超级杂交稻冠层特性与太阳辐射利用及其对产量影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界人口的不断增加,粮食问题始终是各国政府和科技界关注的重大事情。自农业部1996年启动实施了中国超级稻育种计划以来,截至2009年6月全国已有69个新品种(组合)通过了农业部超级稻品种认定,到2008年底全国超级稻品种推广面积达8342万亩,占全国水稻面积的19.2%,超级杂交稻在粮食生产中逐渐发挥增产作用。由于作物产量是作物群体拦截的太阳辐射量、辐射利用率、收获指数三者的乘积,因此明确超级杂交稻对太阳辐射的拦截强度与利用效率,及其与水稻冠层特性的关系和对产量的影响,对于指导超级杂交稻生产具有重要意义。为此,我们开展了不同基因型比较、施氮和播期对超级杂交稻影响的试验研究,结果如下:
     1、超级杂交稻产量显著高于普通杂交稻和常规稻。
     超级杂交稻产量分别显著高于普通杂交稻和高产常规稻21.7%和15.8%。增产的原因,从产量构成因素看,主要是由于超级杂交稻的穗粒数分别显著高于普通杂交稻和高产常规稻20.6%和18.0%,单位面积颖花量分别显著高于普通杂交稻和高产常规稻21.7%和15.2%;从干物质积累量看,超级杂交稻的干物质总量分别高于普通杂交稻和高产常规稻1.6%和5.7%,同时收获指数分别显著高于普通杂交稻和高产常规稻11.5%和7.7%;从群体光能利用方面分析,超级杂交稻的辐射利用率比普通杂交稻高6.1%,不同生育时期的辐射截获量比高产常规稻高6.8%~14.7%;从群体冠层特性指标看,叶面积指数在生长发育中后期比高产常规稻高2.4%~12.1%,比叶重在生长发育中后期比普通杂交稻高13.4%~18.5%,比高产常规稻高6.1%~8.9%,光合速率也显著高于非超级杂交稻。
     2、超级杂交稻产量受播期的明显影响。
     本试验条件下,随播期推迟,产量下降2.4%,产量降低的原因:从产量构成因子看,主要是因为穗粒数下降26.6%和总颖花量下降6.1%;从干物质看,尽管干物质积累总量增加4.7%,但收获指数降低7.7%,导致产量下降。从孕穗期开始,群体的辐射截获量增加4.2%~21.4%,辐射利用率只下降1.4%,但由于收获指数下降,最终导致产量降低。随着播期的推迟,中后期群体冠层特性指标叶面积指数增加了1.1%~33.2%,比叶重下降了1.8%~14.4%。
     3、超级杂交稻产量受氮肥处理的明显影响。
     不同施氮量处理的产量,以空白处理NO最低(7609.00kg/hm~2),中高施N量(210kg/hm~2)处理N5最大(10604.0kg/hm~2),施氮量与产量间呈显著二次相关关系。相同施氮水平处理的产量,实地养分管理比实时养分管理高1.61%,实时养分管理比农民模式高5.14%。产量提高主要通过增加有效穗和颖花量来实现。
     4、氮肥处理对超级杂交稻干物质总量、收获指数及总生长速率有明显影响。
     干物质积累总量以处理NO最低(1183.9kg/hm~2),高N处理N6最高(1813.2kg/hm~2),干物质积累总量随施氮量增加而提高。收获指数随施氮量的提高而降低;在0-210kg/hm~2施氮量范围内,总生长速率,处理NO最低(11.2g/m~2d),处理N5最大(16.4g/m~2d),并且随施氮量增加而增加,超过这一范围,群体总生长速率随施氮量的增加而降低。相同施氮量,实地养分管理比实时养分管理、实时养分管理比农民模式更能显著提高干物质总量和总生长速率,同时也有利于收获指数的提高。
     5、氮肥处理对超级杂交稻群体冠高叶面积指数和比叶重有明显影响。
     不同施氮量处理,群体冠高和叶面积指数随施氮量提高而增加,比叶重随施氮量提高而降低;相同施氮量,不同氮管理模式,处理间群体的冠高和比叶重没有显著差异。
     6、氮肥处理对超级杂交稻辐射截获量和辐射利用率有显著的影响。
     不同施氮量处理,辐射截获量随施氮量增加而提高。相同施氮量,采用实地养分管理比实时养分管理、实时养分管理比农民模式更能显著提高群体辐射截获量,同时也有利于辐射利用率的提高。
Food grain has attracted great attention of all the countries' governments and the scientific institutions, with the rapid increase of the world's population.The Ministry of Agriculture of the PRC started to implement the Super Hybrid Rice Breeding Plan in 1996, and the Specific Project for Super Hybrid Rice Varieties Breeding, Demonstration and Extension in 2005. Some 69 new varieties or combinations over the country up to June of 2009 had been certificated by the Ministry through the super hybrid rice variety appraisement . The super hybrid rice grown areas had annually reached 5.56 million hectare in the country by the end of 2008, accounting for 19.2% of the country's total rice grown areas.
