不同氮效率油菜对氮肥的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
查明氮高效基因型与氮低效基因型油菜之间的差异及其对氮肥的响应规律,有助于揭示油菜高效吸收利用氮素的机理,从而为培育氮高效新品种和不同氮效率油菜的氮肥管理提供依据。本文基于课题组前期的工作基础,采用盆栽试验对氮吸收效率差异显著的两个甘蓝型油菜(13号和4号)在不同供氮水平下(0、0.05、0.1、0.15、0.2gN/kg)氮效率、营养特性、农学性状及其他生理特性的差异作了较全面的分析比较,结果表明:
     1.在供氮水平0~0.2gN/kg范围内,油菜氮效率和吸收效率随氮水平增加呈降低趋势,氮利用效率则随氮水平增加呈先增加后降低趋势;氮高效基因型的氮效率和吸收效率比氮低效基因型对氮肥响应更敏感。氮高效与低效基因型的氮效率、氮吸收效率的差异在氮水平较低时更显著。
     2.油菜氮素吸收对供氮水平的反应没有明显的基因型差异,但在不同生育阶段有不同的特点:在苗期和薹期,氮高效与氮低效基因型地上部氮素累积量均随施氮量增加呈先增后减的趋势;从花期到角果期,地上部分氮素累积量则呈持续增加趋势;至成熟期时,总吸氮量、不同器官氮素累积量均随施氮量提高而增加。从苗期到角果期,氮高效与氮低效基因型地上部含氮量随施氮量增加均呈增高趋势,但在苗期增幅较小,随后增幅则逐渐提高;至成熟期时,各器官含氮量随施氮量增加有先降后升趋势。油菜氮素的分配对供氮水平的反应也没有明显的基因型差异:氮高效与氮低效油菜的氮收获指数均由于施用氮肥而增加。随着施氮量提高,氮高效与氮低效基因型根、茎秆中的氮素比例均有逐渐降低趋势,籽粒中氮素比例则有增大趋势。不同氮效率基因型氮素累积量的差异表现出明显的阶段性:从苗期到角果期,氮高效与氮低效基因型之间地上部氮素累积量始终没有显著差异,而成熟期氮高效基因型的总吸氮量、不同器官氮累积量均有高于氮低效基因型的趋势。从苗期到花期,不同供氮水平下,氮高效基因型地上部含氮量均呈高于氮低效基因型的趋势;从角果期至成熟期,氮高效与氮低效基因型植株含氮量的差异则因供氮水平而不同。不同氮效率基因型的氮素分配有差异:氮高效基因型的氮收获指数略高于氮低效基因型。成熟期氮高效基因型根中的氮素比例均高于氮低效基因型;而茎秆中氮素的比例则呈低于氮低效基因型趋势。
     3.氮水平对不同氮效率油菜的生长具有相似的影响:氮高效基因型的单株产量、根系生物量、地上部分生物量、总生物量、各器官生物量占总生物量的比例、单株角果数、千粒质量、株高、第一分枝高度和一级分枝数等随氮水平的变化规律均与氮低效基因型的基本一致。然而,氮水平影响不同氮效率油菜之间差异的大小:氮高效基因型的单株产量、根系生物量、地上部分生物量、总生物量、根系、茎叶和籽粒占总生物量的比例、根冠比、收获指数、单株角果数、角果粒数、株高、一级分枝数和茎粗均高于氮低效基因型,角果皮占总生物量的比例、千粒质量和第一分枝高度低于氮低效基因型,但其差异其显著性均随氮水平高低而不同。
     4.在苗期和薹期,油菜叶片SPAD值随供氮水平增加没有显著的变化,在花期,SPAD值随氮水平提高显著增大。从苗期到花期,不同氮水平下氮高效基因型的SPAD值均显著高于氮低效基因型。
     5.成熟期单株磷、钾累积量随氮水平提高有显著增加的趋势,而磷、钾含量没有显著变化。氮高效基因型的单株磷、钾累积量和含钾量显著高于氮低效基因型;而含磷量只有在较低氮水平下显著高于氮低效基因型。
It will be helpful for revealing the mechanism of N uptake and utilization by canola and support N-efficient-cultivar breeding and N management of canola to investigate the differences between canola genotypes differing in nitrogen efficiency and its responses to N fertilizer. Based on the prophase screening by our research team, two canola genotypes(No. 13 and 4) significantly differing in N uptake efficiency were grown in pots under different N rates(0、0.05、0.1、0.15、0.2gN/kg). The N efficiency,nutrition characteristics, agronomic traits and other physiological characteristics were compared. The results show as following:
     1. Range from 0 to 0.2gN/kg, N efficiency and N uptake efficiency of two canola genotypes decreased with N rate increasing while N utilization efficiency increased in the lower N rate range and then decreased in the higher N rate. N efficiency and N uptake efficiency of N-efficient genotype was more sensitive to N rate than that of N-inefficient genotype. The difference of N efficiency and N uptake efficiency between different genotypes was greater when less N fertilizer was applied.
