人源羊水干细胞分离培养、生物学特性检测及诱导分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于胚胎干细胞的研究受到伦理道德问题的束缚与限制,很多研究者开始尝试寻找新的干细胞来源。2003年,Prusa等在羊水中发现Oct-4阳性细胞,提示羊水中可能存在多能干细胞。2007年,Paolo等报道,他们在人的孕中期羊水中发现少量具有ES细胞特性的干细胞,将其命名为人羊水源干细胞(human Amniotic Fluid Stem Cell,hAFS cell)。这种细胞表达ES细胞和成体干细胞标志基因,体外诱导可分化为包括三个胚层的细胞,且通过了功能测试。hAFS细胞的特点是容易获取,不会损害母体及胚胎,可为细胞和组织工程治疗提供新的种子细胞来源。本实验自人孕中期、孕晚期羊水中分离培养hAFS细胞,检测了羊水标本性状对细胞原代培养的影响,筛选并优化了细胞培养体系。同时,通过RT-PCR、免疫细胞化学和流式细胞仪技术分选等技术,对hAFS细胞的生物学特性进行了检测,并诱导hAFS细胞向心肌细胞和神经细胞分化。
     (1)羊水标本性状对hAFS细胞原代培养的影响
     从医院妇产科收集孕中期及孕晚期羊水标本,离心收集细胞,加入羊水干细胞培养液(ACM)进行培养,记录原代细胞贴壁时间及贴壁细胞数量,探讨人羊水标本性状等因素对原代分离培养的影响。实验结果表明,孕中期(4.7±0.6 d)与孕晚期(6±0.5 d)羊水标本中细胞的贴壁时间有明显差异(P<0.05),孕晚期贴壁时间较长。羊水中血细胞污染程度对贴壁时间有明显影响,重度污染组(10.8±0.3 d)与无污染组(6±0.5 d)、轻度污染组(6.3±0.6 d)贴壁时间差异显著(P<0.05)。羊水体积对细胞贴壁时间没有明显影响,但对贴壁细胞数量有显著影响(P<0.05)。整个实验系统地检测了羊水干细胞原代培养的影响因素,为羊水干细胞研究提供了可以借鉴的资料。
     (2)hAFS细胞分离培养及生物学特性检测
     培养人孕中期及孕晚期羊水标本,通过机械方法分离纯化hAFS细胞,采用RT-PCR、免疫细胞化学和流式细胞仪分选等技术对其生物学特性和分化潜能进行了检测。结果表明,在原代细胞培养的基础上,通过机械分离方法,可得到成纤维样hAFS细胞。这种细胞表达胚胎干细胞的特异性基因标志Oct-4、hTERT、Nanog、SSEA-1、SSEA-4和CD117,不表达SSEA-3;表达间充质干细胞的特异性基因标志CD29、CD44、CD73、CD90和CD105;不表达造血干细胞和造血细胞的特异性基因标志CD34、CD133和CD45;另外,这种细胞还表达HLA-ABC,弱表达HLA-DR。将hAFS细胞在体外多次传代后(已传至45代),仍具有较强的增殖能力,细胞核型正常。hAFS细胞在悬浮培养条件下可聚集形成类胚体,碱性磷酸酶(AP)检测呈阳性,表达三胚层特异性基因标志,如,外胚层:fgf5;中胚层:ζ-globin;内胚层:α-fetoprotein,证明其具有向三个胚层分化的潜能。同时,本实验筛选含不同浓度FBS及KSR的ACM培养液,表明hAFS细胞可在含KSR的无血清培养体系中扩增。
     (3)hAFS细胞向心肌细胞诱导分化
     采用人孕晚期羊水中分离得到hAFS细胞,通过形成类胚体(EB)诱导和单层诱导两种方法,结合不同的诱导液,诱导hAFS细胞向心肌细胞分化,比较诱导效果,筛选最适的诱导体系。结果表明,在不同诱导条件下,均得到α-actin染色阳性细胞,表达心肌细胞特异标志基因Tbx5、Nkx2.5、GATA4和α-MHC。比较不同诱导液对细胞诱导效果的影响发现,条件诱导液组的诱导效果显著优于RA和DMSO组(P<0.05)。在相同诱导液诱导条件下,通过形成类胚体诱导hAFS细胞向心肌细胞分化的效果显著优于单层诱导组(DMSO和条件培养液诱导,P<0.05)。以上结果表明,诱导hAFS细胞向心肌细胞分化时,通过形成类胚体并采用条件培养液的诱导效果最好。
     (4)hAFS细胞向神经细胞诱导分化
     由人孕晚期羊水中分离得到hAFS细胞,采用形成类胚体(EB)诱导和单层诱导两种方法,结合不同的诱导液,诱导hAFS细胞向神经细胞分化,通过比较诱导效果,筛选最适的诱导体系。结果表明,在不同诱导条件下,均得到Nestin、NSE阳性细胞,分化的细胞体积变小,胞质收缩,细胞逐渐呈锥形或三角形,表达神经细胞特异性基因标志fgf-5和CD56。在采用RA进行诱导时,单层诱导组诱导结果与类胚体诱导组类似,但相应阶段Nestin、NSE的相对表达量及阳性细胞百分比高于类胚体诱导组,且差异显著(P<0.05)。比较不同浓度β-Me的单层诱导效果,表明5mmol/Lβ-Me组诱导效果较好,且诱导时间应控制在3~4h之内,但在β-Me诱导条件下,未检测到NSE阳性细胞。以上结果表明,诱导hAFS细胞向神经细胞分化时,采用RA诱导液并进行单层诱导的效果较好。
Researchers try to find out new resource of stem cell because of the ethical argument of embryonic stem cells. In 2003, Oct-4 positive cells were isolated in amniotic fluid, which showed that there might be multipotent stem cell in amniotic fluid. In 2007, Paolo demonstrated that they found a few stem cells in amniotic fluid,which was named human amniotic fluid stem cell (hAFS cell). hAFS cells that express embryonic and adult stem cell markers can differentiate into cell types of three embryonic germ layer and display specialized functions. hAFS cells can be obtained easily and do not damage the mother body and the embryo, which may offer an alternative approach for the therapy of cell and tissue engineering. In this study, hAFS cells were isolated from human amniotic fluid at the 2nd or 3rd trimester of gestation. Effects of the characteristics of amniotic fluid on the culture of hAFS cells were evaluated and culture system were established. At the same time, the biological characteristics of hAFS cells were detected by immunocytochemistry, RT-PCR and flow cytometer. hAFS cells were induced to differentiate to cardiomyocytes and neural cells.