     From the view of solar energy utilization, crop yield is decided by three factors such as canopy intercepted solar radiation quantity, radiation use efficiency (RUE) and harvest index (HI). It is of great importance to determine solar radiation interception quantity and its use efficiency, its relationship with canopy structure characteristics, and their effects on yield in super hybrid rice for rice production practice. This study was conducted to analyze the effects of N application and sowing date on yield of super hybrid rice, and to compare the differences in yield and yield formation between super hybrid rice, and ordinary hybrid rice and inbred varieties. The results were shown as follows:
     1. Yield of super hybrid rice. It was 21.7% and 15.8% higher significantly than that of ordinary hybrid rice and inbred varieties, respectively. In yield components, the spikelets number of super hybird rice was 20.6% and 18.0% higher significantly and its glumous number was 21.7% and 15.2% higher significantly; and in dry weight (DW), the total dry weight (TDW) of super hybrid rice was 1.6% and 5.7% higher, and its harvest index (HI) was 11.5% and 7.7% higher significantly, than that of ordinary hybrid rice and inbred varieties, respectively. In solar energy utilization, the radiation use efficiency (RUE) of super hybrid rice was 6.1% higher than that of ordinary hybrid rice, and its intercepted photosynthetically active radiation (IPAR) was 6.8 to 14.7% higher significantly than that of inbred varieties from Mid-tillering stage (MT) to Maturity stage (MA); and in canopy characteristics at the mid- and late stage of growth and development, the leaf area index (LAI) of super hybrid rice was 2.4 to 12.1% higher than that of inbred varieties, and its specific leaf weight (SLW) was 13.4 to 18.5% and 6.1 to 8.9% higher than that of ordinary hybrid rice and inbred varieties, respectively, and its population's photosynthetic rate was significantly higher than that of ordinary hybrid rice and inbred varieties.
     2. Effects of the sowing date on super hybrid rice yield. The effects were apparent, the postponement of the sowing date decreased the yield by 2.4%. In the yield components, the spikelets number decreased by 26.6% and the total glumous flower number reduced by 6.1%. In the total dry weight (TDW), the total dry weight (TDW) increased 4.7%, but the harvest index(HI) decreased 7.7% so that the yield declined. In the interceped photosynthetically active radiation (IPAR) and the radiation use efficiency (RUE), from the Booting stage (BT) on, the population's interceped photosynthetically active radiation (IPAR) increased by 4.2 to 21.4% and the radiation use efficiency (RUE) decreased only 1.4%, so the total dry weight (TDW) increased, but the harvest index (HI) declined, finally the yield decreased. In the canopy's leaf area index(LAI) and specific leaf weight (SLW), with the increased by 1.1 to 33.2% and the population's specific leaf weight (SLW) decreased by 1.8 to 14.4%, the population's total dry weight (TDW) showed an up trend, but the harvest index (HI) declined, finally the yield decreased.
     3. Effects of N application treatments on super hybrid rice yield. The effects were obvious. At the different N application rates, the yield of NO treatment was the lowest, 7609.0kg/hm~2 and that of N5 treatment was the highest, 10604.0 kg/hm~2; and the quadratic correlation was obviously found between N application rate and yield. At the same N application rate, the yield of the Site-specific nutrient management (SSNM) was 1.61% higher than that of the Real-time nutrient management (RTNM), the latter was 5.14% higher than that of the Farm fertilizer practice (FFP). The yield improvement mainly resulted from the increase in effective panicles and glumous flower number.
     4. Effects of N application treatments on the total dry weight (DW), hervest index (HI) and total crops growth rate (TCGR). The effects were apparent, the total dry weight (TDW) of NO treatment was the lowest, 1183.9kg/hm~2 and that of N6 treatment was the highest, 1813.2 kg/hm~2; and the higher the N application rate, the higher the total dry weight (TDW), but the lower the hervest index (HI). At the N application rate range from 0 to 210 kg/hm~2 , the total crops growth rate (TCGR) of NO treatment was the lowest, 11.2g/m~2 .d and that of N5 treament was the highest, 16.4 g/m~2.d %; and the higher the N application rate, the higher the total crops growth rate (TCGR), but the lower the population's the total crops growth rate (TCGR) beyond the above range. At the same N application rate, the Site-specific nutrient management (SSNM) could more significantly increase the total dry weight(TDW) and the total crops growth rate (TCGR) than the Real-time nutrient management (RTNM) could, and the Real-time nutrient management (RTNM) could more significantly do them than the Farm fertilizer practice (FFP) could; and the Site-specific nutrient management (SSNM) could help to enhance the harvest index (HI).
     5. Effects of N application treatments on the population's canopy height (CH), leaf area index (LAI) and specific leaf weight (SLW) of super hybrid rice. The effects were obvious. At the different N application rates, the higher the N application rate, the higher the canopy height (CH) and the leaf area index (LAI), but the lower the specific weight (SLW). At the same N application rate and in different N management patterns, there was no significant difference in the population's the canopy height (CH) and specific leaf weight (SLW) between the different N application treatments.
