磁性纳米线有序阵列的制备及磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从磁性纳米线有序阵列的制备、性能测试到模拟计算、理论解释等一系列的工作研究纳米线的磁特性与磁化反转过程。主要工作如下:
     (1)实验上,采用两步阳极氧化法制备了有序孔洞的阳极氧化铝(Anodic Aluminum Oxide,AAO)模板。原子力显微镜和扫描电镜测试结果表明实验室获得的AAO模板孔径一致、孔间距均匀,适合于做一维纳米材料的模板。
     (2)在有序孔洞的AAO模板上交流电沉积磁性纳米线阵列,重点研究了纳米线孔径大小和外场与纳米线线轴夹角θ对矫顽力的影响。实验结果表明:不同直径的Co纳米线有序阵列的矫顽力随着θ的增大而减小;纳米线直径的增大引起其矫顽力的减小,而纳米线天然的形状各向异性则引起三种直径的Co纳米线均表现出明显的垂直各向异性,易磁化轴平行于纳米线轴线方向,不同直径的Co纳米线易轴方向具有高矫顽力和高矩形比的特点,适合于超高密度磁记录。
     (3)引进超声振荡技术对AAO模板进行处理,在AAO模板中无电沉积铁镍合金纳米材料,振动样品磁强计测量结果表明样品具有明显的垂直各向异性,易磁化轴垂直于模板表面,而且各向异性随着沉积时间的增加而变得更加明显。而矫顽力不随外场方向改变的结果可能是由于制备态的铁镍合金为非晶结构的缘故。
     (4)理论上,应用Monte Carlo模拟研究纳米线的磁化反转机制。首先,分别用一致转动模型、不考虑磁晶各向异性和考虑磁晶各向异性3个模型模拟了单根纳米线的磁滞回线,得到矫顽力对角度θ的依赖关系。理论和实验的对比结果表明经典的一致转动模型对于解释纳米线的磁化反转过于简单,应考虑磁晶各向异性对Co纳米线磁性的重大影响。磁化反转组态说明,对单根纳米线,小角度时磁化反转主要以局域化成核—传播为主;而大角度时,单根纳米线磁化反转更接近于一致转动模式。
In this thesis, ordered magnetic nanowire arrays were fabricated and studied. Theoretically, number simulation was conducted to figure out the magnetic properties and the mechanism of magnetization process. The contents were summarized as following:
     Firstly, ordered porous Anodic Aluminum Oxide (AAO) template was prepared by two-step anodization method. The results from atom force microscope (AFM) and scanning electron microscope indicated that our home-made AAO templates have uniformed diameters and interpore distances. The AAO template was very suitable to fabricate 1 D (one dimension) nanostructure materials.
     Secondly, ordered magnetic nanowire arrays were deposited into AAO by alternating current electrodeposition (AC electrodeposition). Emphasis was imposed on the relations between coercivities field and different magnetic field orientations as well as nanowire diameters at room temperature. The measured coercivity as a function of angle (θ) between the field and wire axis revealed that the coercivity decreased with increasing the value ofθfor various Cobalt nanowires electrodeposited into AAO template. Although the coercivity decreased with increasing the nanowire diameter, all the Co nanowire displayed evident perpendicular magnetic anisotropy, with its easy axis along the nanowire. The point was ascribed to the natural shape anisotropy of nanowire. In addition, all the Co nanowires shared the characteristics of large coercivities and high squareness ratio, which revealed that the naonwire arrays have potential application on ultrahigh density magnetic recording.
     Then, with the introduction of ultrasonic vibrating technique into the pretreatment of AAO template, the iron and nickel alloy nanostructure materials were electrolessly plated in AAO templates. Vibrating sample magnetometer (VSM) tests indicated the alloys also displayed evident perpendicular magnetic anisotropy, with its easy axis parallel to the nanowire. What's more, the longer the plating time extended, the more the perpendicular anisotropy was. The independence of coercivities with external field orientation was due to the amorphous structure of as-deposit alloy.