     (1) Effects of the characteristics of amniotic fluid on the culture of hAFS cells Human amniotic fluid samples were obtained at the 2nd or 3rd trimester of gestation. Cells were isolated after centrifugation and were cultured with amniotic fluid stem cell culture medium (ACM). The cell attachment time and numbers were recorded to investigate the factors that affect the growth of hAFS cell primary culture. The results showed that the cell attachment time in the 2nd trimester of gestation (4.7±0.6 d) was significantly different with that in the 3rd trimester of gestation (6±0.5 d) (P<0.05), suggesting that cells collected from the fluid of 3rd trimester of gestation need longer time to attachment. We also find that blood contamination can significantly affect the time of cell attachment. The attachment time of maroon group (10.8±0.3 d) was significantly different with the clear group (6±0.5 d) and yellow group (6.3±0.6 d) (P<0.05). The effects of volume of amniotic fluid were also investigated on numbers and time of cell attachment. The volume of amniotic fluid did not affect cell attachment time, but affected the cell attachment numbers to a certain extent (P<0.05). The present studies systematically examine factors affecting on the primary culture of human AFS cells and provide useful data for AFS cell research.
     (2) The isolation, culture and detection of hAFS cells
     Human amniotic fluid samples at the 2nd or 3rd trimester of gestation were cultured and hAFS cells were isolated by the manual dissociation. The biological characteristics and the differentiation potential of hAFS cells were studied by the methods of RT-PCR, immunocytochemistry and flow cytometer. hAFS cells showing fibroblastoid-type were obtained and were positively express specific makers of embryonic stem cells, such as Oct-4, hTERT, Nanog, SSEA-1, SSEA-4 and CD117, but not SSEA-3. hAFS cells were stained positively for mesenchymal stem cells markers, including CD29, CD44, CD73, CD90 and CD105, but negatively for hematopoietic stem cells and hematopoietic lineage markers, including CD34, CD133 and CD45. hAFS cells were also positive for HLA-ABC and weakly positive for HLA-DR. hAFS cells maintain the proliferative potential and normal karyotypes even after expansion to several populations. In the suspension culture, hAFS cells could form embryoid bodies which were alkaline phosphatase (AP) positive and expressed fgf5,ζ-globin andα-fetoprotein which were the specific makers of three germs. hAFS cells proliferation rates were compared under two different medium, containing either FBS or KSR. The results showed that hAFS cells can be expanded in the absence of animal serum.
     (3) Differentiation of hAFS cells into cardiomyocytes
     hAFS cells were isolated from human amniotic fluid samples at the 3rd trimester of gestation. The induce effect were compared with different induce conditions. The results showed that the differentiated cells were positive forα-actin, Tbx5, Nkx2.5, GATA4 andα-MHC. The average optical density ofα-actin positive cells in conditional medium was higher than RA and DMSO treatments (P<0.05). In the same medium, the induce effect in EB group was well (P<0.05). The conclusion showed that the induce effect of hAFS cells differentiation into cardiomyocytes through the formation of embryoid bodies under the conditional medium was advantageous over other induce conditions.
     (4) Differentiation of hAFS cells into neural cells
     hAFS cells were isolated from human amniotic fluid samples at the 3rd trimester of gestation. The induce effect were compared with different induction conditions. The results showed that the differentiated cells were smaller,cytoplasmic contraction,cone-shaped or triangular,which were positive for Nestin, NSE, fgf-5 and CD56. Under RA medium, the average optical density of Nestin and NSE positive cells in monolayer group was higher than in EB group (P<0.05). Underβ-Me medium, no NSE positive cells were observed and the induce time should be changed in 3~4 hours. The conclusion showed that the induce effect of hAFS cells differentiation into neural cells under RA medium in monolayer group was advantageous over other induce conditions.
引文
[1] Steele MW, Breg WR. Chromosome analysis of human amniotic fluid cells [J]. Lancet, 1966, 1: 383~385.
    [2] Nadler HL, Gerbie A. Present status of amniocentesis in intrayterine diagnosis of genetic defects [J]. Obstet Gynecol Nov, 1971, 38: 789~799.
    [3] Milunsky A. Amniotic fluid cell culture [M]. New York: Plenum Press, 1979.
    [4] Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture [J]. Methods in Cell Biology, 1982, 26: 11~34.
    [5] Gosden CM. Amniotic fluid cell types and culture [J]. Br Med Bull, 1983, 39: 348~354.
    [6] Hoehn H, Bryant EM, Karp LE, et al, Cultivated cells from diagnostic amniocentesis in second trimester pregnancies I. Clonal morphology and growth potential [J]. Pediat Res, 1974, 8: 746~754.
    [7] Gospodarowicz D, Moran JS, Owashi ND. Effects of fibroblast growth factor and epidermal growth factor on the rate of growth of amniotic fluid-derived cells [J]. J Clin Endocrinol Metab, 1977, 44: 651~659.
    [8] Medina-Gomez P, Bard JBL. Analysis of normal and abnormal amniotic fluid cells in vitro by cinemicrography [J]. Prenat Diagn, 1983, 3: 311~326.
    [9] Prusa AR, Hengstschl?ger M. Amniotic fluid cells and human stem cell research: a new connection [J]. Med Sci Monit, 2002, 8: 253~257.
    [10] Greenebaum E, Mansukhani MM, Heller DS, et al. Open neural tube defects: Immunocytochemical demonstration of neuroepithelial cells in amniotic fluid [J]. Diag Cytopathol, 1997, 16(2): 143~144.
    [11] Virtanen I, Koskull H, Lehto VP, et al. Cultured human aminotic fluid cells characterized with antibodies against intermediate filaments in indirect immunofluorescence microscopy [J]. J Clin Invest, 1981, 68(5): 1348~1355.
    [12] Torricelli F, Brizzi L, Benabei PA, et al. Identification Of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation [J]. Italian Journal of Anatomy and Embryology, 1993, 98: 119~126.
    [13] Streubel B, Martucci-lvessa G, Fleck T, et a1. In vitro transformation of amniotic cells to muscle cells-background and outlook [J].Wien Med Wochenschr, 1996, 146: 216~217.
    [14] Polgar K, Adany R, Abel G, et al. Characterization of rapidly adhering amniotic fluid cells by combined immunofluorescence and phagocytosis assays [J]. Am J Hum Genet, 1989, 45: 786~792.
    [15] Tyden O, Bergstrom S, Nilsson BA. Origin of amniotic fluid cells in mid-trimester pregnancies [J]. Br J Obstet Gynecol, 1981, 88: 278~286.
    [16] Milunsky A. Genetic Disorders and the Fetus: Diagnosis, Prevention, and Treatment [M]. Baltimore, MD: The Johns Hopkins University Press, 1998.
    [17] Priest RE, Marimuthu KM, Priest JH. Origin of cells in human amniotic fluid cultures [J]. Lab Invest, 1978, 39: 106~109.
    [18] Prusa AR, Marton E, Rosner M, et al. OCT-4 expressing cells in human amniotic fluid: a new source for stem cell research? [J]. Hum Reprod, 2003, 18: 1489~1493.
    [19] Whitsett CF, Priest RE, Priest JH, et al. HLA-typing of cultured amniotic fluid cells [J]. Am J ClinPathol, 1983, 79: 186.
    [20] Thakar N, Priest RE, Priest JH. Estrogen production by cultured amniotic fluid cells [J]. Clin Res, 1982, 30: 888.
