空穴掺杂稀土锰氧化物 La_(0.67)Ca_(0.33)MnO_3块体及薄膜的结构和物性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用溶胶-凝胶法制备了La_(0.67)Ca_(0.33)MnO_3多晶块体样品,并对其结构、磁性、电和热的输运性质及红外透射光谱进行了系统的研究。X射线衍射结果表明,样品为单相的正交结构,其晶格常数分别为a=5.3229 (?)、b=7.6821 (?)、c=5.6072 (?)。磁性质和电输运性质的测量结果表明,样品的居里温度和金属-绝缘体转变温度均在260 K附近。我们对上述样品在不同外磁场下的导热系数和电导率随温度的变化规律进行了系统的测量,发现,在居里温度附近,导热系数和电导率随温度的降低均有一突然增加,同时,外磁场使得样品在居里温度附近的导热系数明显增加。针对导热系数在居里温度附近随温度的降低而突然增加这一现象,我们对样品的在不同温度的红外透射光谱作了详细的测量,结果表明,有效载流子浓度在居里温度附近随着温度的降低而突然增加,结合以前本研究组对Nd_(0.75)Na_(0.25)MnO_3样品导热系数的测量结果及Park等人(Phys. Rev. Lett. 76, (1995) 4215)对La_(0.67)Ca_(0.33)MnO_3电子能态密度的测量结果,我们提出导热系数在居里温度附近随温度的降低而突然增加是由于载流子的退局域化而导致的。此外,我们发现在180 K以上La_(0.67)Ca_(0.33)MnO_3的磁电阻数据很好的符合Wagner修正的Mott模型,说明在居里温度附近很大的温度范围内载流子在其内部磁团簇之间的跳跃起主导作用;而在140 K以下由于晶粒间自旋相关的隧穿效应起主导作用,使得磁电阻数据偏离Wagner修正的Mott模型。
     通过改变退火时间、基底温度、溅射气压、溅射功率等工艺参数,我们用射频溅射法在(100)取向的LaAlO3单晶基底上生长了La_(0.67)Ca_(0.33)MnO_3薄膜,并对薄膜的结构、电输运性质做了详细的研究。我们发现,当基底温度为780°C、溅射气压为0.5 Pa、溅射功率为184 W,并且在900°C的氧气氛围中退火24 h时,X射线衍射花样中只出现了正交结构的La_(0.67)Ca_(0.33)MnO_3的(101)、(202)及(303)晶面衍射峰,而在选定的断面任意区域作电子衍射,其电子衍射花样都相同,并且都是单晶布拉格衍射斑点,这就证明了在该条件下制备的La_(0.67)Ca_(0.33)MnO_3薄膜为沿[101]方向生长的单晶薄膜。断面高分辨电镜图像进一步证明了上述结论。该薄膜的金属-绝缘体转变温度为253 K,说明我们制备的La_(0.67)Ca_(0.33)MnO_3薄膜中各离子含量接近理想配比。磁电阻的研究表明,该单晶薄膜在很大的温度范围内载流子在磁团簇之间的跳跃为主要导电机制。
Polycrystalline bulk sample La_(0.67)Ca_(0.33)MnO_3 was prepared by sol-gel method. The structure, magnetic property, electrical transport property, thermal transport property, and infrared transmission spectra of La_(0.67)Ca_(0.33)MnO_3 have been studied systematically. X-ray diffraction patterns show that the sample is single phase crystallized in the orthorhombic structure. The corresponding lattice constants are a =5.3229 ?, b =7.6821 ?, and c =5.6072 ?, respectively. The Curie temperature and the metal-insulator temperature obtained from the magnetic and electrical transport properties measurement are both around 260 K. The temperature dependence of the thermal conductivity and the electrical conductivity of the La_(0.67)Ca_(0.33)MnO_3 sample under different magnetic fields reveal that they both increase sharply on cooling near the Curie temperature. Synchronously, under the influence of the magnetic field, the thermal conductivity increases distinctively on cooling around the Curie temperature. In order to clarify the reasons for the sudden increase of the thermal conductivity near the Curie temperature, infrared transmission spectra of the sample are measured in detail at different temperatures. The results indicate that the charge carriers increased sharply near the Curie temperature. Combining the previous results of the Nd_(0.75)Na_(0.25)MnO_3 and the density state results of La_(0.67)Ca_(0.33)MnO_3 reported by Park et al (Phys. Rev. Lett. 76, (1995) 4215) we ascribe the abrupt change of the thermal conductivity to the delocalization of the charge carriers below the Curie temperature. Furthermore, above 180 K the magnetoresistance (MR) data can be fitted well according to Wagner’s modified Mott model, which indicates that the hopping of the charge carriers between magnetic clusters is dominant in a wide range near the Curie temperature. However, below 140 K, the calculated data deviate from the experimental ones due to the spin polarized tunneling effect between the grains.
