sheng, Y. Li, Xiaowei Liu, et al. Ash particle formation during O2/CO2 combustion of pulverized coals. Fuel Processing Technology,2007,88(11-12): 1021~1028
    [122]J.C. Chen, Z.S Liu, J.S. Huang. Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere. Journal of Hazardous Materials, 2007,142(1-2):266~271
    [123]刘兴家.提高锅炉热效率的新技术——富氧燃烧[J].工业锅炉,2007,(1):10-12
    [124]刘庆才,陈淑荣.富氧燃烧的主要环境影响因素概述.节能环保技术,2004,(5):26-28
    [125]中华人民共和国机械电子工业部.电站锅炉性能试验规程[S]. GB10184-1988.
    [126]阎维平翻译.锅炉性能试验规程[S].ASME PTC 4-1998 [S].北京:中国电力出版社,2004,11.
    [127]阎维平,云曦.ASME PTC 4-1998锅炉性能试验规程的主要特点.动力工程,2007,27(2):174-178,188.
    [128]沈芳平,周克毅,胥建群,等.锅炉效率计算模型的分析与比较.锅炉技术,2004,35(1):48~52.
    [129]北京锅炉厂译.锅炉机组热力计算标准方法.北京:机械工业出版社,1976.28~33
    [130]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算.北京:科学出版社,2003.268~287
    [131]尹雪梅,刘林华.高温气体辐射特性计算模型.热能动力工程,2007,22(5):473~47
    [132]尹雪梅,刘林华,李炳熙.水蒸气和CO2混合气体辐射特性宽带k分布模型.
    中国电机工程学报,2008,28(5):63~68
    [133]李宏顺,周怀春,陆继东,等.炉膛辐射换热计算的一种改进的离散传递法.中国电机工程学报,2003,23(4):162~166
    [134]黄群星,王飞,常瑞丽,等.基于逆向蒙特卡罗法的煤粉炉内辐射能传递计算.中国电机工程学报,2005,27(8):88~93
    [135]A. Soufiani, J. Taine. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO, and correlated k model for H2O and CO2. International Journal of Heat and Mass Transfer,1997,40(4): 987-991
    [136]J. Liu, S.N Tiwari. Investigation of radiative transfer in nongray gases using a narrow band model and Monte Carlo simulation. ASME Journal of Heat Transfer, 1994,116(1):160~166
    [137]D.K. Edwards, A. Balakrishnan. Thermal radiation by combustion gases. International Journal of Heat and Mass Transfer,1997,40(1):987~991
    [138]N. Lallemant, R. Weber. A computationally efficient procedure for calculating gas radiative properties using the expotential wide band model. International Journal of Heat and Mass Transfer,1996,39(15):3273~3286
    [139]G.N. Schenker, B. Keller. Line-by-line calculation of the absorption of infrared radiation by water vapor in a box-shaped enclosure filled with humid air. International Journal of Heat and Mass Transfer,1995,38(17):3127~3134
    [140]A. Soufiani, E. Djavdan. A comparison between weighted sum of gray gases and statistical narrow band radiation models for combustion applications. Combustion and Flame,1994,97(2):240~250
    [141]R. Johansson, K. Andersson, B. Leckner, et al. Models for gaseous radiation heat transfer applied to oxy-fuel conditions in boilers. International Journal of Heat and Mass Transfer,2010,53(1-3):220~230
    [142]O. Marin, R.O. Bukius. A simplified wide band model of the cumulative distribution function for water vapor. International Journal of Heat and Mass Transfer,1998,41(19):2877~2892
    [143]O. Marin, R.O. Bukius. A simplified wide band model of the cumulative distribution function for carbon dioxide. International Journal of Heat and Mass Transfer,1998,41(23):3881~3897
    [144]F. Liu, G.J. Smallwood, O. L. Gulder. Application of the statistical narrow band correlated k method to low resolution spectral intensity and radiative heat transfer calculations effects of the quadrature scheme. International Journal of Heat and Mass Transfer,2000,43(17):3119~3135