     2. The results indicated that no significant genotypic difference in N uptake responses to N rate was found. However, they were different in various growth stages. In seedling stage and bud stage, N accumulation in aboveground part of both N-efficient and N-inefficient genotypes increased and then decreased with the increasing of N rate while they increased steadily from flowing stage to pod developing stage. At maturity stage, N accumulation in whole plant and in various sections increased when N fertilizer rate increased. For both genotypes, N concentration of aboveground part had increase trend with the rising of N rate from seedling stage to pod developing stage. However, there was small increase in seedling stage and it tended to expand in the following stage. At maturity stage, N concentration of various parts decreased slightly and then increased slightly with the rising of N rate. No significant genotypic difference in N distribution in plant responses to N rate was found, either. For both genotypes, N harvest index was enhanced due to the application of N fertilizer. Ratio of N in root, stem to N in whole plant tended to reduce with the rising of N rate while ratio of N in seed to N in whole plant was opposite. Genotypic differences in N uptake were different in various growth stages. There was no significant difference in N accumulation in aboveground part between two genotypes from seedling stage to pod developing stage while N-efficient genotype had greater N accumulation in whole plant and various sections than N-inefficient genotype at maturity stage. N-efficient genotype had higher N concentration of aboveground part than N-inefficient genotype from seedling stage to flowing stage while N concentration differences between them depended on N rate. N distribution in different parts of canola varied between two genotypes. N harvest index of N-efficient genotype was slight higher than N-inefficient genotype. Ratio of N in root to N in whole plant of N-efficient genotype was higher than N-inefficient genotype while Ratio of N in stem was lower.
     3. N-efficient genotype and N-inefficient genotype showed similar trend that grain yield, roots biomass, shoot biomass, total biomass, percentage of different parts biomass in whole plant biomass, silique number per plant, 1000-seed weight, height, the fist valid branch height and primary branches number fluctuated with the increase of N rate. N-efficient genotype had higher grain yield, roots biomass, shoot biomass, total biomass, percentage of root biomass in whole plant biomass, percentage of stem and leaves biomass in whole plant biomass, percentage of grain biomass in whole plant biomass, root to shoot ratio, harvest index, silique number per plant, seeds per silique, height, primary branches number and stem diameter than N-inefficient genotype, while it had lower percentage of silique wall biomass in whole plant biomass, 1000-seed weight and the fist valid branch height than N-inefficient genotype. However, the differences varied according to N rate.
     4. There was no response of the SPAD value to N rates from seedling stage to bolting stage. It was increased as N rates increased at florescence stage. The SPAD value of N efficient genotype was significantly higher than N inefficient genotype under different N rates from seedling stage to florescence stage.
     5. The P and K accumulation per plant was increased as N rate increased. There was no response of P and K content to N rates at harvest time. The P and K accumulation, K content per plant of N efficient genotype was significantly higher than N inefficient genotype, but P content was only showed under lower N rates.
