旋转喷镀法合成Ni-Zn铁氧体薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要目的是用旋转喷镀法制备Ni–Zn铁氧体薄膜。通过FeCl_2+NiCl_2+ZnCl_2组成的还原液和CH_3COONH_4+NH_3H_2O+NaNO_2组成的氧化液不断地向转盘上的玻璃基片喷镀,在90℃下反应制备了厚度1–2μm的Ni–Zn铁氧体薄膜。利用X射线衍射(XRD)确定样品的物相,用扫描电子显微镜(SEM)观察分析了薄膜的形貌,用振动样品磁强计(VSM)和矢量网络分析仪测量了薄膜的磁性能。
     在实验中,研究了氧化液pH值、不同Zn含量以及掺Co对薄膜性能的影响。得到如下结论:
     当氧化液的pH值从8.0增大到8.8时,薄膜的沉积速率和表面粗糙度都相应提高。X射线衍射(XRD)显示制备的薄膜具有尖晶石结构铁氧体的特征衍射峰。氧化液pH值为8.0时,薄膜有更高的饱和磁化强度、更大的矫顽力以及更大的复磁导率。制备的薄膜显示了210.3kA/m的高饱和磁化强度和1.218kA/m的低矫顽力。
     当Zn含量从0.1增大到0.6时,薄膜的饱和磁化强度Ms先增大后减小。当Zn含量为0.3时,薄膜的饱和磁化强度Ms为147.8 kA/m,矫顽力为2.489kA/m。
     当Co含量从0增大到0.09时,薄膜的复磁导率先增大后减小,电阻率ρ一直增大。镍锌钴铁氧体薄膜组成中Co含量为0.03时的薄膜较均匀、致密。当Co含量为0.03时的复磁导率的实部μ′在大约1.7GHz时达到最大值72.5,虚部μ″在大约2GHz时达到最大值107.5。
Ni–Zn ferrite films were synthesized by spin-spray plating method. Ni–Zn ferrite films with thickness of 1–2μm were prepared by spin-spray plating method at 90℃on glass substrates from the deoxidizing solution of FeCl_2+NiCl_2+ZnCl_2 and the oxidizing solution of CH_3COONH_4+NH_3H_2O+NaNO_2. The composition of samples was identified by means of X-ray diffractometer (XRD).The morphology of samples was examined by scan electron microscope (SEM).Magnetic properties were measured by vibrating sample magnetometer (VSM) and vector meshwork analyzer.
     Based on experimental study, the effect of conditions which include the pH value of oxidizing solution, the content of Zn and the addition of Co on the properties of films was investigated.
     When the pH value of oxidizing solution increases from 8.0 to 8.8, both the deposition rate and surface roughness of the films increase.XRD pattern shows that the diffraction peaks of the deposited film are corresponding with characteristic peaks of the spinel ferrite. When the pH value of oxidizing solution is 8.0,the film has higher saturation magnetization, lower coercivity and larger complex permeability.This film exhibits a large saturation magnetization of 229kA/m and low coercivity of 0.693kA/m.
     When the content of Zn increases from 0 to 0.6,the saturation magnetization(Ms) of films roses firstly and the declines. When the content of Zn is 0.3, the film exhibits a large saturation magnetization of 147.8 kA/m and low coercivity of 2.489kA/m.
     When the content of Co increases from 0 to 0.09, the complex permeability value of films roses firstly and the declines.When the content of Co is 0.03, the film is even and compact. The real part of complex permeabilityμ′at about 1.7GHz of the frequency is at the maximum of 72.5. The imaginary part of complex permeabilityμ″at about 2 GHz of the frequency is at the maximum of 107.5.
引文
[1]陈国华.21世纪软磁铁氧体材料和元件的发展趋势[J].J Magn Mater Deviece 2001,32(4):34-36.
    [2]何水校.磁性材料生产技术的发展与市场前景展望[J]. J Magn Mater Deviece, 1999.32(1):20-22.
    [3]甘树才.溶胶-凝胶法合成镧六方铁氧体LaxBa1-xFe12O19超微粉[硕士学位论文].长春:长春科技大学.2000.