    [21] Gosden CM, Brock DJ, Eason P. The origin of the rapidly adhering cellsfound in amniotic fluids from foetuses with neural tube dcfects [J]. ClinGenet, 1977, 12(4): 193~201.
    [22] Bailo M, Soncini M, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived from term placenta [J]. Transplantation, 2004, 78: 1439~1448.
    [23] Mosquera A, Fernandez JL, Campos A, et al. Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells [J]. J Med Genet, 1999, 36: 494~496.
    [24] Pesce M, Sch€oler HR. Oct-4: gatekeeper in the beginning of mammalian development [J]. Stem Cells, 2001, 19: 271~278.
    [25] In't Anker PS, Scherjon SA, Keur CK, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation [J]. Blood, 2003, 102: 1548~1549.
    [26] Karlmark KR, Freilinger A, Marton E, et al. Activation of Oct-4 and Rex-1 promoters in human amniotic fluid cells [J]. Int J Mol Med, 2005, 16: 987~992.
    [27] Bossolasco P, Montemurro T, Cova L, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential [J]. Cell Res, 2006, 16: 329~336.
    [28] Peng HH, Wang TH, Chao AS, et al. Isolation and differentiation of human mesenchymal stem cells obtained from second trimester amniotic fluid; experiments at Chang Gung Memorial Hospital [J]. Chang Gung Med J, 2007, 30(5): 402~407.
    [29] Pieternella S, Sicco A. Godelieve MJS,et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta [J]. Stem Cells, 2004, 22: 1338~1345.
    [30] Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol [J]. Hum. Reprod, 2004, 19:1450~1456.
    [31] Paolo DC, Georg BJ, Anthony A, et al. Isolation of amniotic stem cell lines with potential for therapy [J]. Nat Biotechnol, 2007, 25(1): 100~106.
    [32] Siegel N, Rosner M, Hanneder M, et al. Human amniotic fluid stem cells: a new perspective [J].Amnio Acids, 2007, published online August 21.
    [33] Prusa AR, Marton E, Rosner M, et al. Neurogenic cells in human amniotic fluid [J]. Am J Obstet Gynecol, 2004, 191: 309~314.
    [34] Sakuragawa N, Elwan MA, Fujii T, et al. Possible dynamic neurotransmitter metabolism surrounding the fetus [J]. J Child Neurology, 1999, 11: 265~266.
    [35] Sandler TW. Langman’s Medical Embryology [M]. Baltimore, MD: William and Wilkins, 1995.
    [36] Uchida S, Inanaga Y, Kobayashi M, et al. Neurotrophic function of conditioned medium from human amniotic epithelial cells [J]. J Neurosc Res, 2000; 62: 585~590.
    [37] Okawa H, Oknda O, Arai H, et al. Amniotic epithelial cells transform into neuron-like cells in the ischcmic brain [J]. Neuroreport, 2001, 12(18): 4003~4007.
    [38] Sakuragawa N, Kakishita K, Kikuchi A, et al. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells [J]. J Neurosci Res, 2004, 78: 208~214.
    [39] Schmidt D, Achermann J, Odermatt B, et al.Prenatally fabricated autologous human living heartvalves based on amniotic fluid derived progenitor cells as single cell source [J]. Circulation, 2007, 116(11 Suppl): I64~170.
    [40] Terada S, Matsuura K, Enosawa S, et al. Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy [J]. Cell Transpl, 2000, 9(5): 701~704.
    [41] Sancho S, Mongini T, Tanji K, et al. Analysis of dystrophin expression after activation of myogenesis in amniocytes, chorionic-villus cells and fibroblasts [J]. NEJM, 1993, 329: 915~920.
    [42] Ruiz-Canela M. Embryonic stem cell research: The relevance of cthics in the progress of science [J]. Med Sci Monit, 2002, 8(5): 21~26
    [43] In't Anker PS, Scherjon SA, Keur CK, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta [J]. Stem Cells, 2004, 22:1338~1345.
    [44] Kaviani A, Perry TE, Dzakovic A, et al. The amniotic fluid as a source of cells for fetal tissue engineering [J]. J Pediatr Surg, 2001, 36: 1662~1665.
    [45] Kaviani A, Guleserian K, Perry TE, et al. Fetal tissue engineering from amniotic fluid [J]. J Am Coll Surg, 2003, 196: 592~597.
    [46] Fuchs JR, Kaviani A, Oh JT, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes [J]. J Pediatr Surg, 2004, 39(6): 834~838.
    [47] Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and Proteomic Characterization of HumanMesenchymal Stem Cells Derived from Amniotic Fluid: Comparison to Bone Marrow Mesenchymal Stem Cells [J]. Stem Cells Dev, 2007, 16(6): 931~952.
    [48] Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor [J]. Cell, 1990, 63(1): 213~224.
    [49] Chabot B, Stephenson DA, Chapman VM, et al. The protooncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus [J]. Nature, 1988, 335: 88~89.
    [50] Fleischman RA. From white spots to stem cells: the role of the Kit receptor in mammalian development [J]. Trends Genet, 1993, 9: 285~290.
    [51] Guo CS, Wehrle-Haller B, Rossi J, et al. Autocrine regulation of neural crest cell development by steel factor [J]. Dev Biol, 1997, 184: 61~69.
    [52] Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells [J]. Nat Biotechnol, 2005, 23: 699~708.
    [53] Crane JF, Trainor PA. Neural crest stem and progenitor cells [J]. Annu Rev Cell Dev Biol, 2006, 22: 267~286.
    [54] Challier JC, Galtier MG, Cortez A, et al. Immunocytochemical evidence for hematopoiesis in the early human placenta [J]. Placenta, 2005, 26: 282~288.
    [55] Chiavegato A, Bollini S, PozzobonM, et al. Human amniotic fluid-derived stem cells are rejected after transp lantation in the myocardium of normal, ischemic, immunosupp ressed or immunodeficient rat [J]. J Mol Cell Cardiol, 2007, 42(4): 746~759.
    [56] 李现铎,耿红全,朱哲等.孕中期羊水来源胎儿间充质干细胞的分离与培养及其生物学特性研究[J].中华医学杂志, 2006, 86: 481~483.
    [57] Kim J, Lee Y, You J, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells [J]. Cell Prolif, 2007, 40(1): 75~90.
    [58] Tsai MS, Hwang SM, Chang YJ, et al. Clonal amniotic fluid-derived stem cells express characteristicsof both mesenchymal and neural stem cells [J]. Biol Reprod, 2006, 74(3): 545~551.
    [59] Alan Trounson. A fluid means of stem cell generation [J]. Nature Biotechnology, 2007, 25: 62~63.
    [60] Kunisaki SM, Armant M, Kao GS, et al. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials [J]. J Pediatr Surg, 2007, 42(6): 974~980.
    [61] Sartore S, Lenzi M, Angelini A, et al. Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes [J]. Eur J Cardio-thorac Surg, 2005, 28: 677~684.
    [62] 李现铎,耿红全,潘骏等.羊水细胞作为组织工程种子细胞可能性的探讨[J].中华医学杂志, 2005, 85: 464~467.
