水稻BWMK1互作基因的分离与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一类存在于所有真核生物中的丝氨酸/苏氨酸(Ser/Thr)蛋白激酶,在植物信号传导中起着重要作用。BWMK1是第1个被克隆鉴定的水稻MAPK基因,受稻瘟菌侵染和创伤强烈诱导表达。此外,BWMK1还受低温、干旱、黑暗和茉莉酸的诱导,而苯并噻二唑(BTH)、光照和水杨酸负调控其表达。BWMK1与植物防御、胁迫和生长发育相关并可能在植物不同的信号传导途径中起作用。为了对BWMK1和MAPK级链进行更深入的研究,我们通过酵母双杂交体系,以BWMK1为诱饵,筛选水稻cDNA文库,获得了7个互作蛋白:BWIP1-BWIP7。BLAST同源蛋白功能分析结果表明,BWIP1基因编码5-methyltetrahydropteroyltriglutamate—homocysteine S-methyltransferase,BWIP3基因编码肌醇磷酸合成酶,BWIP4基因编码一个水稻磷酸盐转运蛋白OsPT8,BWIP5基因编码一个含WD-40重复蛋白,BWIP6基因编码乙酰谷氨酸激酶2,BWIP2(Y2H12-2)和BWIP7基因未检索到相关功能。
     本研究中我们分别构建了Y2H12-2和OsPT8基因的RNA干涉及超表达载体,并对其功能进行了鉴定。通过根癌农杆菌介导法对2个基因进行遗传转化,并经过GUS、PCR以及RT-PCR鉴定,获得了大量阳性株系。对阳性后代进行白叶枯病菌抗性功能鉴定发现,Y2H12-2和OsPT8 RNA干涉株系均能提高对白叶枯病的抗性,Y2H12-2和OsPT8超表达株系对白叶枯病表现为更感。
Mitogen-activated protein kinases(MAPKs) are the serine/threonine protein kinases in eukaryotes,they play an important role in plant signal transduction pathways.The first reported rice MAPK gene BWMK1 was transcriptionally activated by blast fungus infection and wounding,it was also induced by cold,drought,dark,and jasmonic acid (JA) treatments,but was repressed by light and salicylic acid(SA)/benzothiadiazole (BTH) treatments.It maybe related to plant defense,stress and growth development and may pay a role in cross-talk between different signaling pathways.We performed yeast two-hybrid(Y2H) to identify the proteins that interact with BWMK1.Rice cDNA library was screened using the BWMK1 cDNA as the bait.Seven different BWMK1 interacting proteins(BWIP1-BWIP7) were identified.BWIP1 encodes 5-methyltetrahydropteroyltri-glutamate—homocysteine S-methyltransferase,BWIP3 encodes myo-inositol phosphate synthease(MIPS),BWIP4 encodes a putative phosphate transporter(OsPT8),BWIP5 encodes a WD-40 repeat containing protein,BWIP6 encodes N-acetyl glutamate kinase 2 (NAGK2),but BWIP2(Y2H12-2) and BWIP6 shows no hits to known functional groups using the BLAST algorithm search.
     Among the seven BWIP genes,Y2H12-2 and OsPT8 were selected for functional analysis.RNAi and over-expression constructs were generated for the two genes.We obtained a lot of transgenic lines by Agrobacterium-mediated transformation method for transforming rice.They were verified by GUS,PCR and RT-PCR.Disease resistance of these lines to bacterial blight pathogen Xanthomonas oryzae pv.oryzae(Xoo) was evaluated.The result suggested us that both the RNAi lines of Y2H12-2 and OsPT8 showed enhanced resistance to Xoo,in contrary,both the over-expression lines of Y2H12-2 and OsPT8 made the rice more susceptible to Xoo than the wide type.
