豌豆根瘤菌高效菌株的筛选及共生匹配性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验旨在从中国农业科学院微生物菌种保藏管理中心引进的9株豌豆根瘤菌中筛选出与定西地区主栽豌豆品种相匹配的有效性高、竞争性强的高效菌株。供试品种燕农2号和绿豌豆是甘肃定西地区主要推广的两个豌豆品种,但目前还没有与之相匹配的高效根瘤菌菌剂,本文采用盆栽试验与大田试验相结合的方法,研究了接种不同根瘤菌对不同品种豌豆生长、固氮结瘤特性、产量及产量构成因子等的影响,得出以下主要结论:
     在相同的环境条件下,根瘤菌与豌豆品种存在共生多样性与专一选择性。对燕农2号,菌株ACCC16103、ACCC16101、ACCC16110和ACCC16082,对绿豌豆ACCC16110、ACCC16103、ACCC16082和ACCC16063是高效菌株,它们的单株全氮含量比各自的对照分别增加62.25%、60.60%、29.47%、27.15%、44.44%、43.39%、40.00%和39.36%,固氮效率分别比各自的对照增加38.37%、37.73%、22.76%、21.35%、30.77%、30.31%、28.57%和28.25%,菌株ACCC16103、ACCC16110和ACCC16082具有更好的广谱性,适应于两个豌豆品种,菌株ACCC16101对燕农2号是高效菌株,菌株ACCC16063对绿豌豆是高效菌株;不同菌株与不同豌豆品种间的共生有效性有明显的差异。在氮素含量极低的条件下,根瘤菌与豌豆共生,可通过固氮满足植物对氮素的营养需求,接种不同的根瘤菌均能增加豌豆的单株结瘤数、单株瘤干重和单株全氮含量,提高豌豆的固氮效率。但不同的根瘤菌对不同品种豌豆的固氮结瘤特性有差异,影响根瘤菌固氮量的因子主要是单株瘤数和单株瘤干重,它们之间成显著性正相关关系。
     接种不同的根瘤菌对不同品种豌豆生长有明显的促进作用,在不同的生育时期,不同的根瘤菌对不同品种豌豆生长的促进作用不同,对于高效菌株,其促进作用后期大于前期,在分枝期,由于接种的根瘤菌还未浸染豌豆植株的根部或浸染力很低,在现蕾期,接种根瘤菌的作用开始发挥,但不是很大;盛花期是豌豆单株瘤数、单株瘤干重最大且根瘤菌活性最强的时期,也是豌豆生长的关键时期。此时,其株高,地上部分鲜重、干重,地下部分鲜重、干重等明显优于不接种的对照,纵观豌豆整个生育期,接种上述优良菌株的处理,不但色深,叶茂,植株高大粗壮,而且根瘤多,瘤体大。对燕农2号,高效菌株ACCC16101(B2),ACCC16103(B5)和ACCC16082(B8),对绿豌豆,高效菌株ACCC16082(B8)、ACCC16110(B3)、ACCC16101B2(B2)、ACCC16063(B9);它们在单株结瘤数、单株瘤干重、地上部分鲜重、干重、根鲜重、根干重以及植株全氮含量方面明显优于其他处理;大田试验结果表明,对燕农2号,单株结瘤数,瘤干重,地上部分干重等生育指标较好的仍然是菌株ACCC16101(B2),ACCC16103(B5),说明优选菌株具有一定的稳定性,这与盆栽试验结果表现出了较好的增产一致性。
     与豌豆品种共生匹配性能较好、适应于当地生态环境因子的菌株均提高了豌豆的单株分枝数、单株籽粒产量和千粒重,接种根瘤菌对豌豆植株的单株粒数、单株荚数、主茎节数无显著影响、在盛花期对豌豆地上部分鲜重和地上部分干重也无显著影响,但在成熟期对单株生物量有显著影响。接种高效的根瘤菌能有效的提高豌豆的经济产量和水分利用效率。菌株ACCC16101对豌豆经济产量、结瘤状况、生长态势较其它菌株均具有明显优势。接种ACCC16101比对照增产了48.76%。菌株ACCC16103尽管未表现出和菌株ACCC16101增产效应,但其瘤干重、单株结瘤数、植株全氮含量均比对照增加了82.61%、49.09%、和40.74%。经大田试验验证,初步认为对豌豆品种燕农2号,ACCC16101和ACCC16103是适应与定西地区生态环境因子的根瘤菌接种、根瘤菌剂生产的首选菌株。
The test aimed at screening and matching of Rhizobium strains related to local pea varieties was conducted in Dingxi city in 2007,The nine Rhizobium introduced from Microbial Strains Storage and Management Centre of the Chinese Academy of Agricultural Science.and Yannong 2 and green pea are the two major pea varieties in Dingxi city in Gansu province, In this study, combining pot experiment with field test, the impact on the growth, nodulation of nitrogen fixation, yield and its factors of different varieties were studied. the major conclusions as following:
     In the same environmental conditions, Rhizobium and pea varieties exist symbiotic diversity and specific selectiveness, for Yannong 2, strains ACCC16103, ACCC16101, ACCC16110 and ACCC16082 are the best, while for Green Pea, ACCC16110, ACCC16103, ACCC16082 and ACCC16063 strains are efficient, And their individual total nitrogen content compared with their respective control increased 62.25%, 60.60%, 29.47%, 27.15%, 44.44%, 43.39%, 40.00% and 39.36%, respectively, the