     La_(0.67)Ca_(0.33)MnO_3 thin film is deposited on LaAlO3(100) single crystal substrate using radio frequency sputtering by changing annealed time, substrate temperature, sputtering pressure and sputtering power. The structure and electrical transport properties of the film are investigated systemically. Under the following conditions: 780°C substrate temperature, 0.5 Pa sputtering pressure, 184 W sputtering power and annealed 24 h under 900°C in oxygen, the X-ray diffraction (XRD) results of the film only show (101), (202) and (303) diffraction peaks of the orthorhombic La_(0.67)Ca_(0.33)MnO_3. At the same time, the random selected area diffraction patterns of the cross-sectional sample are all uniform single crystalline Bragg diffractions. All these results reveal that the film is epitaxial grown along [101] direction, which is consistent with the result of the cross-sectional image of high-resolution transmission electron microscopy (HREM). The metal-insulator transition temperature of the film is 253 K, which reveals that the ions contents of our La_(0.67)Ca_(0.33)MnO_3 film are close to the ideal stoichiometry. The manetoresistance of the film is also studied, and the results indicate that the hopping of the charge carriers between the inside magnetic clusters is dominant.
引文
[1] Dagotto Elbio, Hotta Takashi, Moreo Adriana, Colossal magnetoresistant materials: the key role of phase separation, Physics Reports, 2001, 344: 1~153.
    [2] 严守胜, 固体物理基础, 北京大学出版社, 2001.
    [3] Wollan E O, Koehler W C, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3, Phys. Rev., 1995, 100: 545~563.
    [4] Tokura Y, Tomioka Y, Colossal magnetoresistive manganites, J. Magn. Matter. Mater., 1999, 200: 1~23.
    [5] 戴道生, 熊光成, RE1-xTxMnO3 氧化物的结构, 电磁特性和巨磁电阻, 物理学进展, 1997, 17(2): 201~222.
    [6] Kanamori Junjiro, Crystal Distortion in Magnetic Compounds, J. Appl. Phys. Suppl., 1960 (31) S14~S23.
    [7] Warren E Pickett, David J Singh, Electronic structure and half-metallic transport in the La1-xCaxMnO3 system, Phys. Rev. B, 1996, 53: 1146~1160.
    [8] Jonker G H, Van Santen J H, Ferromagnetic Compounds of Manganese with Perovskite Structure, Physica, 1950, 16: 337~349.
    [9] Clarence Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compunds of Maganese with Perovskite Structure, Phys. Rev., 1951, 82: 403~405.
    [10] Clarence Zener, Interaction between the d-Shells in the Transition Metals, Phys. Rev., 1951, 81: 440~444.
    [11] John B Goodenough, Theory of the role of Covalence in the Perovskite-Type Manganites [ La, M(Ⅱ)]MnO3, Phys. Rev., 1955, 100: 564~573.
    [12] Patric W Anderson, Considerations on Double Exchange, Phys. Rev., 1955, 100: 675~683.
    [13] Wu Baimei, Li Bo, Zhen Weihua et al, Spin-cluster effect and lattice-deformation-induced Kondo effect, spin-glass freezing, and strong phonon scattering in La0.7Ca0.3Mn1?xCrxO3, J. Appl. Phys., 2005, 97: 103908-1~103908-6.
    [14] Ray A, Dey T K, Thermal conductivity of La0.67(CaxSr1-x)0.33MnO3 (x= 0, 0.5, 1) and La0.6Y0.07Ca0.33MnO3 pellets between 10 and 300 K, Solid State Communications, 2003, 126: 147~152.