     6. Effects of N application treatments on the interceped photosynthetically active radiation (IPAR) and the radiation use efficiency (RUE) of super hybrid rice . The effects were significant. At the different N application rate, the higher the N application rate, the higher the interceped photosynthetically active radiation (IPAR). At the same N application rate, the Site-specific nutrient management (SSNM) could do it more significantly than the Real-time nutrient management(RTNM)could, the Real-time nutrient management (RTNM) could do it more significantly than the Farm fertilizer practice (FFP) could; and the Site-specific nutrient management (SSNM) could be helpful to increase the radiation use efficiency (RUE).
引文
[1]Faferia N.K.;Baligar V.C.;and Jones C.A.1991.Growth and mineral nutrition of field crops[J].Marcel Dekker,New York,NY.Pp 159-197.
    [2]De Daata,S.K.1981.Principles and pracitices of rice production.John Wiley,New York.p618.
    [3]AO.Statistical databases,Food and Agriculture Organization(FAO)of the United nations.2001:http://www.fao.org.
    [4]IRRI.18-986b.Wodd rice statistics 1985.International Rice Research Institute,Los Banos,Philippines.
    [5]Peng S.,Cassman K.C.;Virmani S.S.;Sheey J.;and Khush GS..1999.Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential.Crop Sci.,39(6):1552-1559.
    [6]Matthews R.B.;Horie T.;Kroff M.J.;etc.A regional evaluation of the effect of future climate change on rice production in Asia.CAB International,Wallingford,UK.
    [7]Khush,G.S..1995.Breaking the yield frontier of rice.Geo journal.35:329-332.
    [8]袁隆平.杂交水稻的育种战略设想[J].杂交水稻,1987,(1):1-3.
    [9]袁隆平.杂交水稻超高产育种.杂交水稻[J].1997,12(6):1-6.
    [10]袁隆平.依靠科技创新发展杂交水稻确保我国粮食安全[J].中国农业科技导报,2001,3(2):54-56.
    [11]薛正平,杨星卫.我国稻谷总产量及粮食政策调整对上海粳米价格走势的影响[J].上海农业学报,2000,16(2):14-16.
    [12]张宇.近四十年我国粮食生产变化特征初步分析[J].中国农业气象.1995,16(3):10-13.
    [13]戴云仙.近五十年我国粮食产量变化的数学分析[J].内蒙古农业大学学报(自然科学版),2001,22(3):109-113.
    [14]中国饲料工业协会会长办公会暨协会工作座谈会纪实.立足当前着眼明天把握未来[J].中国饲料,2009,11:1-4.
    [15]刘晓真.试论食品加工业是应用农业的重要组成部分[J].粮油食品科技,2009,17(3):64-65.
    [16]刘志雄,董运来,何忠伟.中国食品加工业的国际比较及发展趋势研究[J].世界农业,2009,357(1):28-31.
    [17]徐庆国.超级稻研究进展[J].作物研究,2006,1:12-16,25;
    [18]杨仁崔.IRRI超级稻研究进展[J].世界农业,2000,11(249):26-27;
    [19]Peng S,Khush GS,Cassman KG.Evo luat ion ofa newp lant ideo type for increased yield po tent ial[A].In:Cassman KG.B reak ing the Yield Barrier[C].M anila:IRRI,1994:5-20.
    [20]黄耀祥.水稻丛化育种[J].广东农业科学,1983,(1):1-5.
    [21]袁隆平.从育种角度展望我国水稻的增产潜力[J].杂交水稻,1996,(4):1-2.
    [22]程式华.杂交水稻育种材料和方法研究的现状及发展趋势[J].中国水稻科学,200,14(3):165-169.
    [23]陈温福,徐正进,张龙步.水稻超高产育种-从理论到实践[J].沈阳农业大学学报,2003,34(5):324-327.
    [24]陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景[J].中国工程科学,2002,4(1):31-35.
    [25]程式华,廖西元,闵绍楷,中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):3-5.
    [26]蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种新战略I.利用远缘杂交和多倍体双重优势进行超级稻育种[J].作物学报,2001,27(1):110-116.
    [27]邹应斌,周上游,唐启源.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报,2003,5(1):31-35.
    [28]杨守仁.水稻超高产育种新动向-理想株型与杂种优势利用相结合[J].沈阳农业大学学报,1987,18(1):1-5.
    [29]杨守仁,张龙步,王进民.水稻理想株型育种的理想和方法初论[J].中国农业科学,1984,17(3):6-13.
    [30]普双有,董,广,袁丽华.国际水稻所“超级稻”引种评价与利用[J].西南农业学报,2006,19(增刊):91-94.
    [31]杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展[J].杂交水稻,1998,13(5):29-31.
    [32]青先国,王学华.超级稻研究的背景与进展[J].农业现代化究,2001,(3):99-102.
    [33]闵绍揩,程式华,朱德峰.中国超级稻育种及生产示范概述[J].中国稻米,2002,(2):5-7.
    [34]Kush G.S..Given revolution:the way for ward[J].Nature Reviews Genetics,2001,2(10):815-822.
    [35]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].(第二版).沈阳:辽宁科技出版社,2003.
    [36]Yuan Long-ping.Super hybrid rice[J].Chinese Rice Research News Letter,2000,8(1):13-15.
