锂离子电池正极材料LiMn_2O_4掺杂改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石LiMn2O4具有高电压、高安全性、低污染、低成本、资源丰富等优点使其成为新一代锂离子电极正极材料研究热点之一,但是该材料目前还存在初始容量较低、容量衰减较快等问题,这严重阻碍了其商业化进程。目前解决该问题采用最多的是阳离子掺杂、阴离子掺杂、阴阳离子共掺杂等改性方法。本文的主要工作内容是研究尖晶石型锰酸锂正极材料的离子体相掺杂改性,以改善材料的电化学性能。研究了以不同的锂源采用熔融浸渍法制备尖晶石型锰酸锂,及阴阳离子复合掺杂,对尖晶石锰酸锂晶体结构和电化学性能的影响。
     本文首先采用熔融浸渍法,分别以硝酸锂、氢氧化锂为锂源,合成尖晶石LiMn2O4,随着煅烧温度的升高,硝酸锂为锂源合成的尖晶石样品晶胞参数逐渐增大,其初始容量也逐渐增大;氢氧化锂为锂源源合成的尖晶石样品晶胞参数随着煅烧温度的升高而减小,其初始容量也逐渐减小。相比而言,氢氧化锂为锂源合成尖晶石LiMn2O4电化学性能也较好。
     分别以硝酸锂、氢氧化锂为锂源,采用氟镁掺杂改性制备的样品LiMn1.9Mg0.1O4-y,通过XRD测试可以看出样品为纯的尖晶石相,说明了氟镁掺杂进尖晶石结构中。而合成的样品在材料的结晶程度和形貌都有很大的改善,其循环性能也得到了较大的提高。当镁的量不变,掺杂氟对样品的性能影响最为明显,随着掺氟量的增加,样品LiMn1.9Mg0.1O4-yFy(y=0.03,0.05,0.1)容量逐渐增加。相比而言,氢氧化锂为锂源合成尖晶石LiMn1.9Mg0.1O4-yFy(y=0.03,0.05,0.1)电化学性能也较好,这与合成尖晶石LiMn2O4规律一致。而采用氟铝掺杂改性制备的样品LiMn1.9Mg0.1O3.97F0.03,其初始容量低,电化学性能较差。
     对尖晶石锰酸锂进行了阴阳离子的多元复合掺杂改性,通过筛选掺杂元素的组合方案、控制掺杂的量、选择不同的锂源,制备出了既具有高的初始容量又有良好的充放电循环性能的尖晶石型锰酸锂正极材料,并从理论上探讨了尖晶石锰酸锂容量衰减的原因,从材料的晶体结构和电化学特性等方面分析了掺杂改性改善尖晶石锰酸锂循环性能的作用机理。
Spinel LiMn2O4 is one of the most promising cathode for lithium ion battery for its high working voltage,high safty,low pollution,low cost,abundant resources.The low initial capacity and its rapid decrease of the spinel haven't been improved up to now,However the commercial applications of LiMn2O4 are badly blocked by its poor cycling performance.Through the most widely adopted method to overcome the problems was cation doping,anion doping or co-doping.This dissertation is intending to investigate the modification of spinel lithium manganese cathode material for lithium-ion batteries by ion doping, so as to improve its electrochemical performance. Spinel LiMn2O4 were synthesized by a melting-impregnation method with different source of lithium .Cation(Mg,Al )and anion (F) co-doping methods were adopted to modify the spinel LiMn2O4 cathode. Their effects on the crystal structure and electrochemical properties of the result spinel lithium manganese were studied respectively. Firstly, Spinel LiMn2O4 were prepared by a melting-impregnation method with lithium nitrate and lithium hydroxide respectively. with the calcination temperature increased , when used lithium nitrate as the source of the lithium , the cell parameters of spinel samples increased gradually. Its initial capacity is gradually increased,also.
     when used lithium hydroxide as the source of the lithium, the lattice constants of spinel samples decreased Its initial capacity is gradually reduced. In contrast, the electrochemical properties of LiMn2O4 spinel with lithium hydroxide as the source of the lithium is better. F-Mg co-doped spinel LiMn1.9Mg0.1O4-yFy were synthesized by melting-impregnation methods as above-mentioned. Their microstructure were examined by powder XRD analysis , All samples were identified as a pure spinel phase with a space group Fd3m where lithiumions occupy the tetrahedral (8a) sites, Mn3+, Mn4+ andAl3+ ions reside at the octahedral (16d) sites, and O2? and F? ions are located at the 32e sites. the crystal degree, morphology and cycling performance are greatly improved , When the same amount of magnesium in spinel,the effect of fluorine-doping on samples is the most obvious ,with the increase of fluorine, the initial discharge capacity of LiMn1.9Mg0.1O4-yFy(y=0.03,0.05,0.1)gradually increase. In contrast, when used lithium hydroxide as the source of the lithium, the electrochemical performance of LiMn1.9Mg0.1O4-yFy (y = 0.03,0.05,0.1) is better, It is the same as LiMn2O4 spinel. when used lithium hydroxide as the source of the lithium, the electrochemical performance of LiMn1.9Mg0.1O4-yFy (y = 0.03,0.05,0.1) is better,also.
