取代Mg对Mg_2Ni型储氢合金结构和性质影响的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界主要使用的是矿物燃料能源,如:煤、石油等,这些都属于非再生能源。随着世界工业的发展和人口的快速增长,这些能源每日都在以惊人的速度消失。而且大量使用这类能源对环境造成了严重的污染。氢,在宇宙中含量丰富,可以再生,燃烧后的生成物只有水,是一种理想的绿色无污染的二次能源。21世纪也被称为氢能源的时代,对氢能源的开发和利用成为了非常重要的课题。但是,氢气在常温下易泄漏,易爆炸,难于储存和运输,因此对于储氢材料的开发便成为科研工作者关注的焦点和研究的热点。
     本文以A_2B型镁基储氢材料Mg_2Ni为研究对象,采用密度泛函理论(DFT)的第一性原理平面波赝势(PWP)方法。计算中,选取广义梯度近似(GGA)下的PW91泛函来描述交换相关能,平面波截止能选取380eV。研究了Mg_2Ni及其低温相氢化物的晶体结构、电子密度分布、态密度分布和氢化过程的焓变。并且分别研究了使用Al、Ag原子取代合金中的Mg原子对合金改性的方法,讨论了取代前后储氢合金及其氢化物在晶体结构、电子密度分布、态密度分布和氢化过程的焓变等性质上的变化,并以此为依据来评价“取代法”对合金改性的效果。本论文的研究内容主要分为以下三个部分。
     第一部分,对Mg_2Ni及其氢化物的晶体结构、电子密度分布、态密度分布和氢化过程的焓变等性质的理论研究。发现在Mg_2Ni中沿着晶胞a轴方向Ni-Ni的相互作用最强,在氢化物中H原子与Ni原子的相互作用最强,并形成了[NiH_4]结构单元,导致氢化物脱氢困难,和Jasen的计算结果一致。并计算了Mg_2Ni合金氢化反应生成低温相氢化物的反应焓变为-65.07kJ/mol(H_2),与实验值-65.5kJ/mol(H_2)的相对误差仅有0.656%。吸氢过程的焓变较高也是导致氢化物稳定性高的原因。
     第二和第三部分,分别研究了,使用电负性较大的Al和Ag原子对Mg_2Ni合金的取代改性,并讨论了取代前后储氢合金及其氢化物在晶体结构、电子密度分布、态密度分布和氢化过程的焓变等性质上的变化。使用Al或Ag原子取代Mg原子后,Al、Ag原子和Ni之间的相互作用较强,导致氢化物中的Ni-H间的相互作用被削弱。由于Al、Ag原子的电负性较大,使Ni原子外层电子偏移,减弱了Ni原子和H之间的相互作用,形成三角锥型的[NiH_3]结构单元,导致合金储氢容量降低。并且吸放氢过程的能量变化明显改善,使氢化过程的平衡氢压升高,稳定性降低。从理论上阐明了使用电负性较大的原子对Mg_2Ni合金取代改性的可行性。
     本论文的创新之处:
     1.对储氢合金Mg_2Ni及其低温相氢化物LT-Mg_2NiH_4的晶体结构、电子结构以及能量进行理论计算,发现了低温相氢化物中存在[NiH_4]结构单元,氢化物结构稳定,从理论上解释了低温相氢化物脱氢困难的原因。
     2.通过理论计算,说明了使用Al或Ag原子对Mg_2Ni晶体中的Mg原子进行替代后生成的新合金的晶体结构的变化,以及电子结构的变化,并说明了取代后生成的新型合金的特性。
     3.研究了新型合金Al-Mg_2Ni和Ag-Mg_2Ni的各类型氢化物的晶体结构和电子结构以及各氢化反应的能量变化。从理论上阐明了使用Al、Ag原子对Mg_2Ni储氢合金的取代改性的可行性。
Nowadays,the mineral energy resources are used most widely,such as the coal,the petroleum oil,which is assigned to the non-regenerated energy resources.With the developing of the industry and the increasing of the population,these energy resources are disappearing very fast.And the environment is polluted seriously by using the mineral energy resources.The hydrogen is a green ideal secondary energy resources,which combustion products is just water.So 21~(st) century is called the times of hydrogen resource.But the hydrogen is easy to leak out and explode,so it is difficult to store and transport.So,many researchers are focus on the development of the hydrogen storage materials.