efficiency of nitrogen-fixing increased 38.37%, 37.73 %, 22.76%, 21.35%, 30.77%, 30.31%, 28.57% and 28.25% than their control, ACCC16103, ACCC16110 and ACCC16082 had broad-spectrum, adapting to two pea varieties efficiently. ACCC16101 is highly effective on Yannong2, ACCC16063 is a high-performance strain for green peas; the symbiotic effectiveness of different strains with different pea varieties had a significant difference. Under low nitrogen content condition, the Symbiosis of Rhizobium and pea can meet the nutritional needs of plants through nitrogen fixation. No matter which Rhizobium strains inoculated can increase the number of nodules per plant,tumor dry weight per plant and full nitrogen content per plant; can improve the efficiency of nitrogen fixation. However, for the characteristics of nitrogen-fixation and nodulation varied when different varieties inodulated with different Rhizobium. the impact of nitrogen-fixing Rhizobium the major factors which affected the nitrogen content are the number of nodules and tumor dry weight per plant, and they are significant positive correlation.
     Different Rhizobium for two varieties both had positive impacts on pea growth, which was different at growth cycle. High efficiency strains the positive role in pro–growth is more than that of post-growth, because the root did not invased by Rhizobium at branching stage, and it was still not affecting at budding time; at flowering stage, it was the key stage for pea growth and stage for Rhizobium activity. At this time,the impact on plant height, stem, leaves, overground part fresh weight and dry weight is significantly better than that of the control. Observation from the entire growth cycle, the treatment inoculated with the fine strains are not only with deep color, flourish leaves, tall and stout plants, and also with numerous nodules and tumors. For Yannong 2, the strains with better performance are ACCC16101 (B2), ACCC16103 (B5) and ACCC16082 (B8). The number of nodules, tumor dry weight per plant, overground part plant dry weight, fresh weight of root, root dry weight and nitrogen content of plants are superior to other treatments; while for green peas, the strains with better performance are ACCC16082 (B8), ACCC16110 (B3), ACCC16101B2 (B2) and ACCC16063 (B9), the above indicators are also better than the other treatments. Field test results showed that for Yannong 2, the strain with better indicators such as the number of nodules, tumor dry weight per plant, overground part plant dry weight, fresh weight of root, root dry weight and nitrogen content of plants is still the ACCC16101 (B2), which means optimized strains that have a certain stability. Compared to pot test it had a better yield consistency.