     At last, based on Monte Carlo simulation, we investigated the magnetization reversal modes of the Co nanowire. The hysteresis loops and, so the angle dependence of coercivity were obtained by three models, e.g. coherent rotation, with and without the consideration of magnetocrystalline anisotropy. Comparing the simulated with the experimental results, it was found that the magnetocrystalline anisotropy played an important role on the magnetic properties of Co nanowires, and the magnetization reversal process in the Co nanowires could not easily be understood by the classical coherent rotation mode. Magnetization reversal configurations revealed that the magnetization reversal in Co nanowires with small angles was nucleation-propagation process, while in large angles it was similar to coherent rotation.
引文
1 The NOVA Workforce Board. "Nanotechnology: The Next great wave of innovation" (White Paper) 2003 (http://www.cns.cornell.edu/TechnologyAndSociety.html#Introduction)
    2 李言荣,谢孟贤,恽正中,张万里.纳米电子材料与器件.北京:电子工业出版社,2005:15-22,120-121.
    3 张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001:11-12.
    4 B. D. Cullity. Introduction to magnetic materials. Massachusetts: Addison-Wesley Publishing Company, 1972: 385-389.
    5 E. Grochowski. IBM Almaden Research Laboratories(http://www.storage.ibm.com/technolo/grochows/grocho01.htm).
    6 D. Weller, M. F. Doerner. Extremely high-density longitudinal magnetic recording media. Annu. Rev. Mater. Sci., 2000, 30: 611-644.
    7 S. Y. Chou. Patterned Magnetic Nanostructures and Quantized Magnetic Disks. Proceedings of the IEEE, 1997, 85(4): 652-671.
    8 李言荣,谢孟贤,恽正中,张万里.纳米电子材料与器件.北京:电子工业出版社,2005:167-168.
    9 CA Ross. Patterned magnetic recording media. Annu. Rev. Mater. Res., 2001, 31: 203-235.
    10 S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer. Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in~2 density for ultrahigh density quantum magnetic storage. J. Appl. Phys., 1994, 76(10): 6673-6675.
    11 S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    12 T. M. Whitney, P. C. Searson, J. S. Jiang, and C. L. Chien. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science, 261 (5126): 1316-1319.
    13 Hideki Masuda and Kenji Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 1995, 268(5216): 1466-1468.
    14 M. Shiraki, Y. Wakui, T. Tokushima and N. Tsuya. Perpendicular magnetic media by anodic oxidation method and their recording characteristics. IEEE Trans. Magn. 1985, 21 (5): 1465-1467.
    15 A. N. Broers, A. C. F. Hoole, J. M. Ryan. Electron beam lithography—resolution limits. Microelectronic Engineering, 1996, 32(1-4): 131-42.
    16 Y. M. Ham, I. B. Hur, Y. S. Kim, D. J. Ahn, Zion Chal, S. S. Choi, H. J. Kim and Y. J. Jeon. Dependence of Defects in Optical Lithography. Jpn. J. Appl. Phys., 1992, 31 (Part 1, No. 12B): 4137-4142.
    17 Chang Hyun Bae, Seung Min Park, Sung Chan Park and Jeong Sook Ha. Array of ultraviolet luminescent ZnO nanodots fabricated by pulsed laser deposition using an anodic aluminium oxide template. Nanotechnology, 2006, 17(2): 381-384.
    18 H. Chik, J. M. Xu. Nanometric superlattices: non-lithographic fabrication, materials, and prospects. Materials Science and Engineering R, 2004, 43(4): 103-108.
    19 D. J. Seltmyer, M. Zheng and R. Skomski. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys: Condens. Matter, 2001, 13(25): R433-R460.
    20 Fashen Li, Tao Wang, Liyuan Ren and Jianrong Sun. Structure and magnetic properties of Co naowires in self-assembled arrays. J. Phys.: Condens. Matter, 2002, 14(27): 6875-6882.