    [63] Paola DG, Cristina L, Matteo B, et al. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells [J]. Stem Cells Dev, 2006, 15(5): 719~728.
    [64] Bryan TM, Englezou A, Dunham MA, et al. Telomere length dynamics in telomerase-positive immortal human cell populations [J]. Exp Cell Res, 1998, 239: 370~378.
    [65] Shay JW, Wright WE. Hayflick, his limit, and cellular ageing [J]. Nat Rev Mol Cell Biol, 2000, 1(1): 72~76.
    [66] Miao Z, Jin J, Chen L, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells [J]. Cell Biolint, 2006, 30: 681~687.
    [67] Baxter MA, Wynn RF, Jowitt SN, et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion [J]. Stem Cells, 2004, 22: 675~682.
    [68] Pan GJ, Chang ZY, Scholer HR, et al. Stem cell pluripotency and transcription factor Oct4 [J]. Cell Res, 2002, 12: 321~329.
    [69] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J] . Science, 1998, 282: 1145~1147.
    [70] Shamblott MJ, Axelman J, wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells [J]. Proc Natl Acad Sci USA, 1998, 95(23): 13726~13731.
    [71] Barry F, Boynton R, Murphy M, et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells [J]. Biochem Biophys Res Commun, 2001, 289: 519~524.
    [72] Buehr M, Nichols J, Stenhouse F, et al. Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines [J]. Biol Reprod, 2003, 68: 222~229.
    [73] Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dediferentiation or self-renewal of ES cells [J]. Nature Genet, 2000, 24: 372~376.
    [74] Verfaillie C. Stem cell plasticity [J]. Hematoloey, 2005, 10: 293~296.
    [75] Cowan CA, Klimanskaya I, Mdmahon J, et al. Derivation of embryonic stem cell lines from human blastocysts [J]. N Engl J Med, 2004, 350(13): 1353~1356.
    [76] Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro [J]. J Cell Biochem, 1997, 64: 295~312
    [77] Zuk PA, Zhu M, Mizuno H, et al. Multi-lineage cells from human adipose tissue: implications for cell based therapies [J]. Tissue Eng, 2001, 7(2): 211~228.
    [78] Lee BC, Kim MK, Jang G, et al. Dogs cloned from adult somatic cells [J]. Nature, 2005, 436(7051): 641.
    [79] Neuhuber B, Gallo G, Howard L, et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype [J]. J Neurosci Res, 2004, 77: 192~204.
    [80] Cipriani S, Bonini D, Marchina E, et al. Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain [J]. Cell Biol Int, 2007, 31(8): 845~850.
    [81] Rodan GA, Noda M. Gene expression in osteoblastic cells [J]. Crit Rev Eukaryot Gene Expr, 1991, 1: 85~98.
    [82] Sekiya I, Larson BL, Smith JR, et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality [J]. Stem Cells, 2002, 20(6): 530~541.
    [83] Sekiya I, Vuoristo JT, Larson BL, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis [J]. Proc Natl Acad Sci USA, 2002b, 99(7): 4397~4402.
    [84] Zhang X, Mitsuru A, Igura K, et al. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering [J]. Biochem Biophys Res Commun, 2006, 340(3): 944~952.
    [85] Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow [J]. Stem Cells, 2007, 25(6): 1384~1392.
    [86] Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells [J]. Biochem Biophys Res Commun, 2001, 284(2):411~418.
    [87] Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells [J]. J Cell Biochem, 2006, 97(1): 84~97.
    [88] Sekiya I, Larson BL, Vuoristo JT, et al. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma [J]. Cell Tissue Res, 2005, 320(2):269~276.
    [89] Kolambkar YM, Peister A, Soker S, et al. Chondrogenic differentiation of amniotic fluid-derived stem cells [J]. J Mol Histol, 2007, 38(5): 405~413.
    [90] Hwang NS, Kim MS, Sampattavanich S, et al. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells [J]. Stem Cells, 2006, 24(2): 284~291.
    [91] 91 Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro [J]. Osteoarthritis Cartilage, 2003, 11(1): 55~64.
    [92] Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell [J]. Biochem Biophys Res Commun, 2004, 320(3): 914~919.
    [93] Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors [J]. Tissue Eng, 2006, 12(3): 527~ 536.
    [94] Bianchi G, Banfi A, Mastrogiacomo M, et al. Ex vivo enrichment of mesenchymal cell progenitors byfibroblast growth factor 2 [J]. Exp Cell Res, 2003, 287(1): 98~105.
    [95] Kim MS, Hwang NS, Lee J, et al. Musculoskeletal differentiation of cells derived from human embryonic germ cells [J]. Stem Cells, 2005, 23(1): 113~123.
    [96] Rosenblatt JD, Lunt AI, Parry DJ, et al. Culturing satellite cells from living single muscle fiber explants [J]. In Vitro Cell Dev Biol Anim, 1995, 31: 773~779.
    [97] Ferrari G, Cuselladeangelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors [J]. Science, 1998, 279: 1528~1530.
    [98] Paolo DC, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryoinjured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells [J]. J Urol, 2007, 177(1): 369~376.
    [99] Kaviani A, Young A, Fuchs J, et al. Reduced immunogenicity of mesenchymal amniocytes during expansion in vitro: implications for heterologous tissue engineering applications [J]. J Am Coll Surg, 2002, 195: 40.
    [100] Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein [J]. Cell, 1990, 60: 585~595.
    [101] Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells [J]. Proc Natl Acad Sci USA, 2004, 101(34): 12543~12548.
    [102] Liao YJ, Jan YN, Jan LY. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain [J]. J Neurosci, 1996, 16: 7137~7150.
    [103] Taylor RM, Lee JP, Palacino JJ, et al. Intrinsic resistance of neural stem cells to toxic metabolites may make them well suited for cell non-autonomous disorders: evidence from a mouse model of Krabbe leukodystrophy [J]. J Neurochem, 2006, 97(6): 1585~1599.
    [104] Pan HC, Cheng FC, Chen CJ, et al. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells [J]. J Clin Neurosci, 2007, 14(11): 1089~1098.
    [105] Rehni AK, Singh N, Jaggi AS, et al. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice [J].Behav Brain Res, 2007, 183(1): 95~100.
    [106] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons [J]. J Neurosci Res, 2000, 61(4): 364~370.
    [107] Schwartz RE, Koodie L, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells [J]. J Clin Invest, 2002, 109: 1291~1302.
    [108] Perin L, Giuliani S, Jin D, et al. De Filippo RE Renal differentiation of amniotic fluid stem cells [J]. Cell Prolif, 2007, 40(6): 936~948.
    [109] Atala A. Recent developments in tissue engineering and regenerative medicine [J]. Curr Opin Pediatr, 2006, 18: 167~171.
    [110] Kunisaki SM, Fuchs JR, Kaviani A, et al. Diaphragmatic repair through fetal tissue engineering: A comparison between mesenchymal amniocyte and myoblast-based constructs [J]. J Pediatrlc Surg, 2006, 41: 34~39.