     The strains which can match perfectly with pea varieties, adapting to local ecological environment improved branches per plant, grain yield per plant and 1000-grain-weight, while had few the number of stems grains and pods per plant, and had no impacts on overground part fresh and dry weight at full-bloom stage, but in the maturity had a significant impacts on plant biomass. vaccination efficient of Rhizobium can effectively improve economical outputs and water use efficiency. ACCC16101 has positve influence on economical yield, nodulation status, the growth momentum than other strains. The yield increased 48.76%. despite the strain ACCC16103 did not show the same yield increasing effect like strain ACCC16101, but the nodules dry weight, the number of nodules per plant and the total nitrogen content compared to the control increased by 82.61%, 49.09% and 40.74%. Primarily, For Yannong2,it was believed ACCC16101 and ACCC16103 were preferred bacterial strains for rhizobium inoculation and rhizobium inoculants production.
引文
[1] Pliverira A.L.M,Urquiaga S,Dobereiner J,etal.Biologicalnitrogen fixation (BNF) in micropropagated sugarcane plantsinoculated with different endophytic diazotrophic bacteria. Nitrogen Fixation:From Molecules to Crop Productivity. (eds.Pedrosa F.O,Hungria M, Yates M.G,etal) Dordrecht/ Boston/ London:Kluwer Academic Publishers,1999.425-427.
    [2] Dudeja S.S, etal.Persistence of Dradyrhizobium SP.(cajanus) in a sandy loam[J]. Soil Boil Biochem. 1989, 21(5):70-97.
    [3]四川省科学技术协会.四川农业科技手册[M].成都,四川人民出版社,1981:80.
    [4] Chittoni N.E,BUENO M.A,Changes in the cellular content of trehalose in four peanut rhizobia strains cultured under by hypersalinity[J],Symbiosis,1996,20:117-127.
    [5] Brockwell J, BottomLey PJ, Thies JE.Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment[J], Plant Soil,1995, 174:143-180.
    [6] Peoples M.B,Herridge D.F,Ladha J.K, Biological nitrogen fixation: an efficient source of nitrogen for sustainable agriculture production[J],Plant Soil,1995,174:3-28.
    [7] Apse M.P,Asharon G.S,Snedden W.A,Blumwald E,Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J],Science,1999,285:1256-1258.
    [8] Idrissi M.M.E,Aujjar N,Dessaux Y,Filali-Maltouf A,Characterization of rhizobia isolated from Carob tree (Ceratonia siliqua)[J], Appl Bacteriol,1996,80(2):165-173.
    [9] Johri K.J,Surange S, Nautiyal C.S, Occurrence of salt, pH and temperature-tolerant, phosphate- solubilizing bacteria in alkaline soils[J],Current Microbiol,1999,39(2):89-93.
    [10] Surange S, Wollum A.G, Kumar N, Nautiyal C.S, Characterisation of Rhizobium from root nodules of leguminous trees growing in alkaline soils[J], Microbiol,1997,43(2):891-894.
    [11]陈廷伟,非豆科作物固氮研究进展[J].中国农业科技出版社,1994年第二版,3-9.
    [12]莫才清,周俊初,李阜棣.根瘤菌标记技术及其发展[J].生物技术通报,1996,(4):4-6.
    [13]朱兆良.合理使用化肥充分利用有机肥.发展环境友好的施肥体系[J].中国科院院刊,2003, yema
    [14] Suneeta K,Chandra Shekhar Nartiyal.Effect of Salt and pH Stress on temperature-tolernant Rhizobiurrc sp.NBR1330 Nodulating Prosopis juli flora[J], Current Microbiology, 2000,40:221-225.
    [15] Yap S F,Lim S.T, Response of Rhizobium sp.UMKL20 to sodium chloride stress[J],Arch Microbiology, 1983,135(3):224-228.
    [16] Pate J.S,Temperature characteristics of bacterial variation in legume symbiosis[J],Nature,1961, 192:637-639.
    [17]卢嘉锡等.科学新闻周刊[D],2000, (39):第6版.
    [18] National Academy of Sciences of the United States of America,Micr-obial Procrsses:Promisimg Technologies for Developing Countries[M], Was-hington,DC,National Academy of Sciences 1979.