    21 Fernando Patolsky and Charles M. Lieber. Nanowier nanosensors. Materials Today, 2005, 22: 20-28.
    22 D. Hinzke, U. Nowak. Magnetization switching in nanowires: Monte Carlo study with fast Fourier transformation for dipolar fields. J. Magn. Magn. Mater., 2000, 221 (3): 365-372.
    23 P. M. Paulus, F. Luis, M. Kroll, G. Schmid, L. J. De Jongh. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater., 2001, 224(2): 180-196.
    24 Riccardo Hertel. Computational micromagnetism of magnetization processes in nickel nanowires. J. Magn. Magn. Mater., 2002, 249(1-2): 251-256.
    25 G. C. Han, B. Y. Zong, and P. Luo. Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays. J. Appl. Phys., 2003, 93(11): 9202-9207.
    26 Y. Henry, A. Iovan, J.-M. George, and L. Piraux. Statistical analysis of the magnetization processes in arrays of electrodeposited ferromagnetic nanowires. Phys. Rev. B., 2002, 66(18): 184430.
    27 T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing. Science, 2000, 289(5476): 94-97.
    28 A.-P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele. Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina. Adv. Mater., 1999, 11(6): 483-487.
    29 Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293(5533): 1289-1292.
    30 S. Evoy, N. DiLello, V. Deshpande, A. Narayanan, H. Liu, M. Riegelman, B. R. Martin, B. Hailer, J.-C. Bradley, W. Weiss, T. S. Mayer, Y. Gogotsi, H. H. Bau, T. E. Mallouk and S. Raman. Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectronic Engineering, 2004, 75(1): 31-42.
    31 V V Dobrokhotov, D N Mcllroy, M G Norton and C A Berven. Transport properties of hybrid nanoparticle-nanowire systems and their application to gas sensing. Nanotechnology, 2006, 17(16): 4135-4142.
    32 Y. Zhang, A. Kolmakov, Y. Lilach, and M. Moskovits. Electronic Control of Chemistry and Catalysis at the Surface of an Individual Tin Oxide Nanowire. J. Phys. Chem. B, 2005, 109: 1923-1929.
    33 M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi. Micropolarizer made of the anodized alumina film. Appl. Phys. Lett., 1989, 55(7): 607-609.
    34 D. Vashaee, A. Shakouri, J. Goldberger, T. Kuykendall, P. Pauzauskie, and Peidong Yang. J. Appl. Phys., 2006, 99(5): 054310.
    35 Junya Suehiro, Nobutaka Nakagawa, Shin-ichiro Hidaka, Makoto Ueda, Kiminobu Imasaka, Mitsuhiro Higashihata, Tatsuo Okada andMasanori Hara. Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology, 2006, 17(10): 2567-2573.
    36 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415(6872):617-620.
    37 D. H. Reich, M. Tanase, A. Hultgren, L. A. Bauer, C. S. Chen and G. J. Meyer. Biological applications of multifunctional magnetic nanowires. J. Appl. Phys., 2003, 93(10): 7275-7280.
    38 A. Hultgren, M. Tanase, C. S. Chen, G. J. Meyer and D. H. Reich. Cell manipulation using magnetic nanowires, J. Appl. Phys., 2003, 93(10): 7554-7556.
    39 Jong-in Hahm and Charles M. Lieber. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters, 2004, 4 (1): 51-54.
    40 Leroy Hood, James R. Heath, Michael E. Phelps, Biaoyang Lin. Systems Biology and New Technologies Enable Predictive and Preventative Medicine. Science, 2004, 306(5696): 640-643.
    41 B. Hausmanns, T. P. Krome, G. Dumpich, E. F. Wassermann, D. Hinzke, U. Nowak, and K. D. Usadel. Magnetization reversal process in thin Co nanowires. J. Magn. Magn. Mater., 2002, 240(1-3): 297-300.
    42 R. Hertel, J. Kirschner. Magnetization reversal dynamics in nickel nanowires. Physica B: Condensed Matter, 2004, 343 (1-4): 206-210.
