太赫兹相干层析成像及相关功能器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹成像技术及其功能器件的研究是目前太赫兹研究领域的热门课题,在太赫兹检测及通信的应用中具有极其重要的研究价值。本论文主要针对太赫兹成像技术及调制技术进行了实验和理论研究,尤其是对太赫兹相干层析成像技术进行了系统的介绍与分析。通过与现有的太赫兹三维成像技术相对比,我们所提出的太赫兹相干层析成像技术的纵向分辨率有了明显的提高,达到1001μm。此外,我们对掺镁近化学计量比铌酸锂晶体和石墨烯材料在太赫兹波段的光学性能进行了研究;通过光泵浦的方法,我们还研究了铌酸锂晶体及石墨烯材料在太赫兹波段的调制特性,为太赫兹调制器及探测器的研究提供了一定的实验依据。本论文主要研究内容如下:
     (1)研究了CO2激光泵浦CH3OH气体太赫兹激光器的超精细输出光谱。实验结果中在中心频率两侧均匀的分布其它频率,相邻两个频率之间的间隔为0.15THz。通过对受激辐射过程的理论分析,得出能级分裂导致是导致这一实验现象的直接原因这一结论。
     (2)分析了不同焦距的离轴抛物面镜对太赫兹光束的聚焦效果。结果表明,2.52THz频率的太赫兹激光经过一寸有效焦距的离轴抛物面镜聚焦后在焦点处的光斑直径为0.33mm,小于两寸抛物面镜的聚焦效果,在太赫兹成像应用中也能得到更高的横向分辨率。
     (3)与光学相干层析成像技术相结合,我们提出了一种太赫兹相干层析成像技术。该技术的纵向分辨率可达100μm以下,这一实验结果高于太赫兹飞行时间成像技术和合成孔径成像技术。此外,该技术具有系统结构简单、紧凑等特点,在高精度的材料无损探伤领域具有及其巨大的应用前景。
     (4)使用中心波长为532nm的连续激光泵浦掺镁近化学计量比铌酸锂晶体,通过太赫兹时域光谱系统测量了晶体吸收系数在太赫兹波段的调制特性,调制深度达15%。进一步的理论分析指出,外光场泵浦对铌酸锂晶体在太赫兹波段吸收系数的调制特性与光泵过程中OH-离子的吸收及光致畴反转过程有关。铌酸锂晶体的光电导损耗会随着泵浦光强的增加而增加,而OH-对太赫兹的吸收及光致畴反转过程会使得铌酸锂晶体的吸收系数在一定泵浦光强范围内出现下降。这一实验结果对基于铌酸锂的太赫兹调制器件研究具有一定参考价值。
     (5)使用中心波长为1064nm的激光泵浦,实现了石墨烯电导率在太赫兹波段的调制特性。根据实验测量结果,计算了光泵过程中载流子动量弛豫时间随泵浦光强的变化曲线。结果显示出载流子动量弛豫时间随泵浦光强的增加而减小,并且变化速度先快后慢,呈现出阈值现象。进一步的实验研究表明,这一阈值与石墨烯的层数有关,并且单层石墨烯的阂值小于六层石墨烯样品的阈值。该实验结果为研究石墨烯在太赫兹波段的放大及调制特性奠定了良好的实验及理论基础。
Terahertz imaging technology and functional device attract great interest in the past decades, and have extremely important research value in the application of terahertz detection and communication. In this thesis we experimentally and theoretically studied the terahertz imaging and modulation technology, and especially introduced the terahertz coherence tomography system in details. The vertical resolution of terahertz coherence tomography is100μm, which is obviously improved compared with existing terahertz3D imaging technology. Furthermore, we studied the optical properties of Magnesium-Doped Near-Stoichiometric Lithium Niobate and graphene in terahertz frequency range. By applying an external optical pump field, we researched the modulation properties of this Lithium Niobate crystal and graphene in terahertz range, and should be helpful for the research of terahertz modulator and detector. The main content is listed as follows:
     (1) We studied the hyperfine spectrum of the terahertz laser which was generated by the CO2laser to pump the CH3OH gas. From the results we could found that there are additional frequencies on two sides of the center frequency, and the interval of two adjacent frequencies is0.15THz. The theoretical analysis of stimulated emission process revealed that this experimental result was caused by the reason of energy level splitting.
     (2) We experimentally analysed the spot size of terahertz after focused by different effective focal length of off-axis parabolic mirror. The results indicated that the2.52THz laser can be focused to the diameter of0.33mm by the off-axis parabolic mirror with effective focal length of one inch, and it is smaller than the result of the off-axis parabolic mirror with effective focal length of two inch. This analysis applied an approach to improve the lateral resolution of terahertz imaging result.