     However,electrochemical property of LiMn1.9Al0.1O3.97F0.03 were prepared by melting-impregnation methods as above-mentioned. Al and F dual-doped LiMn2O4 could gain worse electrochemical properties and have lower initial capacity than only the Mg and F co-doped LiMn2O4.
     The modified spinel cathode material with some cations and anions multiplex doped were synthesized for the first time. By choosing a different lithium source and controlling the doping quantum, perfect spinel lithium manganese cathode were produced which have high initial capacity as well as good cycle performances at room temperature. The causes of the capacity fading of spinel lithium manganese were discussed. The action mechanism of ion doping was analyzed in terms of the crystal structure and electrochemical properties.
引文
[1]冯熙康,朱进朝,陈益奎等.电动车与航天用锂离子蓄电池的进展. [J].电源技术, 1999, 23 (3):186-190.
    [2]黄振谦,张昭,锂离子电池(RCB)的研究进展. [J].电池, 1995, 25 (3):143-145.
    [3] Klaus Brandt,Practical batteries based on the SWING system. [J].J Power Sources, 1995,54:154-154.
    [4]陈德钧,电池的近期发展与锂离子电池. [J].电池, 1996, 26(3 ):139-143.
    [5] Bruno Scrosati, Lithium rocking chair bateries: an old concept. [J]. J. Electrochem. Soc,1992, 139 (l0 ):222-237.
    [6] J. R.Dahn, U.Von Sacken, M.W.Juzkow, et al,Rechargeable LiNiO2/carbon cells.[J]. Electrochem.Soc,1991,138(8):2207-2211.
    [7]裘妙云,黄锦文,锂电池讲座(一),电池, 1991, 21 ( 4):41-43
    [8] Aurbach D,Eineli Y,Chusid O .et al.The correlation between surface chemistry and the permanceof Li/Carbon intercalation anodes for rechargeable“rocking–chair”type batteries.[J].J. Electrochem. Society ,1994,141(3):603-611
    [9] Urich Von Sacken,Eric Nodwell,Avtar Sundher,J. R.Dahn,Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium bateries. [J].Solid State Ionics,1994,6 (9):284-290.
    [10]易惠华,戴永年,代建清等.锂离子电池正极材料的现状与发展.[J].云南化工,2005 ,32 (1) :39-42.
    [11]应皆荣,万春荣,姜长印.高密度球形LiCoO2的制备及性能研究.[J].电源技术,2004,28(9):525-527.
    [12]胡国荣,桂阳海,彭忠东.锂离子蓄电池正极材料LiCoO2研究进展.[J].电源技术,2003,27(2):125-128.
    [13] Wang GX, Zhong S ,Bradhurst D H et al . Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. [J] . J Power Sources , 1998 ,76 (2) :141- 146.
    [14]刘建睿,王猛,尹大川,黄卫东.高能锂离子电池的研究进展.[J].材料导报, 2001, 15 (7) :32- 35.
    [15] Inoue T,Sano M.An investigation of capacity fading of manganese stored at elevated temperature.[J]. J. Electrochem. Soc,1998,145:3704-3707.
    [16] Gao Yuan,D ahn J. R. Correlation between the growth of th e3 .3V discharge plateauand capacity fading in L ixMn2-.xO4 materials.[J].Solid State Ionics,1996,84 (1) :33-40.
    [17] Gummow R J,de KockA,Thackeray M.Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel)cells [J] .Solid State Ionics ,1994,69:59-67
    [18] Padhi A K,Nanjundaswamy K S,Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries .[J]. J Electrochem Soc, 1997,144(4):1188-1194.
    [19] Xu.H.Y,Xie.Ding.S.N.et.al Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel by radiated polymer gel method.[J].Electrochimica Acta ,2006,51:4352-4357.
    [20]陈敬波,胡国荣,彭忠东等.锂离子电池正极材LiMn2O4. [J].中国锰业2003, 21 (1):14-18.
    [21] Shuhua Ma,Hideyuki Noguchi,Masaki Yoshio. Synthesis and electrochemical studies on Li-Mn-O Compounds prepared at high temperatures. [J].J Power Sources ,2006,126 :144-149.
    [22] Siapkas D I ,Mit sas C ,Samaras I .et al . [J].J Power Sources ,1998 ,72 (1): 22-26.
    [23]雷家珩,弓巧侠,尚建华等. [J].武汉大学学报(理学版),2001,47(6) :707-711
    [24]袁俊生,孟兴智,纪志永. [J].海湖盐与化工, 2005, 34 (1) :6-9.
    [25]卢集政,赖琼钰. [J].化学研究与应用,1998 ,10 (6):620-623.
    [26]康慨,戴受惠,万玉华. [J].功能材料, 2000, 31 (3):283-286.