    43 Till Schmitte, Katharina Theis-Brohl, Vincent Leiner, Hartmut Zabel, Siegfried Kirsch and Axel Carl. Magneto-optical study of the magnetization reversal process of Fe nanowireso J. Phys.: Condens. Matter, 2002, 14(32): 7525-7538.
    44 Riccardo Hertel. Micromagnetic simulations of magnetostatically coupled Nickel nanowires. J. Appl. Phys., 2001, 90(11): 5752-5758.
    45 Z. K. Wang, M. H. Kuok, and S. C. Ng, D. J. Lockwood, M. G. Cottam, K. Nielsch, R. B. Wehrspohn, and U. Gosele. Spin-Wave Quantization in Ferromagnetic Nickel Nanowires. Phys. Rev. Lett., 2002, 89(2): 027201.
    46 M. Brands, B. Leven, and G. Dumpich. Influence of thickness and cap layer on the switching behavior of single Co nanowires. J. Appl. Phys., 2005, 97(11): 114311.
    47 M. T. Bryan, D. Atkinson, D. A. Allwood. Multimode switching induced by a transverse field in planar magnetic nanowires. Appl. Phys. Lett., 2006, 88(3), 032505.
    48 S. Goolaup, N. Singh, A. O. Adeyeye. Coercivity Variation in Ni_(80)Fe_(20) Ferromagnetic Nanowires. IEEE Trans. Nanotech, 2005, 4(5): 523-526.
    49 宛德如,马兴隆.磁性物理学.北京:电子工业出版社,1999:40-43.
    50 姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003:285-286.
    51 B. D. Cullity. Introduction to magnetic materials. Massachusetts: Addison-Wesley Publishing Company, 1972: 18-20.
    52 B. C. Dodrill. Magnetic Media Measurements with a VSM, Ohio: Lake Shore Cryotronics, Inc. (http://www.lakeshore.com)
    53 U. K. Rossler, A. N. Bogdanov, K. -H. Muller. Surface anisotropy and vortex states in ferromagnetic wires. IEEE Trans. Magn., 2002, 38(5): 2586-2588.
    54 E. Y. Vedmedenko, A. Kubetzka, K. von Bergmann, O. Pietzsch, M. Bode, J. Kirschner, H. P. Oepen, and R. Wiesendanger. Domain Wall Orientation in Magnetic Nanowires. Phys. Rev. Lett., 2004, 92(7): 077207.
    55 Tao Li, Yunxia Sui, Zhigao Huang, Shaoguang Yang, Benxi Gu and Youwei Du. Spin-configuration-related ferromagnetic resonance in nickel nanowire array. J. Phys.: Condens. Matter, 2005, 17(23): 3637-3645.
    56 K. Binder, D. W. Heermann. Monte Carlo Simulation in Statistical Physics. Berlin: Springer, 1992.
    57 Z. G. Huang, Z. G. Chen, K. Peng, D. H. Wang, F. M. Zhang, W. Y. Zhang, and Y. W. Du. Monte Carlo simulation of tunneling magnetoresistance in nanostructured materials, Phys. Rev. B, 2004, 69(9): 094420.
    58 Z. G. Huang, Z. G. Chen, F. M. Zhang, and Y. W. Du. Magnetization and configurational anisotropy in magnetic clusters: Monte Carlo simulation. Eur. Phys. J. B., 2004, 37(2): 177-185.
    59 K. H. Zhong, Z. G. Huang, Q. Feng, L. Q. Jiang, Y. M. Yang, Z. G. Chen. Monte Carlo Simulation of Magnetization Behaviour of Co Nanowires. Chin. Phys. Lett., 2006, 23(1): 200-203.
    60 Yan-Min Yang, Ke-Hua Zhong, Qian Feng, Li-Qin Jiang, Zhi-Gao Huang. Monte Carlo Simulation of Kerr Effect and Giant Magnetoresistance in Co_xAg_(1-x) Granular Films. Chin. Phys. Lett., 2005, 22(6): 1305-1308.