    [37]胡文新,彭少兵,高荣孚,J.K.Ladha.新株型水稻的光合效率[J].中国农业科学2005,38(11):2205-2210.
    [38]杨建吕,徐国伟,等.新株型水稻生育特性及产量形成特点的研究[J].扬州大学学报(农业与生命科学版),2002,23(1):45-50.
    [39]杨建昌,张文虎,等.水稻新株型与粳/籼杂种源库特征与物质运转的研究[J].中国农业科学,2001,34(5):511-518.
    [40]朱德峰.国际水稻研究所水稻新株型的研究现状与新动向[J].作物研究,1996,10(4):35-36.
    [4l]王步军.IRRI致力培育新株型水稻品种[J].世界农业,1992,5:24.
    [42]殷宏章.小麦的群体结构与光能利用[A]I见:稻麦群体研究论文集[C].上海:上海科技出版社,1961.
    [43]杨守仁.水稻株型研究进展[J].作物学报,1987,8(3):205-210.
    [44]孙旭初.水稻叶型的类别及其与光合作用关系的研究[J].中国水稻科学,1985(4):49-55.
    [45]封超年,郭文善等.高产小麦株型的指标体系[J].扬州大学学报,1998,1(1):24-31.
    [46]Bo ro jevic S.Cannopy st ructure of different wheat genotypes in relation to yield of grain[A].In:P roc 4th IntW heat Cen Symp[C].19931773-780.
    [47]Norman J M.Modeling the comp lete crop cannopy[A].In:Barfield B J and Gerber J F (eds).Modificat ion of the Aerial Enviroment of Plants[C].Amer Soc A gric Engin Jo seph,M ichigan,1994.249-177.
    [48]Porter J R.R ice clock model of computermodel & simulate rice development[J].A PR Fo rentM eteo ral,1992,60:1-16.
    [49]范仲学,JD.Brown,柳絮,等.作物科学的优先研究领域展背[J].沈阳农业大学学报,2004,35(1):68-72.
    [50]张运林,秦伯强.太湖地区光合有效辐射(PAR)的基本特征及其气候学计算[J].太阳能学报,2002,23(1):118-120.
    [51]Monteith J.L.Climate and efficiency of crop production in Britain Phil.Trans.R.Soc.London,B 1977,(281),277-294.
    [52]M.G O Connel,G.J.Leary,Interception of photosynthetically active radiation and radiation-use efficiency of wheat,filed pea and mustard in a semi-arid environment[J],Field crops research.2004,(85):111-124.
    [53]Choudhury,B.J.Modeling radiation and carbon-use efficiencies of maize,sorghum,and rice[J].Agric.For.Meteorol.2001,106(4):317-330.
    [54]Costa,L.C,Santos,A.A.Dos.Analysis of sun radiation use efficiency for soybean,maize,riceand bean crops on various producers regions of Minas Gerais,Brazil[J].Eng.Agric.Jaboticabal.2000,20(3):188-194.
    [55]Sinclair T.R.and A.Shiraiwa.Soybean radiation use efficiency as influenced by nonuniform specific leaf N distribution and diffuse radiation[J].Crop Science.1993,33:808-812.
    [56]Sinclair T.R.,Muchow.R.C.Radiation use efficiency[J].Advances in Agronomy,1999,(65):215-266.
    [57]Mitchell,L P,J.E.Sheehy,F.I.Woodward..Potential yields and the efficiency of radiation use in rice[J].IRRI Discussion Paper Series,1998,(32):1-62.
    [58]Choudhury,B.J.Modeling radiation and carbon-use efficiencies of maize,sorghum and rice[J].Agric for.Meteorol.2001,106(4):317-330.
    [59]Costu,L.C,Santos,A.A.Dos.Analysis of Sun radiation use efficiency for soybean,maize.rice and bean cropsonrarious producers regions of Minas Gerais,Brazil Eng.Agric[J].Jaboticabal,2000,20(3):188-194.
    [60]许乃霞,苏视芳,张亚结,等.抽穗后水稻株型与产量形成关系的研究[J].扬州大学学报,2002,04(23):56-60.
    [61]李萍,韩亚东,郝兴宇.不同穗型不同种植方式对水稻光能利用的影响[J].山西农业大学学报(自然科学版),2004,24(2):112-115.
    [62]徐正进,陈温福,张龙步.水稻理想穗型设计的原理与参数[J].科学通报,2005,(50)18:2037-2039.
    [63]谢立勇,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [64]袁立新,张金宝.谷子理想株型的形态特性[J].作物杂志,2000(2):23-24.
    [65]松岛省三.水稻研究新技术[M].肖连成译,吉林人民出版社,1973.
    [66]凌启鸿.IR24大面积高产栽培技术途径[J].江苏农业科学,1982,(9):1-10.
    [67]袁隆平.超级杂交水稻的现状与展望.粮食科技与经济,2003(1):1-3.
    [68]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [69]姚克敏,胡彐琼,顾显跃,等.两系法杂交稻两优培九和65396的光合特性与株型优势[J].江苏农业科学,2000,(1):8-12.