     A first-principle based on density functional theory and plane wave pseudo-potential (PWP) method were used to research the A_2B-type Mg-based hydrogen storage materials Mg_2Ni.The PW91 function of the generalized gradient approximation (GGA) was employed for the exchange correlation of electrons and the plane wave energy-cutoff is 380ev in the calculation.The crystal structure,electron density distribution,density of states(DOS) and the enthalpy of hydrides formation of Mg_2Ni and low temperature Mg_2NiH_4 hydrides were studied.We also investigated the Mg_2Ni alloy doped by Al and Ag atoms respectively in order to modify the rate of hydrogen evolution reaction of the alloy,and discussed the changes of crystal structure,electron density distribution,density of states(DOS) and the enthalpy of hydrides formation, that was used to assess the results of the modification.The dissertation consists of three parts as follows.
     Part one,gives the theoretical studies on the properties of Mg_2Ni and LT-Mg_2NiH_4 regarding the crystal construction,the density of states(DOS),the enthalpy changes of hydrogenation process.As a result,Ni-Ni shows strong interaction in the direction of axis a in the crystal cell of Mg_2Ni.Moreover,the strong interaction between H and Ni atoms was discovered in LT-Mg_2NiH_4.And due to the strong interaction mentioned above between H and Ni atoms,[NiH_4]structure unit was formed within LT-Mg_2NiH_4, which leads us to Jasen's calculation result.The enthalpy changes of hydrogenation process from Mg_2Ni to LT-Mg_2NiH_4 were also calculated,the calculation result is -65.07kJ/mol(H_2) which is coincident with the experimental observation perfectly, the relative error is only 0.656%.
     Part two and part three shows the studies on the modified properties of Al-doped Mg_2Ni and Ag-doped Mg_2Ni respectively.Both of Al and Ag possess relatively high electronegativity.Furthermore,these two chapters compared the properties of both undoped and Al/Ag-doped Mg_2Ni alloy and its undoped and Al/Ag-doped hydrides LT-Mg_2NiH_4 in respect to the crystal construction,the density of state(DOS) and the enthalpy changes of hydrogenation reaction.We fond that both Al-Ni and Ag-Ni showed strong interaction,which leads to the interaction of Ni-H be weakened. Because of the high electronegativity,the outer electrons structure of Ni was changed that weaken the interaction of Ni-H.Then[NiH_3]with tripod-like structure was formed,which led to the decreasing of hydrogen storage capacity.Therefore,the feasibility of modifying the properties of Mg_2Ni alloy was proved by using dopants possessing relatively high electronnegativity.
     The novel conclusions and ideas of this work are listed as follows:
     1.The crystal structure,electron density distribution,density of states(DOS) and the enthalpy of hydrides formation of Mg_2Ni and low temperature phase of Mg_2NiH_4 were calculated in theory,and we also found that[NiH_4]structure unit was formed within LT-Mg_2NiH_4 crystal cell,which led to the high stability of LT-Mg_2NiH_4.The reason of difficulty of the dehydrogenation was explained in theory.
     2.It explained that the properties changes of Al-doped and Ag-doped Mg_2Ni by the calculating in theory.We also shows the new properties of the new alloy of Al-doped and Ag-doped Mg_2Ni in this paper.
     3.The crystal structure,electron density distribution,density of states(DOS) and the enthalpy change of hydrides formation of Al-dope and Ag-dope Mg_2Ni was calculated, and the possibility,of Al-doping and Ag-doping to modification of Mg_2Ni was proved in theory.
引文
[1]雷永泉编著,新能源材料,2000,天津大学出版社,天津
    [2]National Hydrogen Energy Roadmap,U.S.Department of Energy,2002,p17,http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pd f.
    [3]A.Z(u|¨)ttel,Materials for hydrogen storage,Mater.Today,2003,6,24.
    [4]L.Schlapbach,A.Z(u|¨)ttel,Hydrogen-storage materials for mobile applications,Nature,2001,414,353.
    [5]D.G.Westlake.A geometric model for the stoichiometry and interstitial site occupancy in hydrides(deuterides) of LaNi_5,LaNi_4Al and LaNi4Mn,J Less-common Met,1983;91:275.
    [6]Y.Song,J.P.Manaud.Dehydriding kinetics of a mechanically alloyed mixture Mg-10 wt.%Ni[J].Alloys Compd,1999,282:243-247.
    [7]R.L.Holtz,M.A.Imam.J.Mater.Sci.,1999,34(11):2655-2661、2661-2663.