引文
鲍士旦主编. 2003.土壤农化分析.北京:中国农业出版社:263~271
    曹兰芹.2009.不同基因型油菜氮效率的差异研究.[硕士学位论文].陕西杨凌:西北农林科技大学
    陈历儒,王继明,廖成松,刘强,荣湘民,彭建伟,谢桂先,宋海星.2008.不同品种油菜幼苗硝态氮吸收差异研究.西北农业学报,17 (5):181~185
    董召娣,左青松,冷锁虎,石剑飞,孙家刚,孙统庆.2008.施N水平对油菜杂交种及其亲本氮素利用效率的影响.中国油料作物学报,30(3):366~369
    洪娟.2007.油菜氮高效种质的筛选及其生理机制的初步研究.[硕士学位论文].湖北武汉:华中农业大学
    黄永铭.1991.秦油二号产量构成分析.湖北农业科学,(10):22~23
    霍常富,孙海龙.2007.根系氮吸收过程及其主要调节因子.应用生态学报,18(6):1356~1364
    刘代平.2006a.不同油菜品种氮素吸收利用特性与氮效率差异的比较研究.[硕士学位论文].湖南长沙:湖南农业大学
    刘代平,宋海星,官春云,刘强,陈社员,姚雪梅.2006b.油菜生物量与氮素吸收量及生理效率的动态变化.湖南农业大学学报(自然科学版),32(2):173~176
    刘代平,宋海星,刘强,荣湘民,彭建伟,谢桂先,欧中浩.2008.不同施氮水平下油菜地上部生理特性研究.湖南农业大学学报(自然科学版),34(2):100~104
    刘德明,刘强,荣湘民,彭建伟,谢桂先,陈历儒,宋海星.2008.油菜根系特性与氮效率系数的关系研究.湖南农业科学, (2):64~66
    刘后利.1987.实用油菜栽培学.上海:上海科学技术出版社,128~143
    刘建安,米国华,陈范骏,张福锁.2002.玉米杂交种氮效率基因型差异.植物营养与肥料学报,8(3):276~281
    刘强,宋海星,荣湘民,彭建伟,谢桂先.2008.不同品种油菜氮效率差异及其生理基础研究.植物营养与肥料学报,14(1):113~119
    米国华,陈范骏,春亮,郭亚芬,田秋英,张福锁.2007.玉米氮高效品种的生物学特征.植物营养与肥料学报,13(1):155~159
    陈范骏,米国华,刘向生,刘建安,王艳,张福锁.2003.玉米氮效率性状的配合力分析.中国农业科学,36(2):134~139
    宋海星,彭建伟,刘强,荣湘民,谢桂先,张振华,官春云,李合松,陈社员.2008.不同氮素生理效率油菜生育后期氮素再分配特性研究.中国农业科学,41(6):1858~1864
    田霄鸿,李生秀,王清君.2001.几种作物NO3-吸收动力学参数测定方法初探.土壤通报,32(1):16~18
    童依平,李振声.1999.不同小麦品种吸收利用氮效率的差异及有关机理研究Ⅱ影响吸收效率的因素分析.西北植物学报,19(3):393~401
    张瑞珍,张恩和,孙长占.2003.不同基因型玉米品种氮素营养效率差异的研究[J],吉林农业大学学报,25(2):182~186
    张永泰,惠飞虎,左青松,冷锁虎,董召娣.2008.施N量对油菜杂种及其亲本成熟期各器官干物质积累的影响.上海农业学报,24(1):63~65
    张振华,宋海星,刘强,荣湘民,彭建伟,谢桂先,官春云.2007.不同品种油菜幼苗硝态氮吸收能力差异研究.陕西农业科学,2:52~55
    周年年.2005.氮素对油菜产量和品质的影响及相关分析研究.[硕士学位论文].湖北武汉:华中农业大学
    左青松,顾芹芹,董召娣,冷锁虎.2006.氮素水平对油菜根茎叶氮素输出及角果中氮素积累的影响.中国油料作物学报,28(2):151~155
    左青松,石剑飞,冷锁虎,眭丹,徐旺春.2008a.施氮对油菜籽粒和果壳中氮素累积的影响.扬州大学学报(农业与生命科学版),29(1):75~78
    左青松,左青松,石剑飞,袁权,冷锁虎.2008b.油菜氮素吸收利用的遗传效应分析.中国油料作物学报,30(2):143-147
    Agustin Limon-Ortega , Bram Govaerts.2008.Straw management, crop rotation, and nitrogen source effect on wheat grain yield and nitrogen use efficiency.Europ. J. Agronomy, 29: 21~28
    Asare E., Scarisbrick D.H.1995.Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape.Field Crops Research, 44:41~46
    Balint T, Rengel Z, Allen D.2008a.Australian canola germplasm differs in nitrogen and sulphur efficiency.Aust J Agric Res, 59(2):167~174
    Balint T, Z Rengel.2008b.Nitrogen efficiency of canola genotypes varies between vegetative stage and grain maturity.Euphytica, 164:421~432