    [19] Cordvilla M.P,Growth and symbiotic performance of faba been inoculated with Rhizobium Leguminosarm biovar vicia strains tolerant to salts[J],Soil Sci.Plant Nutr,1996,42:133-140.
    [20] Denarie J,Roche P.Rhizobium nodulation signals,Molecular Signals in Plant-Microbe Communications (ed.Verma DPS). BocaRaton/Ann Arber:/London:CRC Press,1991.296-324.
    [21] Ribbe M,Gadkari D,Meyer O, N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and amanganese-superoxide oxidoreductanse that couple N2 reductionto the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase [J],Biological Chemistry,1997,272:26627-26633.
    [22]Tan Z.Y, Xu X.T, Wang E.T, etal. Phylogenic and geneticrelationoships of Mesorhizobium tianshanenese and relatedrhizobia[J],Syst Bacteriol,1997,47:874-879.
    [23]Wang E.T, van Berkum P, Sui X.H, etal. Diversity of rhizobiaassociated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium zmorpphae [J], Syts Bacteriol, 1999, 49:51-65.
    [24]Tan Z Y, Wang E T, Peng G X, etal. Characterization of bacteria isolated from wild legumes in the North-Western regions of China[J],Syst Bacteriol,1999,49:1457-1469.
    [25]Yan A M, Wang E T, Kan F L, etal. Sinorhizobium melilotii associated with Medicago sativa and Melilotus spp[J], Syst Bacteriol,2000,50:1887-1891.
    [26]李友国,周俊初,影响根瘤菌共生固氮效率的主要因素及遗传改造[J].微生物学通报,2002,29(6):86-89.
    [27] Dudeja S S,etal. Persistence of Dradyrhizobium SP.(cajanus) in a sandy loam[J].Soil Boil chem,1989,21(5):709-713.
    [28] Evans J,etal. Nodulation of field-grown Pisum sativum and Vicia faba:Lcompetitiveness of inoculant strains of rhizobium leguminosarum by.Viciae determined by an indirect competitive ELISA method[J],Soil Biolchem,1996,28(2):247-255.
    [29] Janice E T ,etal. Modeling symbiotic performance of introduced Rhizobia in the field by use of indices populations size and nitrogen status of the soil[J], Appl Environ Microbiol 1991,57(1):29-37.
    [30]Hiltbold A E, Patterson R M, Reed R B. Soil populations of Rhizobium japonicum in a cotton-corn-soybean rotation[J],Soil Sci Soc Am J,1985,49:343—348.
    [31]McDermott T R,Graham P H,Ferrey M L.Competitiveness of indigenous populations of Bradyrhizobium japonicum serocluster 123 as determined using a root-tip marking procedure in growth pouches[J].Plant Soil,1991,135:245-250.
    [32] Hurse L S,Date R A,Competitiveness of indigenous strains of Bradyrhizobium on Desmodium intortum cv Greenleaf in three soils of South East Queensland[J]. Soil Biol Biochem,1992,24:41-50.
    [33]马其东,刘自学,洪级曾等.不同根系发育能力的苗拾品种接种根瘤菌的效果[J].草业学报,1999,8(4):36-45.
    [34]张宪武,大豆根瘤菌在不同土壤上接种效果试验[D].土壤微生物学集刊,第一号52-57.
    [35] Shen S C,Organization and regulation of nitrogen fixation genes:1974-1995. In:Kung S D, Yang S F, eds. Discoveries in PlantBiology.VolⅢ.Dordrecht/Boston/London:World ScientificPress, 2000. 383-392.
    [36]朱家壁,俞冠翘,江群益,等.基因nifA产物对肺炎克氏杆菌(Klebsiella pneumoniae)gln突变型的Nif表型的校正和固氮酶的组成型合成的作用[J].中国科学,B辑,1983,(8):688-696.
    [37] Hu B,Zhu J B,Shen S C,etal. A promoter region binding proteinand DNA gyrase regulae anaerobic transcription of nifAL inEnterbacter cloacae[J], Bacteriol,2000,82:3920-3923.