    [15] Sharma P A, Kim Sung Baek, Koo T Y, Reentrant charge ordering transition in the manganites as experimental evidence for a strain glass, Phys. Rev. B, 2005, 71: 224416-1~224416-5.
    [16] Liu Wei, Zhao Jun, Chen Chinping et al., Thermopower peak in phase transition region of (1-x)La2/3Ca1/3MnO3 /(x) yttria-stabilized zirconia, J. Appl. Phys., 2003, 94: 7206~7209.
    [17] Mandal P, Ghosh B, Transport, magnetic, and structural properties of La1-xMxMnO3 (M=Ba, Sr, Ca) for 0≤x≤0.2, Phys. Rev. B, 2003, 68: 014422-1~014422-8.
    [18] Palstra T T M, Ramirez A P, Cheong S W et al., Transport mechanisms in doped LaMnO3: Evidence for polaron formation, Phys. Rev. B, 1997, 56: 5104~5107.
    [19] Arima Takahisa, Tokura Yoshinori, Optical Study of Electronic Structure in Perovskite-Type RMO3 (R=La, Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu), J. Phys. Soc. Jpn, 1995, 64: 2488~2501.
    [20] Hartinger Ch, Mayr F, Loidl A, Polaronic excitations in colossal magnetoresistance manganite films, Phys. Rev. B, 2006, 73: 024408-1~024408-16.
    [21] Hartinger Ch, Mayr F, Deisenhofer J et al., Large and small polaron excitations in La2/3(Sr/Ca)1/3MnO3 films, Phys. Rev. B, 2004, 69: 100403-1~100403-4.
    [22] Kim K H, Gu J Y, Choi H S et al., Frequency Shifts of the Internal Phonon Modes in La0.7Ca0.3MnO3, Phys. Rev. Lett., 1996, 77: 1877~1880.
    [23] Jain M, Li Y, Hundley M F et al., Magnetoresistance in polymer-assisted deposited Sr- and Ca-doped lanthanum manganite films, Appl. Phys. Lett., 2006, 88: 232510-1~232510-3.
    [24] Zhang M J, Li J, Peng Z H et al., Large magnetoresistance in La2/3Ca1/3MnO3 thin films induced by metal masked ion damage technique, J. Appl. Phys., 2006, 99: 116102-1~116102-3.
    [25] Xu Yan, Zhang Jincang, Cao Guixin et al., Low-temperature resistivity minimum and weak spin disorder of polycrystalline La2/3Ca1/3MnO3 in a magnetic field, Phys.Rev. B, 2006, 73: 224410-1~224410-7.
    [26] Souza J A, Jardim R F, Magnetoresistivity in the clustered state of La0.7?xYxCa0.3MnO3 manganites, Phys.Rev. B, 2005, 71: 054404-1~054404-7.
    [27] Rao C N R, Arulraj Anthony, Cheetham A K et al., Charge ordering in the rare earth manganates: the experimental situation, J. Phys: Condens. Matter., 2000, 12: R83~R106.
    [28] Rivadulla F, Winkler E, Zhou J S et al., Phase competition in L0.5A0.5MnO3 perovskites, Phys.Rev. B, 2002, 66: 174432-1~174432-10.
    [29] Goff R J, Attfield J P, Charge ordering in half-doped manganites, Phys. Rev. B, 2004, 70: 140404-1~140404-4.
    [30] Zheng R K, Li G, Tang A N et al., The role of the cooperative Jahn–Teller effect in the charge-ordered La1-xCaxMnO3 (0.5≤x≤0.87) manganites, Appl. Phys. Lett., 2003, 83: 5250~5250.
    [31] Xiong Y M, Wang G Y, Luo X G et al., Magnetotransport properties in La1?xCaxMnO3 (x =0.33, 0.5) thin films deposited on different substrates, J. Appl. Phys., 2005, 97: 083909-1~083909-11.
    [32] Mitra C, K?bernik G, D?rr K et al., Magnetotransport properties of a room temperature rectifying tunnel junction made of electron and hole doped manganites, J. Appl. Phys., 2002, 91: 7715~7717.