    [70]杨建昌,陈忠辉,杜永.水稻超高产群体特征及其栽培技术[J].中国农业科技导报,2004,6(4):37-41.
    [71]黑岩澄雄.叶群的总光合与叶角的关系[M].光合作用与作物生产译丛,王天铎主编,北京农业出版社,1980.
    [72]Kiniry,R.J,G.Mc Cauley,y.xie and J.G..Amolda.Rice Parameters Describing Crop Performance of Four us cultivars[J].Agronomy Jourual,2001,(93):1354-1361.
    [73]Yamamoto,H.K lwaya,Y.Takasu,Comprisions of efficiency of solar energy utilization and efficiency of solar energy conversion in high-yielding ricecanopies[J].J.Agric.Meteorol,2003,59(1):1-11.
    [74]Tollenaar,M.and A.Aguilera.Radiation use-efficiency of an old and a new maize hybrid[J].Agronomy Journal.1992,(84):536-541.
    [75]Mitchell,L P,J.E.Sheehy,F.I.Woodward..Potential yields and the efficiency of radiation use in rice[J].IRRI Discussion Paper Series,1998,(32):1-62.
    [76]谢立勇,徐正进,贺明慧.沈阳地区水稻光合生产潜力的计算[J].辽宁农业科学,20(4):4-6.
    [77]Rosenthal,W.D,T.J.Gerik and L.J.Wade.Radiation-use efficiency among grain sorghum cultivars and plants densities[J].Agron,1993,(85):703-705.
    [78]徐光,陈才良,但芳.播期对玉米生K的影响[J].种子世界,2002,(1):26-27.
    [79]Kemanian,R.A.,C.O.Stockle,and D.R.Huggins Variability of Barley Radiation-use efficiency[J].Crop Science.2004,(44):1662-1672.
    [80]Sinclair T.R.and A.Shiraiwa.Soybean radiation use efficiency as influenced by nonuniform specific leaf N distribution and diffuse radiation[J].Crop Science.1993,33:808-812.
    [81]Rosenthal,W.D,T.J.Gerik and L.J.Wade.Radiation-use efficiency among grain sorghum cultivars and plants densities[J].Agron,1993,(85):703-705.
    [82]Muchow,R.C.,and R.Davis.Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment:II.Radiation interception and biomass accumulation [J].Field Crops Re.1988,(18):17-30.
    [83]吴朝阳,牛铮,汤泉,黄文江.不同氮、钾施肥处理对小麦光能利用率和光化学植被指数(PRI)关系的影响[J].光谱学与光谱分析,2009,02:455-458.
    [84]王旭清,王法宏小麦垄作栽培的肥水效应及光能利用分析[J].山东农业科学,2002,4:3-5.
    [1]Bauer A.,A.B.Frank,A.L.Black.Estimation of spring wheat leaf growth rates and anthesis from air temperature.Agron.J.1984.76:829-835.
    [2]Shaobing Peng,Jianliang Huang,John E.Sheehy,et al.Rice yields decline with higher night temperature from global warming.PNAS.2004,101(27):9971-9975.
    [3]Hunter R.B.,L.A.Hunt,L.W.Breuer.Photoperiod and temperature effects on corn.J.Plant Sci.1974,54:71-78.
    [4]BarlowE.W.B.,L.Boersma,J.L.Young.Photosynthesis,transpiration,and leaf elongation in com seedling at suboptimal soil temperature.Agron.J.1977,69:95-100.
    [5]Tollenaar.M.,T.B.Daynard,R.B.Hunter.Effect of temperdture on rate of leaf appearance and flowering date in maize.Crop Sci.1979,19:363-366.
    [6]Weigand,D.L.,J.A.Duartion of grain filling and kernel weight of wheat as affected by temperature.Crop Sci.1981,.21:95-101.
    [7]Baker D.G.,B.S.Sharratt,H.C.Chiang,et al.Base temperature selection for the prediction of European corn borer instars by the growing degree day method.Agric.Fores.Meteorol,1984,32:55-58.
    [8]周鸿凯,郭建夫,黎华寿,吴钿,张建中.光温因子与杂交水稻生态群体的产量和品质性状的典型相关分析[J].应用生态学报,2006,17(4):663-667.
    [9]Yoshida,S.,Y.Hara.Effects of air temperature and light on grain filling of an indica and a japonica rice(Oryza sativa L.)under controlled environmental conditions.Soil Sci.Plant Nutr,1977.231:93-107.
    [10]姚凤没,张佳华,孙白妮,等.气候变化对中国南方稻区产量影响的模拟和分析[J].气候与环境研究,2007,05:1006-1013.
    [11]杨建吕,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,04:9-16.
    [12]王夫玉.温光对水稻籽粒充实度的影响[J].2001,34(4):396-400.
    [13]Jifeng Ying,Shaobing Peng,Qingrui He,et al.Comparison of high-yield rice in tropical and subtropical environments I.Determinants of grain and dry matter yields.Field Crops Research,1998,57:71-84.
    [14]张耀鸿,张亚丽,黄启为,徐阳春,沈其荣.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较.植物营养与肥料学报,2006,12(5):616-621.