    [111] 朱哲.羊水来源胎儿干细胞的研究进展[J].中华小儿外科杂志, 2007, 28(2): 105~107.
    [112] Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells [J]. J Cell Sci, 2000, 113(1): 5~10.
    [113] Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells [J]. Proc Natl Acad Sci USA, 1981, 78(12): 7634~7638.
    [114] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos [J]. Nature, 1981, 292: 154~156.
    [115] Downing GJ, Battey JF. Technical assessment of the first 20 years of research using mouse embryonic stem cell Lines [J]. Stem Cells, 2004, 22(7): 1168~1180.
    [116] Bongso A, Fong CY, Ng SC, et al. Isolation and culture of inner cell mass from human blastocysts [J]. Hum Reprod, 1994, 9: 2110.
    [117] Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line [J]. Proc Natl Acad Sci, 1995, 92(17): 7844~7848.
    [118] Thomson JA, Kalishman J, Golos TG, et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts [J]. Biol Reprod, 1996, 55(2): 254~259.
    [119] 徐令,黄绍良,李树浓.人的类胚胎干细胞的分离和培养[J].中山医科大学学报, 1998, 19(1): 77~78.
    [120] 何志旭,黄绍良,李予等.人胚胎干细胞系的初步建立[J].中华医学杂志, 2002, 82(19): 1314~1318.
    [121] Turnpenny L, Brickwood S, Spalluto CM, et al. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells [J]. Stem Cells, 2003, 21(5): 598 ~609.
    [122] Park JH, Kim SJ, Lee JB, et al. Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells [J]. Mol. Cells, 2004, 17(2): 309~315.
    [123] 常万存,马鸿飞,窦忠英等.原始生殖细胞的人类胚胎干细胞克隆[J].西北农业大学学报, 1998, 26(6): 105~108.
    [124] Liu SR, Liu HQ, Pan YQ, et al. Human embryonic germ cells isolation from early stages of post-implantation embryos[J]. Cell Tissue Res, 2004, 318: 525~531.
    [125] Ames Dhai. Cloning stem cells - change on the horizon [J]. Science in Africa, 2003,
    [126] Thompson S, Stern PL, Webb M, et al. Cloned human teratoma cells differentiate into neuron-like cells and other cell type in retinoci acid [J] J Cell Sci, 1984, 72(1): 37~64.
    [127] Andrews PW, Damianov I, Simon D, et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro [J]. Lab Invest, 1984, 50(2): 147~162.
    [128] Pera MF, Cooper S, Mills J, et al. Isolation and chareacterization of a multipotent clone of human embryonal carcinoma cells [J]. Differentiation, 1989, 42(1): 10~23.
    [129] Lanza RP, Cibelli JB, West MD. Human therapeutic cloning [J]. Nat Med, 1999, 5(9): 975~977.
    [130] Zhou Q, Renard JP, Le FG, et al. Generation of fertile cloned rats by regulating oocyte activation [J]. Science, 2003, 302(5648): 1179.
    [131] Wakayama T. Cloned mice and embryonic stem cell lines generated from adult somatic cells by nuclear transfer [J]. Oncol Res, 2003, 13(10): 309~314.
    [132] 陈莹,何志旭,盛慧珍等.体细胞起源的人胚胎干细胞[J].细胞生物学杂志, 2003, 25(6): 332~339.
    [133] Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions [J]. Nat Biotechnol, 2006, 1: 450~455.
    [134] Thomson JA, Odorico JS. Human embryonic stem cell and embryonic germ cell lines [J]. Trends Biotechnol, 2000, 18: 53~57.
    [135] Turnpenny L, Spalluto CM, Perrett RM, et al. Evaluating human embryonic germ cells: concord and conflict as pluripotent Stem cells [J]. Stem Cells, 2006, 24(2): 212~220.
    [136] Reubinoff BF, Pera MF, Fong CY, et al. Embryonic stem cell lines derived from human blastocysts: differentiation in vitro [J]. Nat Biotechnol, 2000, 18: 399~ 404.
    [137] Amit M, Carpenter MK, Inokuma MS. Clonally derived human embryonic stem cells maintain pluripotency prolonged periods of culture [J]. Dev Biol, 2000, 227: 271~ 278.
    [138] Achi MV, Ravindranath N, Dym M. Telomere length in male germ cells is inversely correlated with telomerase activity [J]. Biol Reprod, 2000, 63(2): 591~598.
    [139] Brenner CA, Wolny YM, Adler RR. Alternative splicing of the elomerase catalytic subunit in human oocytes and embryos [J]. Mol Reprod, 2004, 5: 845~ 850.
    [140] Eiges R, Benvenisty N. A molecular view on pluripotent stem cells [J]. FEBS Lett, 2002, 529(1): 135~141.
    [141] Pralong D, Lim ML, Vassiliev I, et al. Tetraploid embryonic stem cells contribute to the inner cell mass of mouse blastocysts [J]. Cloning Stem Cells, 2005, 7: 272~278.
    [142] Guo Y, Einhorn L, Kelley M, et al. Redox regulation of the embryonic stem cell transcription factor Oct- 4 by thioredoxin [J]. Stem Cells, 2004, 22: 259~264.
    [143] Bhattacharya B, Miura T, Mejido J, et al. Gene expression in human embryonic stem cell lines: unique molecular signature [J]. Blood, 2004, 103: 2956~2964.
    [144] 华进联. 人类胚胎生殖细胞的分离克隆及生物学特性研究[D].杨陵:2005,63.
    [145] Dani C. Embryonic stem cell2derived adipogenesis [J]. Cells Tissues Organs, 1999, 165(4): 173~180.
    [146] Dani C, Smith AG, Dessolin S, et al. D ifferentiation of embryonic stem cells into adipocytes in vitro [J]. J Cell Sci, 1997, 110: 1279~1285.
    [147] Buttery LD, Bourne S, Xynos JD, et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells [J]. Tissue Eng, 2001, 7(1): 89~ 99.
    [148] Baker RK, HaendelM A, Swanson BJ, et al. In vitro preselection of gene trapped embryonic stem cell clones for characterizing novel developmentally regulated gened in the mouse [J]. Dev Biol, 1997, 185: 201~ 214.
    [149] Kramer J , Hegert C, Guan K, et al. Embryonic stem cell derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4 [J]. Mech Dev, 2000, 92(2): 193~205.
    [150] Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with stuctural and functional properties of cardiomyocytes [J]. J Clin Invest, 2001, 108(3): 407~414.
    [151] Boheler KR, Czyz J, Tweedie D, et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes [J]. Circ. Res., 2002, 91(3): 189~201.
    [152] Xu C, Police S, Rao N, et al. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells [J]. Circ Res, 2002, 91(6): 501~508.
    [153] Levenberg S, Golub JS, Amit M, et al. Endothelial cells derived from human embryonic stem cells [J]. Proc Natl Acad Sci, 2002, 99(7): 4391~4396.
    [154] Vittet D, Prandini MH, Berthier R, et al. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps [J]. Blood, 1996, 88(9): 3424~3431.