    [145]W.C. Wang, G.G. Shi. Total band absorptance and k-disdribution function for atmospheric gases. Journal of Quantitative Spectroscopy & Radiative Transfer,
    1988,39(5):387~397
    [146]P.Y.C. Lee, K.G.T. Hollands, G. D. Raithby. Reordering the absorption coefficient within the wide band for predicting gaseous radiant exchange. ASME Journal of Heat Transfer,1996,118(2):394~400
    [147]M. K. Denison, W. A. Fiveland. A correlation for the reordered wave number of the wide-band absorptance of radiating gases. ASME Journal of Heat Transfer, 1997,119(4):853~856
    [148]L.S. Rothmana, P.C. Camy, J.M. Flaud, et al. HITEMP, the high temperature molecular spectroscopic database 2000[EB/OL]. http://www.hitran.com
    [149]M.F. Modest. Narrow-band and full-spectrum k-disdribution radiative heat transfer-correlated-k vs. scaling approximation. Journal of Quantitative Spectroscopy & Radiative Transfer,2003,76(1):69~83
    [150]M.F. Modest, V. Singh. Engineering correlations for full spectrum k-disdribution of H2O from the HITEMP spectroscopic databank. Journal of Quantitative Spectroscopy & Radiative Transfer,2005,93(1-3):263~271
    [151]M.F. Modest, R.S. Mehta. Full spectrum k disdribution correlations for CO2 from the CDSD-1000 spectroscopic databank. International Journal of Heat and Mass Transfer,2004,47(11):2487~2491
    [152]J. He, R.O. Buckius. Improved band parameters for a simplified wide band cumulative absorption coefficient distribution model for H2O and CO2. International Journal of Heat and Mass Transfer,2008,51(5-6) 1467~1474
    [153]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000
    [154]J. He, W.L. Cheng, R.O. Buckius. Wide band cumulative absorption coefficient distribution model for overlapping absorption in H2O and CO2 mixtures. International Journal of Heat and Mass Transfer,2008,51(5-6):1115~1129
    [155]阎维平,欧宗现,曹锐.电站炉膛分区段改进热力计算方法.锅炉技术,2007,38(5):11~14
    [156]孟德润,周俊虎,赵翔,等.O2/CO2气氛下氮反应机理的研究.环境科学学报,2005,25(8):1011~1014
    [157]李庆钊,赵长遂.O2/CO2气氛煤粉燃烧特性试验研究.中国电机工程学报,2007,27(35):39~43
    [158]李永华,陈鸿伟,刘吉臻,等.800MW锅炉混煤燃烧数值模拟.中国电机工程学报,2002,22(6):101~104
    [159]林鹏云,罗永浩等.燃煤电站锅炉NOx排放影响因素的数值模拟分析.热能动力工程,2007,22(5):529~533
    [160]邢菲,樊未军.某200MW四角切圆锅炉燃烧器改造降低NOx数值模拟.热能动力工程,2007,22(5):534~538
    [161]阎维平,刘亚芝.300MW四角切圆煤粉锅炉燃烧工况的数值模拟及优化研究. 锅炉技术,2007:38(6):14~19
    [162]CFX-TASCflow User Documentation Version2.10 [Z]. AEA Technology Engineering Software Limited Water-loo, Ontario, Canada N2,5Z4, Oct.,2000
    [163]CFX-TASCflow Theory Documentation Version2.10 [Z]. AEA Technology Engineering Software Limited Waterloo, Ontario, Canada N2,5Z4. Oct.,2000
    [164]E.H. Chui, M.A. Douglas, Yewan Tan. Modeling of oxy-fuel combustion for a weatern Canadian sub-bituminous coal. Fuel,2003,82(10):1201~1210
    [165]K.A. Thole, R.W. Radomsky, M.B. Kang, et al. Elevated freestream turbulence effects on heat transfer for a gas turbine vane. International Journal of Heat and Fluid Flow,2002,23(2):137~147
    [166]贾力,方肇洪,钱兴华,等.高等传热学.北京:高等教育出版社,2006.172~180
    [167]范维澄,万跃鹏.流动及燃烧的模型与计算.合肥:中国科学技术大学出版社,1992.132~138
    [168]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991.116~227
    [169]陶文铨.传热与流动问题的多尺度数值模拟.北京:科学出版社,2009.
    [170]赵坚行.燃烧的数值模拟.北京:科学出版社,2002.35~64.