引文
[1]Bogre L,Meskiene I,Heberle-Bors E,Hirt H.Stressing the role of the MAP kinase in mitogenic stimμlation[J].Plant Mol Biol,2000,43:705-718
    [2]Ligterink W,Hirt H.Mitogen-activated protein(MAP) kinase pathways in plants:versatile signaling tools[J].Int Rev Cytol,2001,201:209-275
    [3]Jonak C,(O|¨)kresz L,B(o|¨)gre L,Hirt H.Complexity,cross talk and integration of plant MAP kinase signalling[J].Curr Opin Plant Biol,2002,5:415-424
    [4]Zhang S,Klessig DF.MAPK cascades in plant defense signaling[J].Trends Plant Sci,2001,6:520-527
    [5]He C,Fong SHT,Yang D,Wang G-L.BWMK1,a novel MAP kinase induced by fungal infection and mechanical wounding in rice[J].Mol Plant-Microbe Interact,1999,12:1064-1073
    [6]谌江华 宋凤鸣 郑重.水稻的促分裂原激活蛋白激酶及其功能[J].植物生理学通讯,2006,42(4):795-780
    [7]Rae A L,Cybinsld D H,Jarmey J M,et al.Characterization of two phosphate transporters from barley;evidence for diverse function and kinetic properties among members of the Phtl family [J].Plant Mol.Biol,2003,53:27-36
    [8]Jiang Y,Li Z,Schwarz E M,Lin A,Guan K,Mlevitch R J,Han J.Structure-function studies of p38 mitogen-acdvated protein kinase.Loop 12 influences substrate specificity and autophosphorylation,but not upstream kinase selection[J].J Biol Chem,1997,272:11096-11102
    [9]Lodish H,Berk A,Zipursky S L,Matsudaira P,Baltimore D,Darnell J.Molecμlar Cell Biology[M].New York:W.H.Freeman and Company,2000:880-881
    [10]MAPK Group(Ichimura K et al).Mitogen-activated protein kinase cascades in plants:a new nomenclature[J].Trends Plant Sci,2002,7:301-308
    [11]Lieberherr D,Thao NP,Nakashima A,Umemura K,Kawasaki T,Shimamoto K.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regμlated by the small GTPase OsRacl and heterotrimeric G-protein in dee[J].Plant Physiol,2005,138:1644-1652
    [12]Song F,Goodman RM.OsBIMK1,a rice MAP kinase gene involved in disease resistance responses[J].Planta,2002,215:997-1005
    [13]Agrawal GK,Rakwal R,Iwahashi H.Isolation of novel rice(Oryza sativa L.) mμltiple stress responsive MAP kinase gene,OsMSRMK2,whose mRNA accumμlates rapidly in response to environmental cues[J].Biochem Biophys ResComm,2002,294:1009-1016
    [14]Wen JQ,Oono K,Imai R.Two novel mitogen-activated protein signaling components,OsMEK1and OsMAP1,are involved in a moderate low-temperature signaling pathway in rice[J].Plant Physiol,2002,129:1880-1891
    [15]Huang HJ,Fu SF,Tai YH,Chou WC,Huang DD.Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive[J].Physiol Plant,2002,114:572-580
    [16]Xiong LZ,Yang YN.Disease resistance and abiotic stress tolerance in rice are inversely modμlated by an abscisic acidinducible mitogen-activated protein kinase[J].Plant Cell,2003,15:745-759
    [17]Agrawal GK,Agrawal SK,Shibato J,Iwahashi H,Rakwal R.Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regμlation[J].Biochem Biophys Res Comm,2003,300:775-783
    [18]Cheong YH,Moon BC,Kim JK,Kim CY,Kim MC,Kim IH,Park CY,Kim JC,Park BO,Koo SC et al.BWMK1,a rice mitogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,132:1961-1972
    [19]Kim JA,Agrawal GK,Rakwal R,Han KS,Kim KN,Yun CH,Heu S,Park SY,Lee YH,Jwa NS.Molecμlar cloning and mRNA expression analysis of a novel rice(Oryza sativa L.) MAPK kinase kinase,OsEDR1,an ortholog of Arabidopsis AtEDR1,reveal its role in defense/stress signalling pathways and development[J].Biochem Biophys Res Commun,2003,300:868-876