    [155] Gualandris A, Annes JP, Arese M, et al. The latent transforming growth factor beta binding protein-1promotes in vitro differentiation of embryonic stem cells into endothelium [J]. Mol Biol Cell, 2000, 11(12): 4295~4308.
    [156] Pei Y, J iW. In vitro induced differentiation of rhesus embryo stem cell[J ]. Dev Rep rod Biol, 2001, 10: 112.
    [157] Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity [J]. Proc Natl Acad Sci USA, 2002, 99(3): 1580~1585.
    [158] Kaufman DS, Hanson ET, Lewis RL, et al. Hematopoietic colony-forming cells derived from human embryonic stem cells [J]. Proc Natl Acad Sci USA, 2001, 98(19): 10716 ~10721.
    [159] Shamblott MJ, Axelman J, Littlefield JW, et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro [J]. Proc Natl Acad Sci USA, 2001, 98(1): 113~118.
    [160] Li F, Lu S, Vida L, et al. Bone morphogenetic protein 4 induces efficient hematopoietic differentiation of rhesus monkey embryonic stem cells in vitro [J]. Blood, 2001, 98(2): 335~342
    [161] Tian XH, Morris JK, Linehan JL, et al. Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells [J]. Exp Hematol, 2004, 32(10): 1000~1009
    [162] Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J]. Nat Biotechnol, 2001, 19: 1129~1133.
    [163] Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets [J]. Science, 2001, 292 (5520): 1389~1394.
    [164] Shiroi A, Yoshikawa M, Yokota H, et al. Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone [J]. Stem Cells, 2002, 20(4): 284~292.
    [165] Yamada T, Yoshikawa M, Kanda S, et al. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by celluar uptake of indocyanine green [J]. Stem Cells, 2002, 20(2): 146~154.
    [166] Rambhatla L, Chiu CP, Kundu P, et al. Generation of hepatocyte-like cells from human embryonic stem cells [J]. Cell Transplant, 2003, 12(1): 1~11.
    [167] Shirahashi H, Wu J, Yamamoto N, et al. Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage [J]. Cell Transplant, 2004, 13(3): 197~211
    [168] Hubner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells [J]. Science, 2003, 300(23): 1251~1256
    [169] Toyooka Y, Tsunekawa N, Akasu R, et al. Embryonic stem cells can form germ cells in vitro [J]. Proc Natl Acad Sci USA, 2003, 100: 11457~11462.
    [170] Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats [J]. Exp Neurol, 2002, 174: 11~20.
    [171] Kang SK, Lee DH, Bae YC, et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stroma cells after cerebral ischemia in rats [J]. Exp Neurol, 2003, 183: 355~366.
    [172] Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal humanmesenchymal stem cells: candidate MSC-like cells from umbilical cord [J]. Stem Cells, 2003, 21: 105~110.
    [173] Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue [J]. Stem Cells, 2006, 24: 1294~1301.
    [174] Pittenger MF, Mackay AM, Beck SC, et al. Multiline agepotentia of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411): 143~147.
    [175] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains [J]. Proc Natl Acad Sci U S A, 1999, 96: 10711~10716.
    [176] Akiyama Y, Radtke C, Honmou O, et al. Remyelination of the spinal cord following intravenous delivery of bone marrow cells [J]. Glia, 2002, 39: 229~236.
    [177] Dezawa M, Takahashi I, Esaki M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells [J]. Eur J Neurosci, 2001, 14: 1771~1776.
    [178] Tohill M, Mantovani C, Wiberg M, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration [J]. Neurosci Lett, 2004, 362: 200~203.
    [179] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro [J]. Exp Neurol, 2000, 164: 247~256.
    [180] Safford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells [J]. Biochem Biophys Res Commun, 2002, 294: 371~379.
    [181] Chopp M, Li Y. Treatment of neural injury with marrow stromal cells [J]. Lancet Neurol, 2002, 1: 92~100.
    [182] Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat [J]. J Neurosci Res, 2003, 73: 778~786.
    [183] Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues [J].Transplantation, 1968, 6(2): 230~247.
    [184] Piersma AH, Brockbank KG, Ploemacher RE, et al. Characterization of fibroblastic stromal cells from murine bone marrow [J].Exp Hematol, 1985, 13(4): 237~243.
    [185] Owen M. Marrow stromal stem cells [J]. J Cell Sci Suppl, 1988, 10: 63~76.
    [186] Zvaifler NJ, Marinova ML, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals [J]. Arthritis Res, 2000, 2(6): 477~488.
    [187] Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood [J]. Br J Haematol, 2000, 109(1): 235~242.
    [188] Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes [J]. Am Surg, 1999, 65 (1): 22~26.
    [189] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow [J]. Nature, 2002, 418(6893): 41~49.
    [190] Almeida-Porada G, Porada C, Zanjani ED, et al. Differentiative potential of human metanephric mesenchymal cells [J]. Exp Hematol, 2002, 30(12): 1454~1462.
    [191] Daniel TS, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue [J]. Stem Cells, 2005, 23: 1012~ 1020.
    [192] Gregory CA, Prockop DJ, Spees JL. Non-he-matopoietic bone marrow stem cells: molecular control of expansion and differentiation [J]. Exp Cell Res, 2005, 306: 330~335.
    [193] Tagami M, Ichinose S, Yamagala K, et al. Genetic and ultrastructural demonstration of strong reversibility in human mesenchymal stem cells [J]. Cell Tissue Res, 2003, 312(1): 31~40.
    [194] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J]. J Cell Physiol, 1999, 181(1): 67~73.
    [195] Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive sub-cultivation and following cryopreservation [J]. J Cell Biochem, 1997, 64(2): 278~294.
    [196] Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells[J]. Bone, 2003, 33:919~926.
    [197] Guillot PV, O’donoghue K, Kurata H, et al. Fetal stem cells: betwixt and between [J]. Semin Reprod Med, 2006, 24(5): 340~347.
    [198] Martinez C, Hofmann TJ, Marino R, et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs [ J] . Blood, 2007, 109: 4245~4248.
    [199] Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow [J]. Blood, 2007, 109(4): 1743~1751.
    [200] Majumdar MK, Thieda MA, Mosea JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (Msc) and stromal cells [J]. J Cell Physiol, 1998, 176(1): 186~192.
    [201] Peister A, Mellad JA, Larson BL. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential [J]. Blood, 2004, 103(5): 1662~1668.
    [202] Hung SC, Cheng H, Pan CY, et al. In vitro differentiation of size-sieved stem cells into electrically active neural cells [J]. Stem Cells, 2002, 20: 522~529.
    [203] Direkze NC, Fobes SJ, Brittan M, et al. Multiple organ engraftment by bone marrow derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice [J]. Stem Cells, 2003, 21(5): 514~520.
    [204] Ryden M, Dicker A, Gotherstrom C, et al. Functional characterization of human mesenchymal stem cell-derived adipocytcs [J]. Biochem Biophys Res Commun, 2003, 311(2): 391~397.