    [15]魏海燕,张洪程,张胜飞,等.不同氮利用效率水稻基因型的根系形态与生理指标的研究.作物学报,2008,34(3):429-436.
    [16]程建峰,戴廷波,曹卫星,姜东,潘晓云.不同氮收获指数水稻基因型的氮代谢特征.作勒学报:2007,33(3):497-50.
    [17]李素梅,施卫明.不同氮形态对两种基因型水稻根系形态及氮吸收效率的影响.土壤,2007:39(4):589-593.
    [18]张亚丽,樊剑波,段英华,王东升,叶利庭,沈其荣.不同基因型水稻氮利用效率的差异及评价.土壤学报,2008,45(2):267-273.
    [19]Ladha j K,Kirk G D,Bennett,etal.Opportunities for increased nitrogen use efficiency from improved lowland rice germ plasm.Field Crops Res.,1998,83:41-71.
    [20]De Datta S K.Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia.Fertilizer Res.,1986,9:171-186.
    [21]Padre A,Logha J K,Singh U,et al.Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization effeciency.Field Crops Res.,1996,46:127-143.
    [22]Singh U,Lagha J K,Castillo E G,el al.Genotypic variation in nitrogen use efficiency in medium and long duration rice.Field Crops Res.,1998,58:35-53.
    [23]Koutroubasa S D,Ntanosb D A.Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions.Field Crops Res,2003,83:251-260.
    [24]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    [25]夏冰,刘清波,邓念丹.不同基因型水稻氮素的吸收和利用效率研究综述。作物研究,2008,22(4):288-292.
    [26]Moll RH,Kamprath EJ.Jackson WA.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization Zea,mays[J].Agron J,1982,71(3):562-56.
    [27]Broadbent FE,Datta SK,Laureles EV.Measurement of nitrogen utilization efficiency in rice genotypes[J].Agron J,1987,79(5):786-791.
    [28]单玉华,王余龙,山本由德,等.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报:自然科学版,2001,4(3):12-15.
    [29]魏海燕,张洪程,戴其根,霍中洋,等.不同水稻氮利用效率基因型的物质生产与积累特性.作物学报,2007,33(11):1802-1809.
    [30]Mitchell,LP,J.E.Sheehy,E I.Woodward..Potential yields and the efficiency of radiation use in rice.IRRI Discussion Paper Series,1998,(32):1-62.
    [31]Costu,L.C,Santos,A.A.Dos.Analysis of Sun radiation use efficiency for soybean,maize.rice and bean cropsonrarious producers regions of Minas Gerais,Brazil Eng.Agric.Jaboticabal,2000,20(3):188-194.
    [32]谢立勇,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [33]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [34]Yamamoto,H.K lwaya,Y.Takasu,Comprisions of efficiency of solar energy utilization and efficiency of solar energy conversion in high-yielding ricecanopies[J].J.Agric.Meteorol,2003,59(1):1-11.
    [35]谢立勇,徐正进,贺明慧.沈阳地区水稻光合生产潜力的计算[J].辽宁农业科学,20(4):4-6.
    [36]Yunbo Zhang,Qiyuan Tang,Yingbin Zou,Diqin Li,Jianquan Qin,Shenghai Yang,Lijun Chen,Bing Xia,Shaobing Peng.Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions.Field Crops Research,2009,114:91-98.
    [37]孙旭初.水稻叶型的类别及其与光合作用关系的研究[J].中国水稻科学,1985(4):49-55.
    [38]刘贞琦.不同株型水稻光合特性的研究[J].中国农业科学,1980,(03):21-24.
    [39]李萍,韩亚东,郝兴宇.不同穗型不同种植方式对水稻光能利用的影响[J].山西农业大学学报(自然科学版),2004,24(2):112-115.
    [40]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].(第二版).沈阳:辽宁科技出版社,2003.
    [41]Yuan Long-ping.Super hybrid rice[J].Chinese Rice Research News Letter,2000,8(1):13-15.
    [42]胡文新,彭少兵,高荣孚,J.K.Ladha.新株型水稻的光合效率[J].中国农业科学2005,38(11):2205-2210.
    [43]杨建昌,徐国伟,等.新株型水稻生育特性及产量形成特点的研究[J].扬州大学学报(农业与生命科学版),2002,23(1):45-50.
    [44]杨建昌,张文虎,等.水稻新株型与粳/籼杂种源库特征与物质运转的研究[J].中国农业科学,2001,34(5):511-518.
    [45]马国辉.超级杂交稻超高产理论与实践初论[N].中国农业科技导报,2005,7(4):3-8.
    [46]孙旭初.水稻叶型的类别及其与光合作用关系的研究[J].中国水稻科学,1985(4):49-55.
    [47]刘贞琦.不同株型水稻光合特性的研究[J].中国农业科学,1980,(03):21-24.
    [48]李萍,韩亚东,郝兴宇.不同穗型不同种植方式对水稻光能利用的影响[J].山西农业大学学报(自然科学版),2004,24(2):112-115.