    Chi-Chou Chiu , Choun-Sea Lin.2004.Mutation of a Nitrate Transporter, AtNRT1.4, Results in a Reduced Petiole Nitrate Content and Altered Leaf Development.,Plant Cell Physiol,45(9): 1139~1148
    David Robinson.2001.Root proliferation, nitrate in?ow and their carbon costs during nitrogen capture by competing plants in patchy soil.Plant and Soil 232: 41~50
    Dhugga K S ,Waines J G.1989.Analysis of nitrogen accumulation and use in bread durum wheat.Crop Sci.,29:232~239
    Dhugga K S, Waines J G..1989.Analysis of nitrogen accumulation and use in bread durum wheat.Crop Sci., 29:232~239
    Drew M C ,Saker L R.1975.Nutrient supply and the growth of the seminal root system in barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system.J. Exp. Bot., 26, 79~90
    Filleur S, Walch-Liu P, Gan Y, Forde BG.2005.Nitrate and glutamate sensing by plant roots.Biochem Soc Trans, 33:283~286
    Francisco J. Navarro, Yuse Martin,And Jose M. Sive.2008.Phosphorylation of The Yeast Nitrate Transporter Ynt1 Is Essential For Delivery To The Plasma Membrane During Nitrogen Limitation .Journal Of Biological Chemistry , 18(8):132~137
    Franck Chopin, Judith Wirth.2007.The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the Root plasma membrane.Plant Physiology and Biochemistry,45:630~635
    Franck Chopin, Mathilde Orsel.2007.The Arabidopsis ATNRT2.7 Nitrate Transporter Controls Nitrate Content in Seeds.The Plant Cell, 19: 1590~1602
    Guo FQ, Wang RC.2001.The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1)isactivated and functions in nascent organ development during vegetative and reproduction growth.plant cell, 13:1761~1777
    Hakan Ozer.2003.Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars.European Journal of Agronomy, 19(3): 453~463
    Hocking P J, Randall P J.1997.The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components.Field Crops Res. 54:201~220
    Huggins, D.R.1993.Nitrogen efficiency component analysis: an evaluation of cropping system differences in productivity.Agronomy Journal , 85(4): 898~905
    Judith Wirth, Franck Chopin,V.2007.Regulation of Root Nitrate Uptake at the NRT2.1 Protein Level in Arabidopsis thaliana.THE JOURNAL OF BIOLOGICAL CHEMISTRY, 282(32):23541~23552
    Julie Gombert, Friderik Le Dily.2007.Nitrogen dynamics in field grown oilseed rape. Effect of nitrogen fertilization and genotype.Soil Nutrition.