    [33] Bibes M, Laukhin V, Valencia S et al., Anisotropic magnetoresistance and anomalous Hall effect in manganite thin films, J. Phys: Condens. Matter., 2005, 17: 2733~2740.
    [34] Infante I C, Laukhin V, Sanchez F et al., Planar Hall effect in epitaxial (110) La2/3Ca1/3MnO3 films, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006, 126: 283~286.
    [35] Taniyama T, Hamaya K, Kitamoto Y et al., Anomalous Hall resistivity due to grain boundary in manganite thin films, J. Appl. Phys., 2003, 93: 8107~8109.
    [36] Sun J R, Xiong C M, Shen B G, Large magnetoresistance effects near room temperature in manganiteheterojunction, Appl. Phys. Lett., 2004, 85: 4977~4979.
    [37] Sun J R, Li C M, Wong H K, Strong magnetic-field effects in weak manganite-based heterojunction, Appl. Phys. Lett., 2004, 84: 4804~4806.
    [38] Sun J R, Xiong C M, Zhao T Y et al., Effects of magnetic field on the manganite-based bilayer junction, Appl. Phys. Lett., 2004, 84: 1528~1530.
    [39] Choua H, Hong Z Y, Sun S J et al., Strong anisotrpoic maganetoresistance and magnetic interaction in La0.7Ce0.3MnO3/La0.7Ca0.3MnO3 p-n junction, J. Appl. Phys., 2005, 97: 10A308-1~10A308-3.
    [40] Lang P L, Zhao Y G, Yang B et al., Magnetotransport and rectifying properties in La_(0.67)Ca_(0.33)MnO_3/yttrium-stabilized zirconia/Si heterojunction, Appl. Phys. Lett., 2005, 87: 053502-1~053502-3.
    [41] Zhang X P, Xie B T, Xiao Y S et al., Current-induced colossal electroresistance in p-n heterostructure of La_(0.67)Ca_(0.33)MnO_3?δ and Nb-doped SrTiO3, Appl. Phys. Lett., 2005, 87: 072506-1~072506-3.
    [42] Sefrioui Z, Cros V, Barthélémy A et al., Tunnel magnetoresistance in La0.7Ca0.3MnO3/PrBa2Cu3O7/La0.7Ca0.3MnO3, Appl. Phys. Lett., 2006, 88: 022512-1~022512-3.
    [43] Xiong C M, Zhao Y G, Xie B T et al., Unusual colossal positive magnetoresistance of La0.33Ca0.67MnO3 and Nb-doped SrTiO3, Appl. Phys. Lett., 2006, 88: 193507-1~193507-3.
    [44] Vengails B, Devenson J, Sliuziene K et al., Formation and investigation of p-n diode structures based on lanthanum manganites and Nb-doped SrTiO3, Thin Solid Films, 2006, 515: 599~602.
    [45] Mandal P, Temperature and doping dependence of the thermopower in LaMnO3, Phys. Rev. B, 2000, 61: 14675~14680.
    [46] Mahendiran R, Tiwary S K, Raychaudhuri A K, Thermopower and nature of the hole-doped states in LaMnO3 and related systems showing giant magnetoresistance, Phys. Rev. B, 1996, 54: R9604~R9607.
    [47] Hundley M F, Neumeier J J, Thermoelectric power of La1-xCaxMnO3-δ: Inadequacy of the nominal Mn3+/4+valence approach, Phys. Rev. B, 1997, 55: 11511~11515.
    [48] Fontcuberta J, Seffar A, Granados X et al., Extraordinary thermopower in magnetoresistive (La1-xYx)0.67Ca0.33MnO3 Oxides, Appl. Phys. Lett., 1996, 68: 2288~2290.
    [49] Sergeenkov S, Bougrine H, Ausloos M et al., Estimation of the charge carrier localization length from Gaussian fluctuations in the magneto-thermopower of La0.6Y0.1Ca0.3MnO3, Phys. Rev. B, 1999, 60: 12322~12328.
    [50] Bhattacharya Sayani, Banerjee Aritra, Pal S et al., Thermoelectric power of Na-doped La0.7Ca0.3–yNayMnO3 both in the presence and the absence of magnetic field, J. Appl. Phys., 2003, 93: 356~361.