    [49]张云华,王荣富,陈炳松,等.超级稻两优培九生育后期的光能利用和同化产物分配[J].安徽农业大学学报,2003,30(3):269-272.
    [50]潘晓华,邓强辉.作物收获指数的研究进展[J].江西农业大学学报,2007,29(1):1-5.
    [1]邵玺文,孙长占,孙彤,王艳国,于国发.播期和播量对水稻生育性状及产量的影响[J].吉林农业大学学报,2002,24(4):11-14,18.
    [2]沈新平,沈晓燕,顾丽,龚丽萍,张洪程.两优培九稻米垩白在江苏省不同纬度点的播期效应[J].中国水稻科学,2007,21(6):677-680.
    [3]斋藤邦行,下田博之.水稻多收性品种の乾物质生产特性解析6.新旧品种の比较を通~2て[J].日本作物学会纪事,1993,62(4):509-517.
    [4]徐宗俦,冯明友,张鹏,等.不同播期、密度、基本苗对产量的影响[J].耕作与栽培,1994(5);29-31.
    [5]姜文超,孙龙泉,肖伯群,郭万胜,周长春,孙晋.播种期对两优培九产量及生育特性的影响[J].杂交水稻,2001,16(1):38-40.
    [6]鄢章林,何畅.不同播种期对优质稻产量和碾米品质的影响研究[J].西昌农业科技,2005(2):23-26.
    [7]杨稚愚,汪汉林,邹应斌.播种期对杂交水稻生育期和产量的影响[J].耕作与栽培,2004(3):18-24.
    [8]陈小荣,钟蕾,贺晓鹏,傅军如,熊康,贺浩华.稻穗枝梗和颖花形成的基因型及播期效应分析[J].中国水稻科学,2006,20(4):424-428.
    [9]赵飞,荆彦辉,王嘉宇,陈温福.播种期对粳型超级稻产量及叶面积指数的影响[J].吉林农业科学2009,34(3):1-2,11.
    [10]陈温福,徐正进,张步龙.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995,69-94.
    [11]肖炜.播种期对超级稻产量形成及稻米品质的影响[J].中圈稻米,2008,5:41-43.
    [12]EvansLT.MorphologicalandphysiologicalchangesamongricevarietiesusedinthePhilippinesoverthes eventyyears[J].FieldCropsRes,1984,8:105-125
    [13]杨稚愚,汪汉林,邹应斌.播种期对杂交水稻生育期和产量的影响[J].耕作与栽培,2004,(3):18-19,24
    [14]#12
    [15]葛东生,张秀云,刘襄,等.杂交中稻及杂交晚稻适宜播期的研究[J].安徽农业科学,1995,23(1):22-23
    [16]谢戎,何光华,左永树,等.两系杂交稻产量性状的相关性及对播期的反应[J].生态农业研究,1998,6(1):23-27.
    [17]谢光辉,苏宝林,石磊,等.湘西武陵山区单季稻生长发育及物质生产的研究.Ⅱ.不同海拔播期对杂交物质生产的影响[J].中国农业大学学报,1996,1(1):89-94.
    [18]郑根龙,葛翔,方守地,等.杂交早稻不同播种期对生育期影响初报[J].杂交水稻,1998(增刊):56-57.
    [19]杨长明,刘敏华,丁超尘,等.三个水稻品种的冠层结构的比较[J].安微农业大学学报,2001,28(3):276-280.
    [20]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [21]黑岩澄雄.叶群的总光合与叶角的关系[M].光合作用与作物生产译丛,王天铎主编,北京:农业出版社,1980.
    [22]姜文超,孙龙泉,肖伯群,郭万胜,周长春,孙晋,播种期对两优培九产量及生育特性的影响[J].杂交水稻,2001,16(1):38-40.
    [23]Kiniry,R.J,G.Mc Cauley,y.xie and J.G..Amolda.Riee Parameters Describing Crop Performance of Four us cultivars[J].Agronomy Jourual,2001,(93):1354-1361.
    [24]Yamamoto,H.K lwaya,Y.Takasu,Comprisions of efficiency of solar energy utilization and efficiency of solar energy conversion in high-yielding rice canopies[J],J.Agric.Meteorol,2003,59(1):1-11.
    [25]Mitchell,L P,J.E.Sheehy,F.I.Woodward..Potential yields and the efficiency of radiation use in rice[J].IRRI Discussion Paper Series,1998,(32):1-62.
    [26]谢立勇,徐正进,贺明慧.沈阳地区水稻光合生产潜力的估算[J].辽宁农业科学,2003,(4):4-6。
    [1]杨建昌,陈忠辉,杜永.水稻超高产群体特征及其栽培技术[J]。中国农业科技导报,2004,6(4):37-41.
    [2]彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Buresh,Christian Witt.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [3]Ohnishi M,Horie T,Homma K,Supapoj N,Takano H,Yamamoto S.Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand[J].Field Crops Research,1999,64:109-120..
    [4]彭显龙,刘元英,罗盛国,范立春,宋添星,郭艳文.实地氮肥管理对寒地水稻干物质积累和产量的影响[J].中国农业科学,2006,39(11):2286-2293.