    [171]王应时,范维澄,周力行,等.燃烧过程数值计算.北京:科学出版社,1986,43~78
    [172]李芳.燃煤锅炉分级燃烧过程的数值模拟:[硕士学位论文].大连:大连理工大学,2006
    [173]李争起,吴少华,孙锐,等.配风方式对旋流煤粉燃烧器NOx的排放及煤粉燃尽的影响.动力工程,1997,17(2):27~31
    [174]A. Molina, C.R. Shaddix. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proceedings of the Combustion Institite,2007,21(2):1905~1912
    [175]J. Murphy, C.R. Shaddix. Combustion kinetics of coal chars in oxygen-enriched enviorments. Combustion and Flame,2006,144(4):710~729
    [176]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1986.130-300
    [177]E. Kakaras, A. Koumanakos, A. Doukelis, et al. Oxyfuel boiler design in a lignite-fired power plant. Fuel,2007,86(14):2144~2150
    [178]茹卡乌斯卡斯著.换热器内的对流换热(马昌文,居滋泉,肖宏才译).北京:科学出版社,1986.363~370
    [179]李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展.热能动力工程,2007,22(3):231~236
    [180]谢国英,庞明军.换热器传热数值模拟的两个假设.山西化工,2005,25(4):
    44~47
    [181]赵泽光.300MW电站锅炉炉膛壁面热负荷分布的数值模拟:[硕士学位论文].保定:华北电力大学,2005
    [182]P. J. Coelho. Numerical simulation of the interaction between turbulence and radiative in reaction flows. Progress in Energy and Combustion,2007,33(4): 311~383
    [183]崔立祺.基于FLUENT的板式换热器三维数值模拟:[硕士学位论文].杭州:浙江大学,2008
    [184]黄克智,薛明德等.张量分析.北京:清华大学出版社,2003,15~200
    [185]C. Ekstrom, F. Schwendig, O. Biede, et al. Techno-economic evaluation and benchmarking of pre-combustion CO2 capture and oxy-fuel progress. Energy Procedia,2009,1(1):4233~4240
    [186]J. Xiong, H.B. Zhao, C.G. Zheng, et al. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China. Fuel,2009,88(6):1135~1142
    [187]方梦祥,张卫风,晏水平,等.燃煤电厂分离CO2的经济性分析.浙江大学学报(工学版),2007,41(12):2077~2081
    [188]M. Gambini, M. Vellini. CO2 emission abatement from fossil fuel power plants by exhaust gas treatment. Proceedings of International Joint Power Generation Conference. USA,2000:11.
    [189]H.J. Herzog. The economics of CO2 separation and capture [R]. Cambridge, Massachusetts, USA:MIT Energy Laboratory,1997.
    [190]D. Singh, E. Croiset, P.L. Douglas, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management,2003,44(19):3073~3091
    [191]黄斌,许世森,郜时旺,等.燃煤电厂CO2捕集系统的技术与经济分析.动力工程,2009,29(9):864-867,874
    [192]张卫东,张栋,田克忠.碳捕集与封存技术的现状与未来.中外能源,2009,14(11):7-14
    [193]国内首个万吨级二氧化碳捕集装置投运[EB/OL]. http://energy.people.com.cn/GB/10818940.html
    [194]E. Kakaras, A. Koumanakos, A. Doukelis, et al. Simulation of a greenfield oxyfuel lignite-fired power plant. Energy Conversion and Management,2007, 48(11):2879~2887
    [195]史美中,王中挣.热交换器原理与设计.南京:东南大学出版社,1999
    [196]BEJAN A. Entropy Generation through Heat and Fluid Flow. New York:Wiley, 1982
    [197]R.L. Webb. Performance evaluation criteria for used of enhanced heat exchanger surface in heat exchanger design. International Journal of Heat and Mass Transfer.1981,24(4):715~726
    [198]K S福兰德T,福兰德S克斯罗.不可逆过程热力学——理论及应用.许茜,马一鸣,邱竹贤,译.北京:冶金工业出版社,2001
    [199]熊大曦,李志信,过增元.换热器的效能与熵产分析.工程热物理学报,1997,18(1):90~94
    [200]程新广,孟继安,过增元.导热优化中的最小传递势容耗散与最小熵产.工程热物理学报,2005,26(6):1034~1036
    [201]刘尔新,王承阳.锅炉的熵产及其环境影响分析.节能,2006,25(6):11~13
    [202]杨洪海.利用ε-NTU法计算换热器的传热熵产生数.中国纺织大学学报,2000,26(2):17~19
    [203]徐百平,江楠,雷鸣.强化传热效能的比熵产数工况评价方法.石油炼制与化工,2000,31(6):46~49
    [204]赵明泉.锅炉结构与设计.哈尔滨:哈尔滨工业大学出版社,1991
    [205]倪振伟.换热器的热力学第二定律分析与评价方法.工程热物理学报,1985,6(4):311~314
    [206]吴双应,牟志才,刘泽筠.换热器性能的(?)经济评价.热能动力工程,1999,14(84):437~440
    [207]卿定彬.工业炉用热交换装置.北京:冶金工业出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700