    [51] Jaime M, Salamon M B, High-temperature thermopower in La2/3Ca1/3MnO3 films: Evidence for polaronic transport, Phys. Rev. B, 1996, 54: 11914~11917.
    [52] Palstra T T M, Ramirez A P, Cheong S W et al., Transport mechanisms in doped LaMnO3: Evidence for polaron formation, Phys. Rev. B, 1997, 56: 5104~5107.
    [53] Mahendiran R, Tiwary S K, Raychaudhuri A K et al., Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems, Phys. Rev. B, 1996, 53: 3348~3358.
    [54] Banerjee Aritra, Bhattacharya S, Mollah S et al., Comment on ‘‘Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites’’, Phys. Rev. B, 2003, 68: 186401-1~186401-5.
    [55] Zhao Guomeng, Wang Y S, Kang D J et al., Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites, Phys. Rev. B, 2000, 62: R11949~R11952.
    [56] Kuster R M, Singleton J, Keen D A et al., Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3, Physica B, 1989, 155: 362~365.
    [57] Jin S, Tidfel T H, McCormack M et al., Tousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science, 1994, 264: 413~415.
    [58] McCormack M, Jin S, Tiefel T H et al., Very large magnetoresistance In perovskite-like La-Ca-Mn-O thin films, Appl. Phys. Lett., 1994, 64: 3045~3047.
    [59] Ramirez A P, Colossal magnetoresistance, J. Phys: Condens. Matter, 1997, 9: 8171~8199.
    [60] Millis A J, Littlewood P B, Shraiman B I, Double exchangealone does not explain the resistivity of La1-xSrxMnO3, Phys. Rev. Lett., 1995, 74: 5144~5147.
    [61] Millis A J, Boris I Shraiman, Mueller R, Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3, Phys. Rev. Lett., 1996, 77: 175~178.
    [62] 方俊鑫, 陆栋, 固体物理学(上), 上海科技出版社, 1981.
    [63] Mori S, Chen C H, Cheong S W, Pairing of charge-ordered stripes in (La, Ca)MnO3, Nature, 1998, 392: 473~476.
    [64] Yakubovskii A, Trokiner A, Verkhovskii S et al., Charge and orbital ordering in Pr0.5Ca0.5MnO3 studied by 17O NMR, Phys. Rev. B, 2003, 67: 064414-1~064414-7.
    [65] Liu K, Wu X W, Ahn K H et al., Charge ordering and magnetoresistance in Nd1-xCaxMnO3 due to reduced double exchange, Phys. Rev. B, 1996, 54: 3007~3010.
    [66] Zheng K, Tang A N, Yang Y et al., The role of the cooperative Jahn–Teller effect in the charge-ordered La1-xCaxMnO3 (0.5≤ x≤0.87) manganites, Appl. Phys. Lett., 2003, 83: 5250~5252.
    [67] Schiffer P, Ramirez A P, Bao W et al., Low temperature Magnetoresistance and the magnetic phase Diagram of La1-xCaxMnO3, Phys. Rev. Lett., 1995, 75: 3336~3339.
    [68] De Teresa J M, Ibarra M R, Algarabel P A et al., Evidence for magnetic polarons in the magnetoresistive perovskites, Nature, 1997, 386: 256~259.
    [69] Masuno A, Terashima T, Shimakawa Y et al., Current-induced electroresistive effect in mixed-phase La_(0.67)Ca_(0.33)MnO_3 thin films, Appl. Phys. Lett., 2004, 85: 6194~6196.
    [70] Damay F, Cohen L F, MacManus Driscoll J et al., Low-temperature grain boundaries effect in La0.7-xYxCa0.3MnO3, J. Magn. Matter. Mater., 2000, 214: L149~L154.
    [71] Tokunaga M, Miura N, Moritomo Y et al., High-field magnetization and magnetoresistance of La0.5Sr1.5MnO4, Phys. Rev. B, 1999, 59: 11151~11154.
    [72] Huang Yunhui, Xu Zhigang, Yan Chunhua et al., Soft chemical synthesis and transport properties of La0.7Sr0.3MnO3 granular perovskites, Solid State Communications, 2000, 114: 43~47.