    [5]Dobermann A,Cassman K G,Peng S B,Tan P S,Phung C V,Sta Cruz P C,Bajita J B,Adviento M A A,Olk D C.Precision nutrient management in intensive irrigated rice systems.In:Proc.of the international symposium on maximizing sustainable rice yields through improved soil and environmental management.November 11-17,1996,Khon Kaen,Thailand.Dept.of Agriculture,Soil and Fertilizer Society of Thailand,Bangkok.1996:133-154.
    [6]Peng S B,Garcia F V,Laza R C,Sanico A L,Visperas R M,Cassman K G.Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice[J].Field Crops Res.1996,47:243-252.
    [7]贺帆,黄见良,崔克辉,曾建敏,徐波,彭少兵,R J Buresh.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,2007,40(1):123-132.
    [8]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,60-63.
    [9]杨安中,牟筱玲,李孟良,等.氮肥运筹方式对旱作水稻衰老及产量的影响[J].南京农业大学学报,2004,27(4):126-129.
    [10]Akita S.Improving yield potential in tropical.Rice//Progress in Irrigated Rice.Los Banos,Philippines:IRRI,1989:41-73.
    [11]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J].作物学报.2008,34(11):1985-1993.
    [12]杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25(4):7-14.
    [13]陈惠哲,朱德峰,林贤青,张玉屏,张卫星.促花肥施氮对超级杂交稻冠层叶片生长及光合速率的影响[J].湖南农业大学学报(自然科学版),2007,33(5):617-621.
    [14]Hussain F,Bronson K F,Singh Y,Singh B,Peng S B.Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia,4gron.J.,2000,92:875-879.
    [15]彭显龙,刘元英,罗盛国,范立春,宋添星,郭艳文.实地氮肥管理对寒地水稻干物质积累和产量的影响[J].中国农业科学,2006,39(11):2286-2293.
    [16]Sinclair TR,Muchow RC.Radiation use efficiency.Advances in Agronomy,1999,65:215-266.
    [17]Mitchell L P,Sheehy J E,Woodw ard F I.Potential yields and the efficiency of radiation use in rice.IRRI Discussion Paper Series,1998,32:1-62.
    [18]陈雨海,余松烈,于振文小麦生长后期群体光截获量及其分布与产量的关系[J].作物学报,2003,29(5):730-734.
    [19]Peng S B,Laza R C,Garcia F V,Cassman K G.Chlorophyll meter estimates leaf area-based nitrogen concentration of rice.Communication in Soil Science and Plant Analysis,1995,26(5-6):927-935.
    [20]唐启源.水稻冠层的生态生理特性及其影响因素研究.湖南农业大学博士论文,2005,11:41-42.
    [21]杨惠杰,李义珍,杨仁崔,等.超高产水稻的千物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [22]Jiang G Z.Physiological and ecological characteristics of high yielding varieties in rice plant:I.Yield and dry matter production,ypn J Crop Sci,1998,57(1):132-138.
    [23]Shaobing Peng,Kenneth G.Cassman,and Martin J.Kropff.Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics.Crop sci.,1995,35:1627-1630.
    [24]Savary.S,Castilla,N.P.,Willocquet L..Analysis of the spatiotemporal structure of rice Sheath Shlight epidemics in a farmer's field.Plant Pathology,2000,50:53-68.
    [25]Roy,A.K.Effect of slow release nitrogenous fertilizer on the incidence of Sheath Blight and yield of rice.Oryza,1986,(23):198-199.
    [26]DobermannA,WittC,DaweD,AbdulrachmanS,GinesHC,NagarajanR,Satawathananont S,Son T T,Tan P S,Wang G H,Chien N V,Thoa V,Phung C V,Stalin P,Muthukrishnan P,Ravi V,Babu M,Chatupom S,Sookthongsa J,Sun Q,Fu R,Simbahan G C,Adviento M A A.Site-specific nutrient management for intensive rice cropping system in Asia.Field Crops Res.,2002,74:37-66.
    [27]Dobermann A,Witt C.The evolution of site-specific nutrient management in irrigated rice system of Asia//Dobermann A,Witt C.Increasing productivity of intensive rice systems through site-specific nutrient management.Los Banos,Phillines:International Rice Research Institute,2004:75-100.
    [28]叶春升,罗奇祥,张福群,等.肥料不同施用方式对水稻早衰的影响[J].江西农业学报,2006,18(4):1-5.
    [29]张洪程,王秀芹,戴其根,霍中洋,许柯.施氮对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806.
    [30]刘立军,徐伟,吴长付,杨建吕.实地氮肥管理下的水稻生长发育和养分吸收特性[J].中国水稻科学,2007,21(2):167-173.
    [31]张宾,赵明,董志强,李建国,陈传永,孙锐.作物高产群体LAI动态模拟模型的建立与检验[J]。作物学报,2007,33(4):612-619。
    [32]Yunbo Zhang,Qiyuan Tang,Yingbin Zou,Diqin Li,Jianquan Qin,Shenghai Yang,Lijun Chen,Bing Xia,Shaobing Peng.Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions.Field Crops Research,2009,114:91-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700