    [8]Z.Dehouche,R.Djiaozandry,J.Goyette et al.Evalution techniques of cycling effect on thermodynamic and crystal structure properties of Mg_2Ni alloys[J].Journal of Alloys and Compounds,1999(288):269-276
    [9]C.Iwakura,Shin-Ya R,K.Miyanohara,et al.Effects of Ti-V substitution on electrochemical and structural characteristics of Mg_2Ni alloy prepared by mechanical alloying[J].Electrochimica Acta,2001,46:2781
    [10]S.Ruggeri,L.Rou(?),J.Huot,et al.Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries[J].J Power Sources,2002,112:547
    [11]S.C.Han,P.S.Lee,J.Y.Lee,et al.Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling[J].J Alloys Comp,2000,306:219
    [12]H.Ye,Y.Q.Lei,L.S.Chen,et al.Electrochemical characteristics of amorphous Mg_(0.9)M_(0.1)Ni(M=Ni,Ti,Zr,Co and Si) ternary alloys prepared by mechanical alloying[J].J Alloys Comp,2000,311:194
    [13]Y.Zhang,B.Liao,L.X.Chen,et al.The effect of Ni content on the electrochemical and surface characteristics of Mg_(90-x)Ti_(10)Ni_x(x=50,55,60)ternary hydrogen storage electrode alloys[J].J Alloys Comp,2001,26:801.
    [14]Y.Zhang,S.K.Zhang,L.X.Chen.The study on the electrochemical performance of mechanically alloyed Mg-Ti-Ni-based ternary and quaternary hydrogen storage electrode alloys[J].Int J Hydrogen Energy,2001,26:801.
    [15]S.Nohara,K.Hamasaki,S.G.Zhang.Electrochemical characteristics of an amorphous Mg_(0.9)V_(0.1)Ni alloy prepared by menchanical alloying[J].J Alloys Comp,1998,280:104.
    [16]谢昭明等,Al的添加对Mg_2Ni储氢合金结构和氢扩散能力的影响研究,2006,重庆:重庆大学.
    [17]T.Kohno,M.Kanda.Effect of partial substitution on hydrogen storage properties of Mg_2Ni alloy[J].J Electrochem Soc,1997,144(7):2384.
    [18]李谦 等,银和铝对Mg_2Ni合金储氢性能的影响,中国有色金属学报,2003,13(4).
    [19]Gasiorowski,A.Iwasieczko,etal,Hydriding properties of nanocrystalline Mg_(2-x)M_xNi alloys synthesized by mechanical alloying(M=Mn,Al)[J].J.Alloys and Comp.2004,364:283-288.
    [20]Qian.Li,Qin.Lin,Lijun.Jiang,Chou.Kou-Chih.Properties of hydrogen storage alloy Mg_(2-x)Ag_xNi(x=0.05,0.1,0.5) by hydriding combustion synthesis[J].J.Alloys and comp 2003,359:128-132.
    [21]T.Kohno,M.Yamamoto,M.Kanda.Electrochemical properties of mechanically ground Mg_2Ni alloy[J].J.Alloys and Comp.1999,293-295:643-647.
    [22]王权,季世军,孙俊才,Mn含量对Mg_2Ni型合金相形成及放电性能的影响,稀有金属材料与工程,2004,33(5),549.
    [23]Nohara,Shinji;Hamasaki,Kazuki;Electrochemical characteristics of amorphous Mg0.9V0.1Ni alloy prepared by mechanical alloying[J]·J.Alloys Comp 1998,280:104-106.
    [24]K.Tanaka,Y.Kanda,M.Furuhashi,et al.Improvement of hydrogen storage properties of melt-spun Mg-Ni-RE alloys by nanocrystal-lization[J]·Journal of Alloys and Compounds,1999,293:521-525.
    [25]袁华堂,李秋荻,王一菁,等,新型镁基储氢合金的合成及电化学性能的研究[J].高等学校化学学报,2002,123(4):517-520.
    [26]王秀丽,涂江平,等,掺Cr纳米晶Mg_2Ni合金的气态储氢性能[J].中国有色金属学报2002,(12)5.
    [27]陈玉安,唐体春,傅洁,潘复生,邓世平,李家鸣,赵光明,Cu的添加对Mg_2Ni合金储氢性能的影响,功能材料,2007,38(6):952-953.