    [38] Wang Y P,Birkenhead K,Boesten B,etal.Genetic analysis andregulation of the Rhizobium melilotii genes controlling C4-dicarboxylic acid transport[J].Gene,1989,85:135-143.
    [39] Bosworth A H,Williams M K,Albrecht K A,etal.Alfalfa yield response to inoculation with recombinant strains of Rhizobium melilotii with an extra copy of dctABD and/or modified nifA expression[J],Appl Environ Microbiol,1994,60:3815-3832.
    [40]林敏,尤崇杓,刘永正,等.重组耐铵固氮菌株的田间长期定点释放试验[J].生物技术学报,1995,1: 28-33.
    [41]李永兴,李久蒂,卢林刚,等.玉米联合固氮工程菌Enterobactergergivuae E7在田间的接种效应[J].中国农业科学, 2000,33:72-77.
    [42] Shen S C, wang S P,Yu G Q,etal. Expression of the nodulationand nitrogen fixation genes in Rhizobium melilotii duringdevelopment[J].Genome,1989,31:354-360.
    [43]王水平,朱家璧,俞冠翘,等.苜蓿根瘤菌(Rhizobium meliloti)nifA基因的异源表达及其产物的氧敏感性[J].中国科学,B辑,1990,(3):261-266.
    [44] Deng X P, Shen S C. Structure and oxygen sensitivity of nifLApromoter of Enterobacter cloacae[J].Science in China,Ser B,1995,38(1):60-66.
    [45]赵洁平,戴小密,许玲,等.固氮正调节基因nifA促进大豆根瘤菌的结瘤效率[J].科学通报,2001, 46(23):1984-1987.
    [46]高云峰,吴桐,朱家璧,等.苜蓿根瘤菌固氮酶基因启动子P1转录起始点下游顺序(DS)的特性[J].中国科学,C辑,1996,26(2):100-106.
    [47]沈炳福.水稻对耐铵工程固氮菌株的响应[J].植物生理学报,1995,21:302-306.
    [48]张福星,尤崇杓,卢婉芳.环境因子变化的水稻氮素吸收及接种效应的影响[J].农业生物技术学报, 1995,1:93-98.
    [49] Xiao H,Shen S C,Zhu J B,NifLan antagonistic regulator of NifA interacting with NifA[J],Science in China,Ser C,1998,41(3):303-308.
    [50]何路红,阎大来,马旅雁.肺炎克氏杆菌nifA基因在巴西固氮基因表达的铵调节中的作用[J].生物工程学报,1995,11:385-388.
    [51]马旅雁,吴奥,赵银锁.巴西固氮螺菌Yu62 dragTG基因及其下游区域的定位诱变[J].生物工程技术学报,1999,15:281-287.
    [52]马旅雁,李季伦.巴西固氮螺菌Yu62 dragTG基因启动子区域的核苷酸序列及其功能分析[J].生物工程学报,1997,13:343-349.
    [53]朱冰,戴小密,朱家璧,等.苜蓿根瘤菌nodD3P1启动子下游序列的调节功能[J].科学通报,1999, 44(21):2308-2312.
    [54] Yu G Q,Zhu J B,Gu J,etal. Evidence that the nodulation regulatory gene nodD3 of Rhizobium melilot is transcribed from two separate promoters[J]Science in China,Ser B,1993,36:225-236.
    [55]吴桐,朱家璧,俞冠翘,等.苜蓿根瘤菌多拷贝固氮基因启动子对根瘤发育的抑制[J].中国科学,B辑, 1994,24(10):1053-1059.
    [56]陈迪,刘彦杰,朱家璧,等.苜蓿根瘤菌(Sinorhizobium meliloti)nodD3P1启动子下游序列的缺失和互补分析[J].中国科学, C辑,2002, 32(6): 512~518.
    [57]Wang L,Li C,Wang Q,etal.Chemical synthesis of NodRm-1:thenodulation factor involved in Rhizobium melilotii-legumesymbiosis[J].Chem Soc Perkin Trans, 1994, 1: 621~628.