    [27] Huang H,Bruce P G.. 3V and 4V Lithuim manganese oxide cathodes for rechargeable lithium batteries[J]. J. power sources ,1995,(54):52-57.
    [28] Xia Y J ,Hideshima Y, Kumada N.et al .Studies on Li/LiMn2O4 spinel system (obtained from melt-impregnation method) as a cathode for 4V lithium batteries [J].J Power Sources,1998,74 (1) :24-28.
    [29]刘培松,刘兴泉,李庆等.液相法合成锂离子电池正极材料Li1+xMn2O4 [J].电化学,2000,6(3):363-368.
    [30]陈召勇,贺益,刘兴泉等.类溶胶-凝胶法制备LiMn2O4-xClx正极材料[J].电化学,2001,7(1):l32-l35.
    [31] Sun Y K,Oh I H,Kim K Y. Synthesis of spinel LiMn2O4 by sol-sel method for a cathode active material in lithium secondary batteries[J].Ind Eng Chem Res,1997(43):4839-4843.
    [32] Sung L Y,Sun Y K,Nahm K S.Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid assisted sol-gel method for lithium secondary batteries[J].Solid State Ionic,1998(34):285-294.
    [33]杨书廷,张焰峰,吕庆章等.纳米级LiMn2O4尖晶石合成及电化学性能研究[J].无机材料学, 2000, 15 (2):309-3l4.
    [34]刘韩星,周振平赵世玺等.Li-Mn-O体系电极材料的微波合成[J].物理化学学报,2001,17(8):702-707.
    [35] Liu W,Farrington G C,Chaput F,et al,Sythesis and electrochemical studies of spinel phase LiMn2O4 cathode material prepared by the pechini process .[J]. J Electrochem Soc, 1996,143(3):879-884.
    [36] Gadjov H, Gorova M, Kotzeva V,et al LiMn2O4 prepared by different methods at identical thermal treatment conditions: structural, morphological and electrochemical characteristics .[J] . J Power Sources, 2004,134(1):110-117.
    [37] Das S R, Fachini I R, Majumder S B.et al Structural and electrochemical properties of nanocrystalline LixMn2O4 thin film cathodes(x=1.0-1.4).[J].J Power Sources,2006,158(2):518-523.
    [38] Bang H J,Donepudi V S. [J].Electrochim Acta,2002,48:443-451.
    [39] Xu H Y, Xie S. [J].Electrochimica Acta 2006,51:4352-4357.
    [40] Xia Y,Zhou Y,Yoshio M. [J].J Electrochem Soc,1997,144:2593-2 600.
    [41] Song G M,Wang Y J,Zhou Y. [J]. J Power Sources,2004,128:270-277.
    [42] SunY K, Yoon C S, Kim K et al. [J].J Mater Chem,2001,11 :2519 -25221.
    [43] Hayashi N,Ikuta H,Wahara M .[J].J Electrochem Soc,1999,146(4):1351-1353
    [44] Amatucci G G,Perera N. [J].J Electrochem Soc,2001,148(2):A171-173
    [45] XIAO Jin,ZHU Hua-li,CHEN Zhao-yong, [J].Trans. Nonferrous Met. SOC. China 2006,16: 467-472.
    [46]蔡砚,王要武,何向明等球形尖晶石LiMn2O4的制备及改性[J].无机材料学报,2004,19(5):1058-1068.
    [47] Bakenov Z,Taniguchi I. Electrochemical performance of nanostructured LiMxMn2?xO4 (M = Co and Al) powders at high charge–discharge operations [J]. Solid State Ionic ,2005,176 :1027-1034
    [48] Lee Y S ,N aaoli K,Masaki Y.Synthesis and characterization of lithium aluminum doped spinel (LiAlxMn2 - xO4) for lithium secondary battery [J]. J .Power Sources ,2001 ,96 (2):376-384 .
    [49]李志敏,仇卫华. Al3+、F-掺杂LiMn2O4的高温电化学性能. [J] .电池,2003, 33 (2):71-73.
    [50]肖卓炳,麻明友有机酸络合法合成的尖晶石锰酸锂特性研究.[J] .电池工业,2006 ,11 (1):17-20.
    [51]李贯良,李国防,乔庆东氟掺杂型锂锰氧化物的电化学性能研究.[J] .化学世界,2005 ,5 :260-262.
    [52] Son J T, Kim H G. New investigation of fluorine-substituted spinelLiMn2O4?xFx by using sol–gel process [J] .J Power Sources ,2005,147 :220-226.
    [53]罗穗莲,李伟善,刘煦等.过量尖晶石锂锰氧化物的结构与电化学行为.[J].中国锰业, 2001, 19 (4):11-14.
    [54]宋桂明,周玉,周文元.锂离子电池正极材料Li Mn2O4制备新工艺.无机材料学报, 2001, 16 (3 ):486-490.
    [55] T arascon J M, Mckinnon W R,Coowar F et al . Synthesis conditions and Oxygen stoichiometry effects on Li insert ion into the spinel LiMn2O4.[J].Electrochem Soc,1994,141(6):1421-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700