    [28]H.B.Yang,H.T.Yuan,J.T.Ji,et al.Characteristics of Mg_2Ni_(0.75)M_(0.25)(M=Ti,Cr,Mn,Fe,Co,Ni,Cu,and Zn) alloys after surface treatment[J].J Alloys Comp,2002,640:330-332.
    [29]N.Terashita,M.Takahashi,K.Kobayashi,et al.Synthesis and hydrding/dehydriding properties of amorphous Mg_2Ni_(09)M_(0.1) alloys mechanically alloyed from Mg_2Ni_(0.9)M_(0.1)(M=none,Ni,Ca,La,Y,Al,Si,Cu,and Mn) and Ni powder [J].J Alloys Comp,1999,541:293-295
    [30]Z.Dehouche,Djiaozandry,Evaluation techniques of cycling effect on thermody -namic and crystal structure properties of Mg_2Ni alloy[J].J.Alloys and Comp,1999,288:269-276.
    [31]Z.Deho,R.Djaozandry,J.Goyette,et al.Evaluation techniques of Mg_2Ni alloy [J].J Alloys Comp,1999,288:269.
    [32]L.Li,I.Saita,K.Saito,et al.Hydriding combustion synthesis of Mg-Ni-Cu system[J].Intermetallics,2002,10(10):927.
    [33]李金平.机械合金化MgNiCu合金储氢性能的研究[D].哈尔滨:哈尔滨工业大学,1996.42.
    [34]L.Zaluski,et al.Hydrogen absorption in nanocrystalline Mg_2Ni formed by mechanical alloying[J].J.Alloys and Compds.,1995,217:245-249.
    [35]H.B.Yang,H.T.Yuan,J.T.Ji,et al.Characteristic of Mg_2Ni_(0.75)M_(0.25)(M=Ti,Cr,Mn,Fe,Co,Ni,Cu and Zn) alloys after surface treatment[J].J Alloys Comp,2002,330-332.640.
    [36]S.Orimo,A.Zuttel,K.Ikeda,et al.Hydriding properties of the MgNi-based systems[J].J Alloys Comp,1999,293-295:437.
    [37]杨化滨;三元,Mg_2Ni_(0.75)M_(0.25)合金体系的性能研究[D].天津:南开大学,1998.
    [38]H.T.Yuan,R.Cao,L.B.Wang,et al.Characteristic of a new Mg-Ni hydrogen storage system:Mg_(2-x) Ni_(1-y)Ti_xMn_y(0<x<1,0<y<1) alloys[J].J Alloys Comp,2001,322:246.
    [39]N.Ohba,M.Aoki,T.Noritake,K.Miwa etc,First-principles study of a hydrogen storage material CaSi[J].Phys.Rew.B,2005,72:75-104.
    [40]S.V.Alapati,J.K.Johnson,and D.S.Sholl.Predicting Reaction Equilibria for Destabilized Metal Hydride Decomposition Reactions for Reversible Hydrogen Storage[J].J.Phys.Chem.C 2007,111(4):1584-1597.
    [41]Jun Li,S.M.Kathrnann,G.K.Schenter,and M.Gutowski.Isomers and Conformers of H(NH2BH2)_nH Oligomers:Understanding the Geometries and Electronic Structure of Boron-Nitrogen-Hydrogen Compounds as Potential Hydrogen Storage Materials[J].J.Phys.Chem.C 2007,111(8):3294-3299.
    [42]方志杰,梁业广,郭进等.Mg_2Ni氢化物电子结构的研究[J].桂林工学院学报,2004,24(4):89-91.
    [43]马树元,黄丹,郭进等.Mg_2Ni合金及其氢化物的电子结构及成键特性的第一原理计算[J].中国有色金属学报,Jan.2007,17(1):118-123.
    [44]黄存可.Mg_2Ni基贮氢合金的掺杂和复合的实验及电子结构理论研究[D].广西大学硕士论文,2006,5.
    [45]G.N.Garc(?)a,J.P.Abriata,J.O.Solo,Calculation of the electronic and structural properties of cubic Mg2NiH4[J].Phys Rev B.1999,59(18):11746-11754.
    [46]W.R.Myers,L.W.Wang,T.J.Richardson,M.D.Rubin,Calculation of thermodynamic,electronic,and optical properties of monoclinic Mg2NiH4[J].J.Applied Physics,2002,91(8):4879-4885.