    [20]Hong WF,Chaozu He,Lijun Wang et al.BWMK1 responds to mμltiple environmental stress and plant hormones[J].Journal of Integrative Plant Biology,2007,49:843-851
    [21]Eμlgem T,Rushton PT,Robatzek S,Somssich IE.The WRKY superfamily of plant transcriptional factors[J].Trands Plant,Sci,2000,5:199-206
    [22]Strompen G,Gruner R,Pfitzer U M.An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein la from tobacco[J].Plant Mol,Biol,1998,37:871-883
    [23]Xiang C,Miao ZH,Lam E.Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins,salicylic acid,methyl-jasmonate and hydrogen peroxide[J].Plant Mol Biol,1996,32:415-426
    [24]Droge-Laser W,Kaiser A,Lindsay W P et al.Rapid stimμlation of a soybean protein-serine kinase that phosphorlates a novel bZIP DNA-binding protein,G/HBF-1,during the induction of early transcriptiondependent defenses[J].EMBO J,1997,16:726-738
    [25]Foster R,Izawa T,Chua NH.Plant bZIP proteins gather at ACGT elements[J].FASEB J,1994,8:192-200
    [26]Giμliano G,Pichersky E,Malik V S,Timko M P,Scolnik P A,Cashmore AR.An evolutionary conserved protein binding sequence upstream of a light-regμlated gene[J].Proc Natl Acad Sci USA,1988,85:7089-7093
    [27]Faktor O,Kooter J M,Dixon R A,Lamb C J.Functional dissection of a bean chalcone synthase gene promoter in transgenic tobacco plants reveals secquence motifs essential for floral expression[J].Plant Mol.Biol,1996,32:849-859
    [28]Brown RL,Kazan K,McGrath KC,et al.A role for the GCC-box in jasmomate activation of the PDF 1.2 gene of Arabidopsis[J].Plant Physiol,2003,132:1020-1032
    [29]Ohme-Takagi M,Shinshi H.Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J].Plant Cell,1995,7(2):173-182
    [30]Zhou J,Tang X,Martin GB.The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes[J].EMBO J,1997,16:3207-3218
    [31]Yamaguchi-Shinozaki,K,Shinozaki K.A Novel cis-acting element in an Arabidopsis gene Is Involved in responsiveness to drought,low-temperature,or high-salt stress[J].Plant Cell,1994,6:251-264
    [32]Marschner H.Mineral nutrition of higher plants[M].London:Academic Press,1995:889
    [33]Barber S A,Walker J M and Vasey E H.Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root[J].J.Agrie.Food Chem,1963,11:204-207.
    [34]Mllrich-Eberius C I,Novaeky A.and van Bel A J E.Phosphate uptake in Lenma gibba G1:energetics and kinetics[J].Planta,1984,161:46-52.
    [35]Schaehtman D R,Reid R J,Ayling S M.Phosphorus uptake by plants:From soil to cell[J].Plant Physiology,1998,116:447-453.
    [36]Miller C R,Nielsen K L,Lynch J P.Adventitious root response in field grown common bean: A possible adaptive strategy to low phosphorus conditions.Flores H E,Lynch J P,Eissenatat D (eds).Radical biology:.Advances and perspectives on the function of plant roots[M].Maryland:American Society of Plant Physiologists.1998:394-396.
    [37]Johason J F,Vance C P,Allan D L.Phosphorus deficiency in Lupinus albus.Altered lateral root development and enhanced expression of phosphoenol pyruvate carboxylase[J].Plant Physiology,1996,112:31-411.
    [38]Wasakil J,Yamamura T,Shinano T,et al.Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J].Plant and Soi,2003,248:129-136.
    [39]Muchhal U S,Pardo J M,Raghothama K G.Phosphate transporters from the higher plant Arabidopsis thaliana[J].Proc.Natl.Acad.Sci.USA,1996,93:10519-10523.