    [205] Sammons J, Ahmed N, El-Sheemy M, et al. The Role of BMP-6, IL-6, and BMP- 4 in mesenchymal stem cell-dependent bone development: effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D(3) [J]. Stem Cells Dev, 2004, 13(3): 273~280.
    [206] Li H, Yu B, Zhang Y, et al. Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes [J]. BiochemBiophys Res Commun, 2006, 341(2): 320~ 325.
    [207] Wang PP, Wang JH, Yan ZP, et al. Expression of hepatocyte like phenotypes in bone marrow stromal cells after HGF induction [J]. Biochem Biophys Res Commun, 2004, 320(3): 712~716.
    [208] Luk JM, Wang PP, Lee CK. et al. Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models [J]. J Immunol Methods, 2005, 305(1): 39~47.
    [209] Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration[J]. NatBiotechnol, 2003, 21(7):763~770.
    [210] Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow contributes to renal parenchymal turnover and regeneration [J]. J Pathol, 2001, 195(2): 229~235.
    [211] Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction [ J] . Blood, 2004, 104 (12): 3581~3587.
    [212] Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes [J]. Circ Res, 2006, 98(8): 1002~1013.
    [213] Orlic D, Kajstura J, Chimenti S, et al. Transplanted adult bone marrow cells repair myocardical infarcts in mice [J]. Ann N Y Acad Sci, 2001, 938(1): 221~230.
    [214] Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation [J]. Lancet, 2003, 361(1): 47~ 49.
    [215] Brazelton TR, Rossi FM, Keshet GI. et al. From marrow to brain: expression of neuronal phenotypes in adult mice [J]. Science, 2000, 290(5497): 1775~1779.
    [216] Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats [J]. J Neurol Sci, 2001, 189 :49~57.
    [217] 郭丽,尹飞,凌翎等.大鼠骨髓间充质干细胞向软骨、脂肪和神经元样细胞分化的研究[J].林大学学报医学版, 2004, 30(6): 846~849.
    [218] 赵媛,徐立.大鼠骨髓间充质干细胞分离培养及向脂肪细胞分化的实验研究[J].四川解剖学杂志, 2007, 15(1): 31~32.
    [219] Mackay AM, Beck SC, Murphy JM, et al. Chondrogentic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng, 1998, 4 (4): 415.
    [220] 王会才,张震宇,辛伟光.微重力条件下动态三维诱导骨髓间充质干细胞分化为软骨细胞与静态培养的比较[J].中国组织工程研究与临床康复, 2007, 11(10): 1812~1814.
    [221] 赛音其木格,娜仁图娅,杨健等.大黄素诱导人骨髓间充质干细胞向成骨细胞分化的研究[J].中国中西医结合外科杂志, 2006, 12(5): 448~452.
    [222] Shim WS, Jiang S, Wong P, et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells [J]. Biochem Biophys Res Commun, 2004, 324: 481~488.
    [223] 张文,田杰,江德勤.骨髓间充质干细胞体外分化为心肌样细胞相关调控基因的时序表达[J].中华心血管病杂志, 2004, 32(11): 1004~1009.
    [224] 马健,唐海沁,翟志敏等.人骨髓间充质干细胞体外纯化及心肌样细胞定向诱导分化后的特征分析[J].中国老年学杂志, 2007, 27(9): 817~821.
    [225] 孙占胜,陈振强,杨志明等.骨髓间充质干细胞诱导分化为骨骼肌细胞后其生物学特性的实验研究[J].山东医药, 2007, 47(3): 29~30.
    [226] Jerry C, Keelin OD, Manuela G, et al. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration [J]. Stem Cells, 2006, 24(8): 1879~1891.
    [227] Imasawa T, Utsunomiya Y, Kawamura T, e al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells [J]. J Am So Nephrol, 2001, 12(7): 1401~ 1409.
    [228] 张婷,周云,张亚等.体外诱导骨髓间充质干细胞向肾小管上皮细胞的分化[J].中国组织工程研究与临床康复, 2007, 11(3): 478~482.
    [229] Deng W, Han Q, Liao L, et al. Engrafted bone marrow-derived Flk-1+ mesenchymal stem cellsregenerate skin tissue [J].Tissue Eng, 2005, 11: 110~119.
    [230] Li H, Fu X, Wang J. Primary experimental studies on differentiation of marrow mesenchymal stem cells into skin appendage cells in vivo [J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2006, 20(6): 675~678.
    [231] 郭彤,王薇,张君.骨髓间充质干细胞移植治疗眼表损害的初步实验研究[J].中华眼科杂志, 2006, 42(3): 246~250.
    [232] Deng W, Obrocka M, Fischer I, et al. In vitro fifferentation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP [J]. Biochem Biophys Res Commun, 2001, 282(1): 148~152.
    [233] Kyung JC, Katarzyna AT, Steven JG, et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1α [J]. Stem Cells, 2005, 23: 383~391.
    [234] 吴晓牧,丁伟荣,王卫真等.人骨髓间充质干细胞向多巴胺神经元分化的体外研究[J].临床神经病学杂志, 2007, 20(2): 112~114.
    [235] 蔡宁,傅震,郁珲等.欧阳琦大鼠骨髓间充质干细胞体外诱导向神经细胞样细胞分化[J].江苏大学学报(医学版), 2005, 15(3): 218~231.
    [236] Shu SN, Wei L, Wang JH, et al. Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells [J]. World J Gastroenterol, 2004, 10: 2818~1822.
    [237] Kang XQ, Zang WJ, Song TS, et al. Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro [J]. World J Gastroenterol, 2005, 11: 3479~3484.
    [238] Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion [J]. Blood, 2005, 106(2): 756~763.
    [239] 杜智,朱争艳,张金卷等.胎儿骨髓源性亚全能干细胞分离培养及诱导肝细胞分化研究[J].生物医学工程与临床, 2007, 11(1): 63~65.
    [240] Choi JB, Uchino H, Azuma K, et al. Little evidence of transdifferentiation of bone marrow derived cells into pancreatic beta cells [J]. Diabetologia, 2003, 46(10): 1366~1374.
    [241] Moriscot C, Fraipont FD, Richard MJ, et al. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro [J]. Stem Cells, 2005, 23: 594~603.
    [242] Choi KS, Shin JS, Lee JJ, et al. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract [J]. Biochem Biophys Res Commun, 2005, 330(4): 1299~1305.
    [243] Wang QW, Yu J, Liu XM, et al. In vitro differentiation of bone marrow mesenchymal stem cells induced by Activin A and all-trans retinoic acid into insulin- producing cells [J]. Chinese Journal of Clinical Rchabilitation, 2006, 10(17): 161~164.
    [244] Hellmann MA, Panet H, Barhum Y, et al. Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents [J]. Neurosci Lett, 2006, 395: 124~128.
    [245] Deng J, Petersen BE, Steindler DA, et al. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation [J]. Stem Cells, 2006, 24: 1054~1064.
    [246] Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model [J]. Mol Ther, 2004, 9: 189~197.
    [247] Castro R, Jackson K, Goodell M, et al. Failure of bone marrow cells to transdifferentiate into neural cells in vivo [J]. Science, 2002, 23: 1299.