    61 卢仙聪.磁性纳米线的反磁化机制及线间相互作用研究.[兰州大学硕士论文].2004:7-9.
    62 B. D. Cullity. Introduction to magnetic materials. Massachusetts: Addison-Wesley Publishing Company, 1972: 333-340, 389-410.
    63 T. G. Sorop, C. Untiedt, F. Luis, M. Kroll, M. Rasa, and L. de. Jongh. Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys. Rev. B., 2003, 67(1): 014402.
    64 Klabunde(克莱邦德).纳米材料化学.陈建峰.北京:化学工业出版社,2004:177-180.
    65 E. C. Stoner and E. P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc., 1948, 240A: 599-642.
    66 B. D. Cullity. Introduction to magnetic materials. Massachusetts: Addison-Wesley Publishing Company, 1972: 333-341, 393-399.
    67 R. Skomski, H. Zeng, D. J. Sellmyer. Incoherent magnetization reversal in nanowires, J. Magn. Magn. Mater., 2002, 249(1-2): 175-180.
    68 M. Knobel, L. C. Sampaio, E. H. C. R Sinnecker, P. Vargas, D. Altbir. Dipolar magnetic interactions among magnetic microwires, J. Magn. Magn. Mater., 2002, 249(1-2): 60-72.
    69 R. Skomski, H. Zeng, D. J. Sellmyer. Magnetic localization in tranition-metal nanowires. Phys. Rev. B., 623(6): 3900-3904.
    70 朱祖芳(主编).铝合金阳极氧化与表面处理技术.北京:化学工业出版社,2004:2,94-96.
    71 G. C. Wood, J. P. Osullivan, B. Vazko. The direct observation of barrier layers in porous anodic oxide films. J. Electrochem. Soc., 1968, 115(6): 618-620.
    72 J. P. O'Sullivan, G. C. Wood. The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium. Proc. Roy. Soc. Lond. A., 1970, 317(1531): 511-543.
    73 G. E. Thompson, R. C. Fumeaux, G. C. Wood, J. A. Richardson, and J. S. Goode. Nucleation and growth of porous anodic films on aluminium. Nature, 1978, 272: 433-435.
    74 G. E. Thompson, R. C. Fumeaux, G. C. Wood. Electron Microscopy of Ion Beam Thinned Porous Anodic films Formed on Aluminium. Corrosion Science, 1978, 18(5): 481-498.
    75 G. E. Thompson and G. C. Wood. Porous anodic film formation on aluminium. Nature, 1981, 290: 230-232.
    76 G. E. Thompson. Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films, 1997, 297(1-2): 192-201.
    77 O. Jessensky, E Muller, and U. Gosele. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett., 1998, 72(10): 1173-1175.
    78 A. R Li, E Muller, A. Birner, K. Nielsch, and U. Gosele. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 1998, 84(1): 6023-6026.
    79 H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda. Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al. J. Elec. Soc., 2001, 148(4): B152-B156.
    80 S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, Y. W. Du. Preparation and magnetic property of Fe nanowire array. J. Magn. Magn. Mater., 2000, 222(1-2): 97-100.
    81 Y. C. Sui, J. M. Saniger. Characterization of anodic porous alumina by AFM. Materials Letters, 2001, 48(3): 127-136.
    82 F. Keller, M. S. Hunter, D. L. Robinson. Structural features of oxide coatings on aluminum. J. Electrochem. Soc., 1953, 100(9): 411-416.
    83 E. R. Holland, Y. Li, P. Abbott, P. R. Wilshaw. Large area gridded field emitter arrays using anodised aluminium. Displays, 21 (2): 99-104.
    84 胡中爱.金属及其氧化物纳米线的控制合成.[兰州大学博士论文].2004:58.
    85 朱浩.磁性纳米线有序阵列.[南京大学硕士论文].2001:10.