    [47]张健,周惦武,刘金水.高、低温相Mg2NiH4相稳定性的第一原理计算[J].中国有色金属学报,2008,18(9):1686-1691.
    [48]Y.Takahashi,H.Yukawa,M.Morinaga.J Alloys Compds[J],1996,242:98.
    [49]G.Kresse and D.Joubert,Phys.Rev.B 59,1785(1999).
    [50]G.Kresse and J.Furthm(u|¨)ller,Phys.Rev.B 54 11169(1996).
    [51]G.Kresse and J.Hafner,Phys.Rev.B 47 R558(1993).
    [52]http://www.cmmp.ucl.ac.uk/lev/
    [53]V.Fock,Z.Phys.,61,209(1930).
    [54]H.Thomas,Proc.Camb.Phil.Soc.,23,542(1927).E.Fermi,Accad.Naz.Lincei,6,602(1927).
    [55]P.Hohenberg,W.Kohn,Phys.Rev.B,136,864(1964).
    [56]W.Kohn,L.J.Sham,Phys.Rev.A,140,1133(1965).
    [57]J.C.Slater,Phys.Rev.,81,385(1951).
    [58]J.C.Slater,The self-consistent field for molecules and solids,Mcgraw-Hill,New York,(1974).
    [59]D.M.Ceperley,B.L.Alder,Phys.Rev.Lett.,45,566(1980).
    [60]T.P.Perdew,A.Zunger,Phys.Rev.B,23,5048(1981).
    [61]R.O.Jones,O.Gunnarsson,Rev.Mod.Phys.,61,689(1989).
    [62]A.D.Becke,Phys.Rev.A,38,3098(1988).
    [63]J.P.Perdew,in Electronic structure of solids,Eds.P.Ziesche and H.Eschrig,Akademic Verlag,Berlin,1991.pp.11.
    [64]C.Langreth,J.P.Perdew,Phys.Rev.B,21,5469(1980).
    [65]J.P.Perdew,Y.Wang,Phys.Rev.B,45,13244(1992).
    [66]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson,D.Singh,C.Foihais,Phys.Rev.B,46,6671(1992).
    [67]J.P.Perdew,K.Burke,M.Emzerhof,Phys.Rev.Lett.,77,3865(1996).
    [68]C.Lee,W.Yang,R.C.Parr,Phys.Rev.B,37,785(1988).
    [69]Y.Andersson,D.C.Langreth,B.I.Lundqvist,Phys.Rev.Lett.,76,102(1996).
    [70]W.Kohn,Y.Meir,D.E.Makarov,Phys.Rev.Lett.,80,4153(1998).
    [71]D.R.Hamann,M.Schluter,C.Chiang,Phys.Rev.Lett.,43,1494(1977).
    [72]谢希德,陆栋,固体能带理论,复旦大学出版社,1998年.
    [73]G.B.Bachelet,D.R.Hamann,M.Schluter,Phys.Rev.B,26,4199(1982).
    [74]D.Vanderbilt,Phys.Rev.B,41,7892(1990).
    [75]叶林辉,中国科学院物理研究所博士论文,2003年.
    [76]W.H.Press,B.P.Flannery,S.A.Teukolsky,W.T.Vetterting,Em Numerical Recipes. Cambridge University Press, New York, 1986.
    [77] P. Pulay, Chem. Phys. Lett., 73, 393(1980).
    [78] W. Kohn, Rev. Mod. Phys., 71, 1253(1998). [79] R. L. Holtz, M. A. Imam. J. Mater. Sci., 1999, 34 (11): 2655- 2661 、 2661-2663.
    [80] Z. Dehouche, R. Djiaozandry, J. Goyette et al. Evalution techniques of cycling effect on thermodynamic and crystal structure properties of Mg_2Ni alloys[J].Journal of Alloys and Compounds, 1999 (288): 269 -275
    [81] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64: 1045-1097.
    [82] P. Zolliker, K. Yvon, J. D. Jorgensen, F. J. Rotella. Structural studies of the hydrogen storage material Mg_2NiH_4. 2. Monoclinic low-temperature structure [J].Inorg Chem, 1986, 25: 3590-3593.
    [83] D. Noreus, L. GOlsson. The structure and dynamics of hydrogen in Mg_2NiH_4 studied by elastic and inelastic neutron scattering [J]. J Chem Phys, 1983, 78:2419-2427.