    [73] Li Z Q, Jiang E Y, Zhang D X et al., Effect of annealing on polycrystalline La1-xNaxMnOz ceramics, Phys. Lett. A, 2000, 277: 56~60.
    [74] Liu W, Farrington G C, Chaput F et al., Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechiniprocess, J. Electrochem. Soc., 1996, 143: 879~884.
    [75] 金原粲著, 杨希光译, 薄膜的基本技术, 北京科学出版社, 1982.
    [76] 杨树人, 丁墨元, 外延生长技术, 北京国防工业出版社, 1992.
    [77] Moutis N, Panagiotopoulos I, Pissas M et al., Structural and magnetic properties of La0.67(BaxCa1-x)0.33MnO3 perovskites ( 0 ≤ x≤ 1), Phys. Rev. B, 1999, 59: 1129~1133.
    [78] Li R W, Sun J R, Li Q A et al., Magnetic transition and large low-field magnetoresistance near Curie temperature in polycrystalline La2/3A1/3MnO3 (A=Ca, Sr), J. Appl. Phys., 2003, 93: 8092~8094.
    [79] Ding T, Zheng W T, Zang J F et al., Electron spin resonance analysis of magnetic structures in La2/3Ca1/3MnO3, J. Magn. Magn. Mater., 2005, 293: 782~786.
    [80] Li R W, Wang Z H, Chen X et al., Magnetic properties and colossal magnetoresistance of the perovskites La2/3Ca1/3Mn1-xTixO3, J. Appl. Phys., 2000, 87: 5597~5599.
    [81] Rao G H, Yan Chunhua, Liang J K et al., Giant magnetoresistance effect in bulk La1/3Nd1/3Ca1/3MnO3 at low field, Appl. Phys. Lett., 1996, 69: 424~426.
    [82] Guo Z B, Du Y W, Zhu J S et al., Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides, Phys. Rev. Lett., 1997, 78: 1142~1145.
    [83] Visser D W, Ramirez A P, Subramanian M A, Thermal Conductivity of Manganite Perovskites: Colossal Magnetoresistance as a Lattice-Dynamics Transition, Phys. Rev. Lett., 1997, 78: 3947~3950.
    [84] Kubo K, Ohata A, A Quantum Theory of Double Exchange I, J. Phys. Soc. Japn., 1972, 33: 21~32.
    [85] Li Q M, Zang J, Bishop A R et al., Charge localization in disordered colossal-magnetoresistance manganites, Phys. Rev. B, 1997, 56: 4541~4544.
    [86] Li Z Q, Zhang X H, Li W R et al., Charge ordering, magnetic, electrical transport and thermal transport properties of Nd_(0.75)Na_(0.25)MnO_3 manganite, Physica B, 2006, 371: 177~181.
    [87] Park J H, Chen C T, Cheng S W et al., Electronic Aspects of the Ferromagnetic Transition in Manganese Perovskites, Phys. Rev. Lett., 1995, 76: 4215~4218.
    [88] Li K B, Li X J, Zhu K G et al., Infrared absorption spectra of manganese oxides La1-x-yRyCaxMnO3- δ, J. Appl. Phys., 1997, 81: 6943~6947.
    [89] Yang Z Q, Hendrikx R, Aarts J et al., Strain release of (La, Ca) MnO3 thin films by YBa2CuO7-δ, Phys. Rev. B, 2003, 67: 024408~024413.
    [90] Calvani P, Marzi G De, Dore P et al., Infrared Absorption from Charge Density Waves in Magnetic Manganites, Phys. Rev. Lett., 1998, 81: 4504~4507.
    [91] Billinge S J L, DiFrancesco R G, Kwei G H et al., Direct Observation of Lattice Polaron Formation in the Local Structure of La1-xCaxMnO3, Phys. Rev. Lett., 1996, 77: 715~718.
    [92] Dai P, Zhang J D, Mook H A et al., Experimental evidence for the dynamic Jahn-Teller effect in La0.65Ca0.35MnO3, Phys. Rev. B, 1996, 54: R3694~R3697.