    [58]Zhang J X, Jing Y, Shen S H, etal. Transformation of two nitrogen- fixation-related plant genes into tobacco and their expressions[J].Acta Botanica Sinica, 2000, 42: 834-840.
    [59] Zhang J X, Wang Y P, Sheng S H, etal. Transformation of pealectin gene and Parasponia haemoglobin gene into rice and theirexpressions[J]. Acta Botanica Sinica, 2001, 43: 267~274.
    [60]金润之,江群益,沈思师,等.紫云英根瘤菌nifDNA的分子克隆[J].科学通报,1992,37(17): 1603~1606.
    [61]金润之,朱劲松,江群益,等.紫云英根瘤菌Ra159的巨大质粒上存在有nod和nif基因的证明[J].微生物学报, 1993, 33: 170~173.
    [62] Wang Y P, Kolb A, Buck M, etal. CRP interacts withpromoter-bound 54 RNA polymerase and blocks transcription alactivation of the dctA promoter[J]. EMBO J, 1998, 17: 786-796.
    [63] Tian Z X, Li Q S, Buck M, etal. The CRP-cAMP complex anddownregulation of the glnAp2 promoter provides a novelregulatory linkage between carbon metabolism and nitrogenassimilation in E.coli[J],Mol Microbiol, 2001, 4: 911-924.
    [64]樊庆生,接种根瘤菌的结瘤率取决于菌系的专适性和寄主的遗传性.中国微生物学会论文摘要汇编[D],1979,187.
    [65]胡济生,豆科植物固氮效率大田调查方法[J].中国农业科学,1964年第八期,20-23.
    [66]王桂荣,生物固氮是大面积提高土壤肥力的有效措施[J].中国水土保持,1989(2):26-27.
    [67]中国科学院植物研究所,中国主要植物图说第5册·豆科[M],科学出版社,1995(5):724
    [68]林稚兰,黄秀梨,现代微生物学与实验技术[M],北京:科学出版社,2000,151
    [69]Allen,O.Nand Allen,E.K.The Leguminosae: a souce book of characteristics,use and nodulation[M]. university of Wisconsin press,1981
    [70]Chen w.x,etal. Numerical taxonomy study on fast growing soybean rhizobia and a proposal that rhizobium frdii be assigned to sinorhizobium [J].syst.bacteriol,1988,38(34):391-397.
    [71]B.D.W.Jarvis,p.van Berkum,etal.Transfer of rhizobium loti, R.huaknii, R. mediterraneum, and R. tianshanese to mesorhizohium[J].syst.bacteriol,1997,47(3):895-898.
    [72] Chen W .X,etal. Rhizohium huakuii sp. nov. Isolated from the Root of Nodule of Astragalus sinicus [J].syst.bacteriol,1991,41(2):275-280.
    [73] Chen W X, etal.characteristics of Rhizohium tianshancse sp.nov.,a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, people’s Republic: of China[J].syst bacterial.1995.45(1):153-159.
    [74] Chen W X,etal. Rhizobium hainanese sp.nov.,isolated from tropical legumes, [J].syst bacterial.1997.47(3):870-873.
    [75] Wang E. T.,P. van Berkum, Chen W. X,etal. Rhizohin,huautlenese sp.nov.,a symbiont of sesbania berbacae which has a close phylogenetic relationship with rhizobium galegae[J].syst bacterial.1998.48(1):687-699.
    [76] Wang E.T.,P. van Berkum,Chen W.X, etal. Diversity of rhizobia associated with Amorphae fruticosa isolated from Chinese soil and discriplion of Mesorhizobium amorphase sp. nov[J].syst bacterial.1999.49(1):51-65.
    [77]Tan Z Y.,Kan F. L,Chen W.X,etal. Rhizobium yangling genes Sp. nov.,isolated from arid and semi-arid rogions in China. 2001, 51:909-914.
    [78] Xu L., etal. Bradyrhizohinm liaoningenses sp. Nov.,isolated from the root nodules of sovhoan[J].syst bacterial.1995.45(1):706-711.