    Kamh M., Franz W. et al..2005.Root growth and N-uptake activity of oilseed rape(Brassica napus L.) cultivars differing in nitrogen efficiency.J. Plant Nutr. Soil Sci., 168:130~137
    Kun-Hsiang Liu, Chi-Ying Huang, Yi-Fang Tsay.1999.CHL1 Is a Dual-Affinity Nitrate Transporter of Arabidopsis Involved in Multiple Phases of Nitrate Uptake.The Plant Cell, 11:865~874
    L.Rossato, P. Laine and A. Ourry.2001.Nitrogen storage and remobilization in Brassica napus L.during the growth cycle nitrogen fluxes within the plant and changes in soluble protein patterns.Journal of Experimental Botany, 52(361):1655~1663
    Malagoli P, Laine P.2005.Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape(Brassica napus) from stem extension to harvest.Annals of Botany, 95: 853~861
    Mamoru Okamoto, Anshuman Kumar . 2006 . High-Affinity Nitrate Transport in Roots of Arabidopsis Depends on Expression of the NAR2-Like Gene AtNRT3.1.Plant Physiology, 140:1036~1046
    Nazoa P, Vidmar JJ.2003.Regulation of the nitrate transporter gene ATNRT2.1 in Arabidopsis thaliana: Responses to nitrate , amino acids and developmental stage.Plant Molecular Biology,52;689~703
    PatriciaMe′rigout.2008.Physiological and Transcriptomic Aspects of Urea Uptake and Assimilation in Arabidopsis Plants.Plant Physiology, 147:1225~1238
    Philippe Malagoli, Philippe Lainé.2004.Modeling Nitrogen Uptake in Oilseed Rape cv Capitol during a Growth Cycle Using Influx Kinetics of Root Nitrate Transport Systems and Field Experimental Data.Plant Physiology, 134:388~400
    Pia Walch-Liu and Brian G. Forde.2008.Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture.The Plant Journal.
    QiuyingTian ,FanjunChen.2007.Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots.Journal of plant physiology
    Schjoerring, J. K., J. G. H. Bock, L. H.1995.Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation.Plant an Soil, 177: 255~264
    Shan-Hua Lin, Hui-Fen Kuo.2008, Mutation of the Arabidopsis NRT1.5 Nitrate Transporter CausesDefective Root-to-Shoot Nitrate Transport .The Plant cell
    Smith C J, Whitfield D M.1991.Nitrogen fertilizer balance of irrigated wheat grown on a red-brown earth in southeastern Australia.Field Crops Res. 21:265~275
    Soichi Kojima, Anne Bohner.2007.AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots.The Plant Journal,52:30~40
    Staswick PE.1990.Noval regulation of vegetative storage protein genes.The plant cells , 2:1~6
    Staswick PE.1994.Storage proteins of vegetative plant tissues.Annual review of plant physiology and plant molecular biology, 45:303~322
    Svecˇnjak Z., Rengel Z.2006.Canola cultivars differ in nitrogen utilization efficiency at vegetative stage.Field Crops Research, 97:221~226.
    Tahei Kawachi , Yoshihito Sunaga.2006, Repression of Nitrate Uptake by Replacement of Asp105 by Asparagine in AtNRT3.1 in Arabidopsis thaliana L.Plant Cell Physiol, 47(10): 1437~1441
    Taylor A J, Smith C J, Wilson I B.1991.Effect of irrigation and nitrogen fertilizer on yield, oil content, nitrogen accumulation and water use of canola (Brassica napus L.) .Fert. Res. 29:249~260
    Thierry Desnos.2008.Root branching responses to phosphate and nitrate.Current Opinion in Plant Biology, 11:82~87
    Tony Remans,Philippe Nacry.2006.The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches.Proc Natl Acad Sci U S A, 103(50):19206~19211
    Wenbin Li, Ye Wang.2007.Dissection of the AtNRT2.1-AtNRT2.2 Inducible High-Affinity Nitrate Transporter Gene Cluster.Plant Physiology, 143:425~433
    Wiesler F, Behrens T, Horst, W J. 2001.The role of nitrogen-efficient cultivars in sustainable agriculture.The Scientific World Journal, 1(S2): 61~66
    Wittenbanch VA.1983.Purification and Characterization of a soybean leaf storage glycoprotein.Plant Physiology, 73:125~129
    Xiaorong Fan ,Lijun Jia.2007.Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency.Journal of Experimental Botany, 58(7):1729~1740
    Yi-Fang Tsay, Chi-Chou Chiu.2007.Nitrate transporters and peptide transporters.FEBS Letters, 581(12):2290~2300
    Zhang H, Forde BG.1998.An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279:407~409
    Zlatko Svecˇnjak, Zdenko Rengel.2006a.Canola cultivars differ in nitrogen utilization efficiency at vegetative stage.Field Crops Research, 97:221~226
    Zlatko Svecˇnjak, Zdenko Rengel.2006b. Nitrogen utilization efficiency in canola cultivars at grain harvest. Plant and Soil, 28(3): 299~304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700