     (3) According to optical coherence tomography, we proposed a new terahertz imaging technology-terahertz coherence tomography. Using the medium-pressure mercury Arc lamp as the terahertz source, this imaging technology's vertical resolution could be smaller than100μm. The result is much smaller than the time-of-flight imaging method and synthetic aperture imaging method in terahertz. In addition, the system based on this technology is very simple and compact, and it has great prospect in the high-precision nondestructive detection application field.
     (4) By applying an external laser with center wavelength of532nm to pump Magnesium-Doped Near-Stoichiometric Lithium niobate crystal, we measured the modulation properties of its absorption coefficient in terahertz range by using the terahertz time-domain spectroscopy system, and the modulation depth reached to15%. Further theoretical analysis pointed out that the modulation properties were relation to the OH-absorption of terahertz and the light-induced domain reversal in crystal. The Lithium niobate crystal's conduction loss increased with optical pump intensity increasing, however, the OH-absorption of terahertz and light-induced domain reversal would decrease the absorption coefficients in certain pump intensity range. This experiment result was valuable for the research of Lithium niobate-based terahertz modulator.
     (5) Using the laser with center wavelength of1064nm as pumping source, we studied the graphene's conduction modulation properties. We calculated the functional curve between the carrier's momentum relaxation time and the external optical pump intensity. The result presented a threshold behavior. Further experiment studies demonstrated that the threshold value is dependent on the layer numbers of graphene, and the monolayer graphene's result was smaller than six layer graphene's, which satisfied very well with theoretical prediction. This result laid a good experimental and theoretical foundation for the study of terahertz amplifier and modulator.
引文
[1]T. K. Ostmann, K. Pierz, G. Hein, et al. Audio signal transmission over THz communication channel using semiconductor modulator. Electron. Lett.,2004,40(2): 124-126
    [2]T. Nagatsuma. Exploring sub-terahertz waves for future wireless communications. 31th IRMMW-THz Conference, Shanghai,2006, PL-4:4
    [3]R. Kersting, G. Strasser, K. Unterrainer. Terahertz phase modulator. Electron. Lett., 2000,36(13):1156-1158
    [4]H. T. Chen, W. J. Padilla, J. M. O. Zide, et al. Active terahertz metamaterials devices. Nature,2006,444:597-600
    [5]Jiusheng Li. Terahertz modulator using photonic crystals. Opt. Commun.,2007, 269(1):98-101
    [6]W. J. Padilla, A. J. Taylor, C. Highstrete, et al. Dynamical electric and magnetic metamaterials response at terahertz frequencies. Phys. Rev. Lett.,2006,96(10): 107401-107401-4
    [7]Z. Ghattan, T. Hasek, R. Wilk, et al. Sub-Terahertz on-off switch based on a two dimensional photonic crystal infiltrated by liquid crystal. Opt. Commun.,2008, 281(18):4623-4625
    [8]O. Paul, C. Imhof, B. lgel, et al. Polarization independent active metamaterial for high frequency terahertz modulation. Opt. Express,2009,17(2):819-827
    [9]V. Giannini, A. Berrier, S. A. Maier, et al. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt. Express,2010,18(3):2797-2807
    [10]B. B. Hu, M. C. Nuss. Imaging with terahertz waves, Opt. Lett.,1995,20(16): 1716-1718
    [11]Liangliang Zhang, Nick Karpowicz, Cunlin Zhang et al. Real-time nondestructive imaging with THz waves. Opt. Commun.,2008,281(6):1473-1475
    [12]许景周,张希成.太赫兹科学技术与应用.北京:北京大学出版社,2007.125-126
    [13]Marijke Vandewal, Roel Heremans. Marc Acheroy. Synthetic aperture signal processing for high resolution 3d image reconstruction in the thz-domain. Proceedings of 17th European Signal Processing Conference (EUSIPCO),2009. 744-748
    [14]张存林,牧凯军.太赫兹波普与成像.激光与光电子学进展,2010,47,023001-023001-14
    [15]Bradley Ferguson, Shaohong Wang, Doug Gray, et al. T-ray computed tomography. Opt. Lett.,2002,27(15):1312-1314