    86 M. Vazquez, M. Hernandez-Velez, K. Pirota, A. Asenjo, D. Navas, J. Velazquez, P. Vargas, and C. Ramos. Arrays of Ni nanowires in alumina membrances: magnetic properties and spatial ordering. Eur. Phys. J. B., 2004, 40(4): 489-497.
    87 Kornelius Neilsch, Frank Muller, An-Ping Li, and Ulrich Gosele. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater., 2000, 12(8): 582-586.
    88 杨绍光.纳米线有序阵列.[南京大学博士后研究工作报告].2000:11.
    89 A. Saedi, M. Ghorbani. Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Materials Chemistry and Physics, 2005, 91 (2-3): 417-423.
    90 Rocio Redon, A. Vazquez-Olmos, M. E. Mata-Zamora, A.Ordonez-Medrano, F. Rivera-Torres, J. M. Saniger, Contact angle studies on anodic porous alumina, Journal of Colloid and Interface Science., 2005, 287 (2): 664-670.
    91 Rocio Red6n, A. Vaquez-Olmos, M. E. Mata-Zamora, A. Ordonez-Medrano, F. Rivera-Torres, J. M. Saniger, Contact angle studies on anodic porous alumina, Rev. Adv. Mater. Sci., 2006, 11: 79-87.
    92 Hua Li, Cai-Ling Xu, Guang-Yu Zhao, and Hu-Lin Li, Effects of Annealing Temperature on Magnetic Property and Structure of Amorphous Co_(49)Pt_(51) Alloy Nanowire Arrays Prepared by Direct-Current Electrodeposition. J. Phys. Chem. B., 2005, 109 (9), 3759-3763.
    93 F. Tian, J. Zhu, D. Wei, and Y. T. Shen, Magnetic Field Assisting DC Electrodeposition: General Methods for High-Performance Ni Nanowire Array Fabrication. J. Phys. Chem. B., 2005, 109(31): 14852-14854
    94 Yu Lin, Ting Xie, Baochang Cheng, Baoyou Geng, Lide Zhang. Ordered nickel oxide nanowire arrays and their optical absorption properties. Chemical Physics Letters, 2003, 380 (5): 521-525.
    95 A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu. Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett., 2001, 79(7): 1039-1041.
    96 K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, and U. Gosele, S. F. Fischer and H. Kronmuller. Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett., 2001, 79(9): 1360-1362.
    97 Nathan J. Gerein and Joel A. Haber. Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates. J. Phys. Chem. B, 2005, 109(37): 17372-17385.
    98 Cheonho Yoon and Jung Sang Suh, Electrochemical Fabrication of CdS/Co Nanowire Arrays in Porous Aluminum Oxide Templates. Bull. Korean Chem. Soc. 2002, 23(11): 1519-1123.
    99 J. -L. Yao, J. Tang, D. -Y. Wu, D. -M. Sun, K. -H. Xue, B. Ren, B. -W. Mao, Z. -Q. Tian. Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surface Science, 2002, 514(1): 108-116.
    100 Ling-Bin Kong, Mei Lu, Meng-Ke Li, Xin-Yong Guo and Hu-Lin Li. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy. Chin. Phys. Lett., 2003, 20(5): 763-766.
    101 V. Caboni. Italian Patent. No. 339232, 1936.
    102 Langbein-Pfandhauser GmbH. German Patent. No. 741753, 1940.
    103 W. Sautter, G. Ibe, J. Meier, Investigations Into the Electrolytic Coloring of Anodized Aluminum and the Structure of the Particles Conferring the Color. Aluminium., 50(2): 143-149.
    104 上海轻工业专科学校.电镀原理与工艺.上海:上海科学技术出版社,1978.
    105 Song-Zhu Chu, Kenji Wada, Satoru Inoue, and Sin-ichi Todoroki. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition. Chem. Mater. 2002, 14, 4595-4602.