    [40]Rae A L,Cybinski D H,Jarmey J M,et al.Characterization of two phosphate transporters from barley;,evidence for diverse function and kinetic properties among members of the Pht1 family [J].Plant Mol.Biol,2003,53:27-36.
    [41]Saier M H.Families of transmembrane transporters selective for amino acids and their derivatives[J].Microbiol.Sgm,2000,146:1775-1795.
    [42]Lagerstedt J O,Voss J C,Wieslander A,et al.Structural modeling of dual-affinity purified Pho84 phosphate transporter[J].FEBS Lett,2004,578:262-268.
    [43]Raghothama K G.Phosphate acquisition[J].Annual Review of Plant Physiology and Plant Molecμlar Biology,1999,50:665-693.
    [44]Goff S A,Ricke D,Lan T H,et al.A draft sequence of the rice genome(Oryza sativa L.ssp.japonica)[J].Science,2002,296:92-100.
    [45]Paszkowski U,Kroken S,Roux C,et al.Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscμlar mycorrhizal symbiosis[J].Proc.Natl.Acad.Sci.USA,2002,99:13324-13329.
    [46]Penghui Ai,Shubin Sun,Jianning Zhao,et al.Two rice phosphate transporters,OsPht1;2 and OsPht1;6,have different functions and kinetic properties in uptake and translocafion[J].The Plant Journal,2009,57:798-809.
    [47]Bucher M.Functional biology of plant phosphate uptake at root and myeorrhiza interfaces[J].New Phytol,2007,173:11-26.
    [48]Javot H,Pumplin N.and Harrison M J.Phosphate in the arbuscμlar mycorrhizal symbiosis: transport properties and regμlatory roles[J].Plant Cell Environ,2007,30:310-322.
    [49]Rausch C and Bucher M.Molecμlar mechanisms of phosphate transport in plants[J].Planta,2002,216:23-37.
    [50]Hyoun-Mi Seo,Yunhui Jung,Songyi Song,et al.Increased expression of OsPT1,a high-affinity phosphate transporter,enhances phosphate acquisition in rice[J].Biotechnol Lett,2008,30:1833-1838.
    [51]Guimil S,Chang H S,Zhu T,et al.Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization[J].Proc.Natl.Acad.Sci.USA,2005,102:8066-8070.
    [52]Smit P,Raedts J,Portyanko V,et al.NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription[J].Science,2005,308:1789-1791.
    [53]Harrison M J,van Buuren M L.A phosphate transporter from the mycorrhizal fungus glomus versiforme[J].Nature,1995,378:626-629.
    [54]Maldonado-Mendoza I E,Dewbre G R,Harrison M J.A phosphate transporter gene from the extra-radical mycelium of an arbuscμlar mycorrhizal fungus Glomus intraradices is regμlated in response to phosphate in the environment[J].Mol Plant Microbe Interact,2001,14:1140-1148.
    [55]Benedetto A,Megurno F,Bonfante P,et al.Expression profiles of a phosphate transporter gene (GmosP7) from the endomycorrhizal fungus Glomus mosseae[J].Mycorrhiza,2005,15:620-627.
    [56]Rausch C,Daram P,Brunner S,et al.A phosphate transporter expressed in arbuscμle-containing cells in potato[J].Nature,2001,414:462-470.
    [57]Min-Hee Nam,Dong-soo Park et al.Analysis of phosphate transporter genes in rice.
    [58]Hyounmi Seo,Yunhui Jung et al.Functional Analysis of the High Affinity Phosphate Transporter Genes Derived from Oryza sativa in Arabidopsis thaliana.
    [59]Jefferson R A.Assaying chimeric genes in plants:the GUS fusion system.Plant Mol.Biol.Rep,1987,5:387-405.
    [60]于天仁,李松华。水稻土氧化还原过程的研究Ⅱ。土壤与植物的相互影响[J]。土壤学报,1957,5:166-174.
    [61]廖宗文,应用电子探针研究黄叶生理病的水稻根内硅和铁的分布[J]。植物生理学报,1989,15(1):52-56。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700