    [248] Seguin LR, Palmer CG. Variables influencing growth and morphology of colonies of cells from human amniotic fluid [J]. Prenatal Diagnosis, 1983, 3(2): 107~116
    [249] Chang HC, Jones OW. Enhancement of amniocyte growth on a precoated surface [J]. Prenatal Diagnosis, 1991, 11(6): 357~370
    [250] Sikkema-Raddatz B, van Echten J, van der Vlag J, et al. Minimal volume of amniotic fluid for reliable prenatal cytogenetic diagnosis[J]. Prenatal Diagnosis, 2002, 22(2): 164~165
    [251] 司徒镇强,吴军正.细胞培养[M].西安: 世界图书出版公司, 1996, pp.137.
    [252] Xiang ZF, Frederike K, Jennifer C, et al. Neoplasia driven by mutant c-kit is mediated by intracellular, not plasma membrane, receptor signaling [J]. Mol Cell Biol, 2007, 27(1): 267~282.
    [253] Martina L, Manfred M, Thomas S. Downregulation of the cellular adhesion molecule Thy-1 (CD90) by cytomegalovirus infection of human fibroblasts [J]. J Gen Virol, 2004, 85(7): 1995~2000.
    [254] Xu XQ, Yu ZY, Qian JQ, et al. Expression of leukocyte adhesion molecules CD11b, L-selectin and CD45 during hemodialysis [J]. Chin Med J, 1999, 112 (12): 1073~1076.
    [255] Odeberg J, Plachter B, Branden L,et al. Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR α-chain [J]. Blood, 2003, 101(12): 4870~4877.
    [256] Ken-Ichi H, James Y. Fibroblast growth factor-5 (fgf-5) is a tumor associated t-cell antigen. WIPO Patent, WO 2001/025271, 2001-04-12.
    [257] Itskovitz-Eldor1 J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers [J]. Molecular Medicine, 2000, 6(2): 88~95.
    [258] Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor [J]. Nature Medicine, 2004, 10(1):55~63.
    [259] Cheng J, Dutra A, Takesono A,et al.Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media [J]. Genesis. 2004 Jun;39(2):100~104.
    [260] Baker DEC, Harrison NJ, Maltby E, et al. Adaption to culture of human embryonic stem cells and oncogenesis in vivo [J]. Nature Biotechnology, 2007, 25: 207~215.
    [261] Zvetkova I, Apedaile A, Ramsahoye B, et al. Global hypomethylation of the genome in XX embryonic stem cells [J]. Nature Genetics, 2005, 37: 1274~1279.
    [262] Choi D, Lee H-J, Jee S, et al. In vitro differentiation of mouse embryonic stem cells: enrichment of endodermal cells in the embryoid body [J]. Stem Cells, 2005, 23: 817–827.
    [263] Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine [J].Gene & Development, 2006, 19: 1129~1155.
    [264] Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research [J]. Nat. Rev. Genet., 2006, 7(4): 319~327.
    [265] Rubart M. Two-photon microscopy of cells and tissue [J]. Circ Res, 2004, 95 (12): 1154~1166.
    [266] Schroeder M, Niebruegge S, Werner A, et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control [J]. Biotechnol Bioeng, 2005, 92(7): 920~933.
    [267] Dai W, Hale SL, Kloner RA. Stem cell transplantation for the treatment of myocardial infarction [J]. Transplant Immunol, 2005, 15(2): 91~97.
    [268] Skottman H, StrOmberg AM, Matilainen E, et al. Unique gene expression signature by human embryonic stem cells cultured under serum-free conditions correlates with their enhanced and prolonged growth in an undifferentiated stage [J]. Stem Cells, 2006, 24(1):151~167.
    [269] Zhao P, Hirohiko I, Minoru H, et al. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes [J]. Experimental Transplantation, 2005, 79(5): 528~535.
    [270] Paul DB, Eberhard GR, Robert Z, Xu XQ, Lindsay MC, William S. Direct differentiation of cardiomyocytes from human embryonic stem cells. WIPO Patent, WO/2007/070964, 2007-06-28.
    [271] Soonpaa MH, Koh GY, Klug MG, et al. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium [J]. Science, 1994, 264(5155): 98~101.
    [272] Müller-Ehmsen J, Peterson KL, Kedes L, et al. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function [J]. Circulation, 2002, 105(14): 1720~1726.
    [273] Yao M, Dieterle T, Hale SL, et al. Longterm outcome of fetal cell transplantation on postinfarction ventricular remodeling and function [J]. J Mol Cell Cardiol, 2003, 35(6): 661~670.
    [274] Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages [J]. Dev Cell, 2006, 11(5): 723~732.
    [275] DaiW, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects [J]. Circulation, 2005, 112(2): 214~223.
    [276] Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement [J]. FASEB J, 2006, 20(6): 661~669.
    [277] Messina E, De L, Angelis G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart [J]. Circ Res, 2004, 95(9): 911~921.
    [278] Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration [J]. Cell, 2003, 114(6): 763~776.
    [279] Rosenblatt-Velin N, Lepore MG, Cartoni C, et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes [J]. J Clin Invest, 2005, 115(7): 1724~1733.
    [280] Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction [J]. J Am Coll Cardiol, 2003, 41(7): 1078~1083.
    [281] Fauza D. Amniotic fluid and placental stem cells [J]. Best Pract Res Clin Obstet Gynaecol, 2004, 18(6) :877~891.
    [282] Wennberg L, Song Z, Bennet W, et al. Diabetic rats transplanted with adult porcine islets and immunosuppressed with cyclosporine A, mycophenolate mofetil, and leflunomide remain normoglycemic for up to 100 days [J]. Transplantation, 2001, 71(8): 1024~1033.
    [283] Korbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeutic concept? [J]. N Engl J Med, 2003, 349: 570~582.
    [284] Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation [J]. J Clin Invest, 2004, 113: 1701~1710.
    [285] Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy [J]. J Cell Mol Med, 2004, 8: 301~316.
    [286] Temple S. The development of neural stem cells [J]. Nature, 2001, 414: 112~117.
    [287] Steindler DA, Pincus DW. Stem cells and neuropoiesis in the adult human brain [J]. Lancet, 2002, 359: 1047~1054.
    [288] Kakishita K, Nakao N, Sakuragawa N, et al. Implantataion of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions [J]. Brain Research, 2003, 980: 48~56.
    [289] Mitchell KE, Weiss ML, Mitchell BM, et al. Matrix cells from wharton's jelly from neurons and glia [J]. Stem Cells, 2003, 21: 50~60.
    [290] Safford KM, Safford SD, Gimble JM, et al. Characterization of neural/glial differentiation of murine adipose-derived adult stromal cells [J]. Exp Neurol, 2004, 187: 319~328.
    [291] Mayanil CSK, George D, Mania-Farnell B, et al. Overexpression of Murine Pax3 Increases NCAM Polysialylation in a Human Medulloblastoma Cell Line [J]. J Bio Chemi, 2000, 275(30): 23259~23266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700