    [79] Zhang, X X,etal.The common nodulation genes of Astrgalus sinicus rhizobia are conseved despite chromosomal diversity[J]. Appl. Environ.Microhiol. 2000, 66(7):2988- 2995
    [80]《中国农业百科全书》编写组.中国农业百科全书.农作物卷(上)[M].北京:农业出版社,1994.30-36.
    [81]郑卓杰,宗绪晓,刘芳玉.食品豆类栽培技术问答[M].北京:中国农业出版社,1998.30-31.
    [82]杨红,王锁民不同含水量的豌豆种子萌发时物质动员及代谢研究[J].西北植物学报,2002, 22(4):851-858.
    [83]唐玉树,张福锁,王震宇,等.缺硼豌豆植株侧芽生民机理的研究[J].植物营养与肥料学报,1999, 5(1): 62-66.
    [84]闫世才,毛学文,杨勇理.铝对豌豆生长的影响[J]生态学杂2003,22(2):80-81.
    [85]刘尊英,姜微波,冯双庆.脱落酸、乙烯和赤霉素对豌豆苗采后品质的影响[J].食品科学,2003, 23: 112-113.
    [86]陈文新.豆科植物根瘤菌—固氮体系在西部大开发种的作用[J].草地学报,2004,12(1):1-2.
    [87]宁国赞,刘惠琴,马晓彤.豌豆根瘤菌优良菌种筛选及应用的研究[J].中国草地,1997,(2):48-51.
    [88]F J Temprano,M.Albareda,etal. Survival of Several Rhizobium/Bradyrhizobium Strains on Different Inoculation and Inoculated Seeds[J], Microbial,2002,5:81-86.
    [89]Burton J C,hizobium culture and use[M]Peppler HJ(ed) Microbial technology. Reinhold,New York.ppt 1-33.
    [90]牛俊义,杨祁峰.作物栽培学研究方法[M].兰州:甘肃民族出版社,1998.41-46.
    [91]吴海燕,花生根瘤菌高效菌株的筛选及固氮效果的研究[D].中国长春:吉林农业大学,2002,6.
    [92]谢奎忠,黄高宝,李玲玲,等.施钾对旱地豌豆产量,水分效应及土壤钾素的影响[J].干旱地区农业研究,2004,25.(2):16-19.
    [93]徐传瑞,大豆根瘤菌的分离与筛选[J].华中农业大学学报,2004,23.(6):635-638.
    [94]葛诚,快生性大豆根瘤菌共生特性的研究[J],中国油料,1986,2:69-73.
    [95]吴薇,葛诚,我国微生物肥料生产和应用现状的调查研究[J],微生物学通报.1995,22(2):104-107.
    [96]曹凤明,日本及一些国家对微生物肥料产品的管理[J].土壤肥料,1998(2):42-44.
    [97]葛诚,微生物肥料研究、生产和应用的几个问题[J].微生物学通报,1995,22(6):378-380.
    [98]陈廷伟,我国微生物肥料发展趋势[M].北京:中国农业科技出社,1996.40-44.
    [99]李元芳,绿色食品与微生物肥料[M].北京:中国农业科技出社,1996.221-222.
    [100]Liu Zhaohui,Jiang Lihua,Nie Yan,etal.Research,application of microbial fertilizer and its important research area White Agriculture [M]. Beijing: China Agricultural Sci-tech Press,2001.141-144.
    [101]陈文新,汪恩涛,陈文峰.根瘤菌—豆科植物共生多样性与地理环境的关系[J].中国农业科学,2004,37(1):81-86.
    [102]马其东,刘自学,洪绂曾,等.不同根系发育能力的苜蓿品种接种根瘤菌的效果[J].草业学报,1999,8(1):36-45.
    [103]中国草原学会.中国草地科学进展(第四届第二次年会暨学术讨论会文集)[J].北京:中国农业大学出版社,1998.132-135.
    [104]陈文新,李阜.闫章才.我国土壤微生物学和生物固氮研究的回顾与展望[J].世界科技研究与发展,2002,4:7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700