    106 Wolfhang Riedel(沃尔夫冈·里德尔).Electroless Nickel Plating(化学镀镍).罗守福.上海:上海交通大学出版社,1996:6-8.
    107 张吉林.稀土发光材料M_2O_3:RE~(3+)(M=Y,Gd;RE=Eu,Tb)体系的AAO模板组装.[中国科学院长春应用化学研究所博士论文].2004:93-94.
    108 K Shantha Shankarl and A KRaychaudhuri. Growth of an ordered array of oriented manganite nanowires in alumina templates, Nanotechnology, 2004, 15(9): 1312-1316.
    109 Guangbin Ji, Shaolong Tang, Baolong Xu, Benxi Gu, Youwei Du. Synthesis of CoFe_2O_4 nanowire arraysby sol-gel template method. Chemical Physics Letters, 2003, 379(56): 484-489.
    110 张吉林.稀土发光材料M_2O_3:RE~(3+)(M=Y,Gd;RE=Eu,Tb)体系的AAO模板组装.[中国科学院长春应用化学研究所博士论文].2004:16.
    111 X. Y Ma, H. Zhang, J. Xu, J. J. Niu, Q. Yang, J. Sha, D. R. Yang, Chem. Phys. Lett., 2002, 363: 579.
    112 张吉林.稀土发光材料M_2O_3:RE~(3+)(M=Y,Gd;RE=Eu,Tb)体系的AAO模板组装.[中国科学院长春应用化学研究所博士论文].2004:23-24.
    113 B. Van der Linden, H. Terryn and J. Vereecken. Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy. J. Appl. Electrochem., 1990, 20(5): 793-803.
    114 Nan Li, Xiaotian Li, Xiaoju Yin, Wei Wang, Shilun Qiu. Electroless deposition of open-end Cu nanotube arrays. Solid State Communications, 2004, 132 (12): 841-844.
    115 Hao Zhu, Shaoguang Yang, Gang Ni, Shaolong Tang and Youwei Du. Fabrication and magnetic properties of Fe_(14)Ni_(86) alloy nanowire array. J. Phys.: Condens. Matter, 2001, 13 (8): 1727-1731.
    116 B. D. Cullity. Introduction to magnetic materials. Massachusetts: Addison-Wesley Publishing Company, 1972: 240-244.
    117 Zeng H., Skomski R, Menon L, et al.. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays[J]. Phys. Rev. B., 2002, 65(13): 134426-134433.
    118 王森林,刘汉山,胡光辉,吴辉煌.Ni-Fe-P合金化学镀的工艺条件及品化行为研究.厦门大学学报(自然科学版),2003,42(3):340-343.
    119 F. Wacquant, S. Denolly, J. -P. Nozieres, and D. Givord, V. Mazauric. Hexagonal arrays of submicronic ferromagnetic wires obtained by multiple extrusion of bulk samples. J. Appl. Phys., 1999, 85(8): 5483-5485.
    120 J I. S. acobs, C. P. Bean. An approach to elongated fine-particle magnets. Phys. Rev., 1955, 100(4): 1060-1067.
    121 B. D. Cullity. Introduction to magnetic materials. Massachusetts: Addison-Wesley Publishing Company, 1972: 57, 240-244.
    122 J. Rivas, A. Kazadi Mukenga Bantu, G. Zaragoza, M. C. Blanco, M. A. Lopez-Quinteta. Preparation and magnetic behavior of arrays of electrodeposited Co nanowires. J. Magn. Magn. Mater., 2002, 249(1-2): 220-227.
    123 Hideo Daimon, Osamu Kitakami. Magnetic and crystallographic study of Co electrodeposited alumite films. J. Appl. Phys., 1993, 73(10): 5391-5393.124 S. T. Roschenko, I. G. Shipkova, B. M. Baizuldin. K. N. Gavrilenko, E. V. Panasenko. Magnetic properties of alumite films with fixed pore system parameters containing electro-deposited Co. J. Magn. Magn, Mater., 1995, 148(1-2): 108-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700