    [84] P. Zolliker, K. Yvon, J. D. Jorgensen, and F. J. Rotellag , Structural Studies of the Hydrogen Storage Material Mg2NiH4. 2. Monoclinic Low-Temperature Structure[J], Inorg Chem, 1986,25:3590-3593.
    [85] Ulrich Halussermann, Helen Blomqvist, and Dag Nore(?)us, Bonding and Stability of the Hydrogen Storage Material Mg2NiH4 [J] , Inorg Chem, 2002,41:3684-3692.
    [86] Paula V. Jasena, Estela A. Gonzaleza, Graciela Brizuelaa, Oscar A. Nagela,Gustavo A. Gonzalezb, Alfredo Juana, Atheoretical study of the electronic structure and bonding of the monoclinic phase of Mg_2NiH_4 [J], International Journal of Hydrogen Energy 32 (2007) 4943 - 4948.
    [87] C. P. Broedersz, R. Gremaud, B. Dam, and R. Griessen, Highly destabilized Mg-Ti-Ni-H system investigated by density functional theory and hydrogenography [J], PHYSICAL REVIEW B 77, 024204, 2008,024204-1-024204-10.
    [88]J.L.Soubeyroux,D.Fruchart,A.Mikou.Materials Research Bulletin 1984(19):895
    [89]Liquan Li a,Itoko Saita b,Tomohiro Akiyamab,Intermediate products during the hydriding combustion synthesis of Mg_2NiH_4[J],Journal of Alloys and Compounds 384:(2004) 157-164.
    [90]K.YVON,J.SCHEFER,and F.STUCK,Structural Studies of the Hydrogen Storage Material Mg2NiH4.1.Cubic High-Temperature Structure[J],Inorg.Chem.1981,20,2776-2778.
    [91]E.R(o|¨)nnebro,J.O.Jensen,D.Nor(?)us,N.J.Bjerrum.Structural studies of disordered Mg_2NiH_4 formed by mechanical grinding[J].J Alloys Compd.1999,293/295:146-149.
    [92]S.Yamamoto,Y.Fukai,E.Ronnebro,J.Chen,T.Sakai.Structural changes of Mg_2NiH_4 under high hydrogen pressures[J].J Alloys Compd,2003,356:697-700.
    [93]P.V.JASEN,E.A.GONZ(?)LEZ,G.BRIZUELA,O.A.NAGEL,G.A.GONZ(?)LEZ,A.JUAN.A theoretical study of the electronic structure and bonding of the monoclinic phase of Mg_2NiH_4[J].Int J Hydrogen Energy,2007,32(8):4943-4948.
    [94]D.Nor(?)us,L.Kihlborg.Twinning at the unit cell level in the low temperature phase of Mg_2NiH_4 studied by electron microscopy[J].J Less-Comm Met,1986,123:233-239.
    [95]张健,周惦武,刘金水。高、低温Mg_2NiH_4相结构稳定性的第一原理计算[J].中国有色金属学报,2008,18:1686-1690.
    [96]贡长生,张克立主编.新型功能材料[M].北京:化学工业出版社,25-28(2001)
    [97]雷永泉编著,新能源材料,2000,天津大学出版社,天津
    [98]谢昭明等,Al的添加对Mg_2Ni储氢合金结构和氢扩散能力的影响研究,2006,重庆:重庆大学.
    [99]T.Kohno,M.Kanda.Effect of partial substitution on hydrogen storage properties of Mg_2Ni alloy[J].J Electrochem Soc,1997,144(7):2384.
    [100]马树元,黄丹,郑定山,肖荣军,郭进.Mg_2Ni合金及其氢化物的电子结 构及成键特性的第一原理计算[J].中国有色金属学报,2007,17(1):118-123.
    [101]S.Li,P.Jena.Dehydrogenation mechanism in catalyst-activated MgH_2[J].Phys Rev B,2006,74(13):132106-132109.
    [102]张健,周惦武,刘金水。高、低温Mg_2NiH_4相结构稳定性的第一原理计算[J].中国有色金属学报,2008,18:1691
    [103]Y.Takahashi,H.Yukawa,M.Morinaga.Alloying effects on the electronic structural of Mg_2Ni intermetallic hydride[J].J Alloys and Comp,1996,242(1/2):98-107
    [104]方志杰,苏强,李榜全,朱素华,张亚萍,郭进.替代元素在储氢合金LaNi_4M 中的作用机理[J].中国有色金属学报2003,13(5):1141-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700