    [4]刘兴.现代软磁铁氧体材料的应用及发展方向[J].国际电子变压器2004,12.
    [5]张有纲,黄永杰,罗迪民.磁性材料[M].成都电讯工程学院出版社.1988,10.
    [6]陈俊明.湿法制备铁氧体磁粉的新途径[M].北京:国防工业出版社.2001,3.
    [7]陈益新,龚小成.固态电子学[M].高等教育出版社.1989,10.
    [8] R.C. Pullar, A. K. Bhattacharya.The synthesis and characterization of the hexagonal Z ferrite, Sr3Co2Fe24O41, from a sol-gel precursor [J]. Materials Research Bulletin,2001,36:1531-1538.
    [9]熊钢,杨绪杰. X型六角晶系钡铁氧体纳米晶的制备和表征[J].高等学校化学报,1998,(9):1467-1470.
    [10]何新华,廖石勇,孙洋等.锌铁氧体与二氧化硅复合材料溶胶–凝胶法制备工艺优化研究[J].中国陶瓷,2001,37(5):16-19.
    [11]甘树才,洪广言.镧六方铁氧体LaxBa1 - xFe12O19制备与表征[J].应用化学,2000,17(2):219-221.
    [12] Xiaohui Wang, Longtu Li, Zhenxing Yue, et al. Preparation and magnetic characterization of the ferroxplana ferrites Ba3Co2?xZnxFe24O41[J]. J. Magn. Magn. Mater,2002,246(3):434-439.
    [13]李春,何良惠.镍锌铁氧体粉体合成新方法[J].四川有色金属,2000,(2):49-52.
    [14]徐汉江,陈俊明. ZnxFe3-xO4的制备及性能[J].材料研究学报,1995,9(5):428-433.
    [15] G. B. Mcgarvey, D.G. Owen. Control of morphology and surface properties of nickelferrite[J]. J. Mater. Sci.,1998,(33):35-40.
    [16] S. E. Jacobo, C. Domingo-Pascual, R Rodriguez-Clemente, et al. Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation[J]. J. Mater. Sci.,1997,(32);1025-1028.
    [17]张密林,赵华,冯守华.水热法合成BaNdxFe12-xO19铁氧体的研究[J].稀土,1996,17(2):14-17.
    [18] Darko Makovec. Hydrothermal synthesis of manganese zinc ferrite powders from oxides[J]. J. Ameri. Cera. Soci,2001,82(5):1113-1120.
    [19]汪礼敏.高能机械研磨制备铁氧体的研究[J].粉末冶金技术,1999,17(2):125-129.
    [20]张药西.低温烧结铁氧体粉料的最新进展[J].电子元件与材料,2001,20(1):25-29.
    [21] J.Z. Jiang, P. Wynn, S. Morup, et al. Magnetic structure evolution in mechanically milled nanostructured ZnFe2O4 particles[J]. Nanostructured Materials, 1999, 12:737-740
    [22]赵九蓬,李垚,赫晓东等.自蔓延高温合成Ni-Zn铁氧体反应机制的研究[J].硅酸盐学报. 2002,30(1):9-13.
    [23] Hongguo Zhang, Ji Zhou, Zhenxing Yue, et al. Synthesis of Co2Z hexagonal ferrite with planar structure by gel self-propagaring methods[J]. Materials Letters, 2000,43:62-65.
    [24]岳振星,周济.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J].硅酸盐学报,1999,27(4):466-470.
    [25]杜柯,张宏.柠檬酸络合无焰燃烧法制备尖晶石型LiMn2O4[J].功能材料与器件学报,2002,8(1):31-34.
    [26]徐志刚,程福祥. CoFe2O4纳米材料的燃烧法合成及磁性研究[J].科学通报,2000,45(17):1837-1840.
    [27]洪广言,李红军,越淑英等.超微细粉末的合成及应用[J].仪表材料,1987,18(1):51-58.
    [28]陈祖耀.喷雾热解法制备超细粉末及其应用[J].硅酸盐通报,1988,7(6):54-61.
    [29] V. Pillai,D. O. Shah. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions[J]. J Magn Magn Mater,1996,163(1-2):243-248.