    [93] Millis A J, Lattice effects in magnetoresistive manganese perovskites, Nature, 1998, 392: 147~150.
    [94] Wagner P, Gordon I, Trappeniers L et al., Spin Dependent Hopping and Colossal Negative Magnetoresistance in Epitaxial Nd Sr MnO Films in Fields up to 50 T,0.52 0.48 3Phys. Rev. Lett., 1998, 81: 3980~3983.
    [95] Ren Shiwei, Jiang Enyong, Kim Yongjin et al., The theory analysis of the field dependence of the maganetoresistance of La0.7Ca0.3MnO3 film, J. Magn. Magn. Mater., 2001, 273: 55~60.
    [96] Vlakhov E S, Chakalov R A, Chakalova R I et al., Influence of the substrate on growth and magnetoresistance of La0.7Ca0.3MnOz thin films deposited by magnetron sputtering, J. Appl. Phys., 1998, 83: 2152~2157.
    [97] Saldarriaga W, Baca E, Prieto P et al., Field geometry dependence of magnetotransport in epitaxial La2/3Ca1/3MnO3 thin films, Physica B, 2006, 381: 274~279.
    [98] Andrés de A, García-Hernández M, Mu?oz-Martín A et al., Influnce of the microstructure on the magnetoresistance of manganite thin films, Thin Solid Films, 2000, 373: 98~101.
    [99] Wu X S, Cai H L, Xu J et al., Substrate and thickness effects on structure and transport properties of La2/3Ca1/3MnO3 films, J. Appl. Phys., 2004, 95: 7109~7111.
    [100] 曾宪庭, 凌兆兴, 黄康权, 用FTMS方法原位制备YBa2CuO7-δ薄膜气压和位置相关性研究, 低温物理学报, 1994, 16: 364~367.
    [101] Krivoruchko V N, Khartsev S I, Prokhorov A D et al., Transport and magnetic properties of DC-magnetron sputterred Ln0.7Mn1.3O3-δ thin films, 1999, 207: 168~179.
    [102] 李可斌, 刘玲, 孙建三等, La2/3Ca1/3MnOz 薄膜的巨磁电阻效应及温度关系的研究, 中国科学(A辑), 1996, 26: 458~461.\
    [103] Vas’ko V A, Nordman C A, Kraus P A et al., Ultra-smooth, highly ordered, thin films of La_(0.67)Ca_(0.33)MnO_3±d, Appl. Phys. Lett., 1996, 68: 2571~2573.
    [104] 周玉, 材料分析方法, 机械工业出版社, 2004, 143~159.
    [105] Pignard S, Yu Z K, Leprince W Y et al., Correlation between magnetotesistive properties and growth morphology of La1-xMnO3-δ thin films deposited on SrTiO3, LaAlO3 and MgO, Thin Solid Films, 2001, 391: 21~27.
    [106] Kumar D, Chattopadhyay S, Gilmore W M et al., Structural and magnetoresistance properties of La2/3Ca1/3MnO3 thin films on buffered silicon substrates, Appl. Phys. Lett., 2001, 78: 1098~1100.
    [107] Zhong J P, Yang S B, Yuan J et al., Positive magnetoresistance feature in ultrathin La_(0.67)Ca_(0.33)MnO_3 films, Solid State Communications, 2005, 136: 528~532.
    [108] Yang Z Q, Hendrikx R, Aarts J et al., Properties and microstructure of ultrathin (La, Ca)MnO3 films under different conditions of strain, Phys. Rev. B, 2004, 70: 174111-1~174111-6.
    [109] Jin S, O’Bryan H M, Tiefel T H et al., Large magnetoresistance in polycrystalline La–Y–Ca–Mn–O, Appl. Phys. Lett., 1995, 66: 382~384.
    [110] 李西军, 李可斌, 杜家驹等, La_(2/3)Ca_(1/3)MnO_3-δ 薄膜中磁致电阻温度关系的一种经验描述, 中国科学 (A辑), 1998, 28: 81~84.
    [111] 李可斌, 李西军, 曹效文等, La_(0.67)Ca_(0.33)MnO_3-δ薄膜中的巨磁电阻效应, 电子显微学报, 1997, 16: 421~424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700