    [30] V. Pillai, P. Kumar, D. O. Shah. Magnetic properties of barium ferrite synthesized using a microemulsion mediated process[J]. J Magn Magn Mater,1992,116:299-304.
    [31]陈亚杰,狄国庆,杨莉玲.尖晶石型铁氧体薄膜的研究现状[J].磁性材料及器件,1999,4:1-9.
    [32]陈亚杰,狄国庆.尖晶石型铁氧体薄膜的研究现状[J].磁性材料及器件,1999,l30(2):1-9.
    [33] M F Gillies, R. Coehoorn, J. B. A. Van Zon. Structure and soft magnetic properties of sputter deposited Mn-Zn ferrite films[J]. J Appl Phys, 1998, 83(11): 6855-6857.
    [34] M. Abe. Ferrite plating :a chemical method preparing oxide magnetic films at 24-100℃,and its applications[J]. Electrochimica Acta,2000,45:3337-3343.
    [35] Tran Hoang Hai, Ha Thi Bich Van, Tran Canh Phong, et al. Spinel ferrite thin-film synthesis by spin-spray ferrite plating[J]. Physica B.2003, 327:194–197
    [36] N. Matsushita,T. Nakamura,M. Abe. Ni-Zn-Co ferrite films prepared at 90℃havingμ″=30 at 3 GHz[J]. IEEE Trans Magn,2002,38(5):3111-3113.
    [37] N. Matsushita,T. Nakamura,M. Abe. Spin-sprayed Ni-Zn-Co ferrite films with highμr″> 100 in extremely wide frequncy range 100MHz-1GHz [J]. J Appl Phys,2003,93(10):7133-7135.
    [38]曾明锋.自蔓延高温合成Ni-Zn铁氧体[硕士学位论文].武汉:武汉理工大学.2004.
    [39]周志刚编.铁氧体磁性材料[M].北京:科学出版社. 1981.
    [40]李荫远,李国栋编.铁氧体物理学[M].北京:利学出版社. 1978.
    [41] M.A.安德森,A.J.鲁宾主编.水溶液吸附化学[M].北京:科学出版社.1989,3.
    [42] M. Abe. Ferrite plating: a chemical method preparing oxide magnetic films at 24-100℃,and its applications[J]. Electrochimica Acta,2000,45:3337 -3343.
    [43]南京大学化学实验教学组编.大学化学实验[M].北京:高等教育出版社.1999,9.
    [44]唐伟忠著.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社.1998,3.
    [45]张秀成,何华辉.带线法的测试范围和误差分析.华中理工大学学报,1999,27(2):67-69.
    [46] N. Matsushita, M. Tada, M. Shigemori, et al. High Deposition Rate Obtained for Spin-Sprayed Ni-Zn Ferrite Films Without Using Ammonia Ions[J]. IEEE Trans.Magn.,2004,40(4):2817-2819.
    [47]姜晓霞,沈伟著.化学镀理论及实践[M].北京:国防工业出版社.2000,6.
    [48]安茂忠编.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社.2004,8.
    [49]赵世民编.表面活性剂-原理、合成、测定及应用[M].北京:中国石化出版社.2005,9.
    [50] M. Abe, Y. Tamaura, Y. Goto, et al. High speed deposition of high-quality ferrite films from aqueous solution at low temperatures(≤90℃) [J]. J Appl Phys, 1987,61(8):3211-3213.
    [51]祁景玉编. X射线结构分析[M].上海:同济大学出版社.2003:4.
    [52] N. Matsushita, T. Nakamura, M. Abe. In-Plane Magnetic Anisotropy Induced in Spin-Sprayed Ni–Zn–Co Ferrite Films Exhibiting Strong Magnetic Loss at Gigahertz Range[J].IEEE Trans Magn,2003,39(5):3127-3129.
    [53] Koichi Kondo, Tatsuya Chiba, Shinsuke Ando,et al. Cole–Cole Impedance Analysis on Spin Sprayed Ni–Zn–Co Ferrite Films Exhibiting Strong Magnetic Loss in Gigahertz Range[J]. IEEE Trans Magn,2003,39(5):3130-3132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700