    [16]孙非,薛平,高渝松等.光学相干层析成像的图像重建.光学学报,2000,20(8):1043-1046
    [17]陈炜,薛平,阵贬廷.光学相干层析术中的图像处理研究.量子电子学报,2001,18(4):306-308
    [18]安源,姚建铨,王鹏等.OCT图像散斑的形成机理和消除方法.光电子·激光,2003,14(3):320-323
    [19]安源,姚建铨.使用混合高渗制剂提高OCT的探测深度和清晰度.天津大学学报,2005,38(10):927-930
    [20]胡海峰,姚建铨,张帆.利用Montecarlo模拟技术研究OCT图像对比度.光学精密工程,2004,12(1):94-99
    [21]俞晓峰,丁志华,陈宇恒等.光纤型光学相干层析成像系统的研制.光学学报,2006,26(2):235-238
    [22]周琳,丁志华,俞晓峰.利用变迹术和相干门相结合实现光学相干层析成像术轴向超分辨.光学学报,2005,25(9):1181-1155
    [23]陈宇恒,丁志华,俞晓峰等.基于数字希尔伯特变换的OCT信号处理与系统实现.光电工程,2006,33(4):31-34
    [24]曾绍群,骆清铭,刘贤德等.光学相干层析系统相干传递函数研究.光学学报,1996,16(3):340-344
    [25]周振宇,杨宏宇,龚辉等.基于希尔伯特黄变换的近红外脑功能成像信号分析.光学学报,2007,27(2):307-312
    [26]邓勇,张喧轩,罗召洋等.融合结构先验信息的稳态扩散光学断层成像重建算法研究.物理学报,2013,62(1):014202~014202-6
    [27]X. C. Zhang. Terahertz wave imaging:horizons and hurdles. Phys. Med. Biol.,2002, 47(21):3667-3677
    [28]D. M. Mittleman, M. Gupta, R. Neelamani, et al. Recent advances in terahertz imaging. Appl. Phys. B,1999,68(6):1085-1094
    [29]S. Y. Huang, P. C. Ashworth, W. C. Kan, et al. Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt. Express,2009,17(5):3848-3854
    [30]W. Withayachumnankul, G. M. Png, X. X. Yin, et al. T-ray sensing and imaging. Proceedings of the IEEE,2007,95(8):1528-1558
    [31]T. Y. Chang, T. J. Bridges. Laser action at 452,496 and 541mm in optically pumped CH3F. Opt. Commun,1970,1(9):423-426
    [32]M. Yamanaka. Optically pumped gas lasers-A wavelength table of laser lines. Rev. Laser Eng.,1976,3:253-294
    [33]J. D. Edward, P. D. Coleman. Assignments of the High Power Optically Pumped CW Laser Lines of CH30H. IEEE J. Quant. Electron.,1977,13(6):485-490
    [34]Q. Wu, M. Litz, X. C. Zhang. Broadband Detection Capability of Electro-Optic Field Probes. Appl. Phys. Lett.,1996,68(21):2924-2926
    [35]Zhiping Jiang, Xi-Cheng Zhang. Terahertz imaging via electrooptic effect. IEEE Trans. Microw. Theory Tech.,1999,47(12):2644-2650
    [36]Zhiping Jiang, X.-C. Zhang. Electro-optic measurement of THz field pulses with a chirped optical beam. Appl. Phys. Lett.,1998,72(16):1945-1947
    [37]P. C. M. Planken, Han-Kwang Nienhuys, Huib J. Bakker, et al. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B,2001,18(3):313-317
    [38]Nobuo Nishimiya, Yoko Yamaguchi, Yoshinobu Ohrui, et al. Frequency measuring system using mirror gap stabilized Fabry-Perot interferometer. Spectrochim. Acta A, 2004,60(3):493-504
    [39]M. R. Stone, M. Naftaly, R. E. Miles, et al. Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Perot etalon. J. Appl. Phys.,2005,97(10):103108-103108-4
    [40]Li-Jin Chen, Tzeng-Fu Kao, Ja-Yu Lu, et al. A simple terahertz spectrometer based on a low-reflectivity Fabry-Perot interferometer using Fourier transform spectroscopy. Opt. Express,2006,14(9):3840~3846
    [41]Yun-Shik Lee, W. C. Hurlbut, K. L. Vodopyanov, et al. Generation of multicycle terahertz pulses via optical rectification in periodically inverted GaAs structures. Appl. Phys. Lett.,2006,89(18):181104-181104-3
    [42]J. L. Johnson, T. D. Dorney, D. M. Mittleman. Interferometric imaging with terahertz pulses. IEEE J. Sel. Top. Quant. Electron.,2001,7(4):592-599
    [43]Wenxin Liu, Dai Wu, YingxinWang, et al. Terahertz frequency measurement of far-infrared laser with an improvement of Martin-Puplett interferometer. Nucl. Instrum. Methods Phys. Res. A,2010,614(2):313-318
    [44]H. P. M. Pellemans, J. Burghoom, T. O. Klaassen, et al. Injection seeding of a pulsed far infrared molecular gas laser. Infrared Phys. Technol.,1996,37(6):635-642
    [45]Li-Hong Xu, R. M. Lees, E. C. C. Vasconcellos. Methanol and the optically pumped far-infrared laser. IEEE J. Quant. Electron.,1996,32(3):392-399
    [46]E. J. Danielewicz, P. D. Coleman. Assignments of the high power optically pumped CW laser lines of CH3OH. IEEE J. Quantum Electron.,1977,13(6):485-490
    [47]B.Ferguson, S. H.Wang, D. Gray, D. Abbot, et al. T ray computed tomography. Opt. Lett.,2002,27(15):1312-1314
    [48]Q. Chen, Z. P. Jiang, G. X. Xu, et al. Near-field terahertz imaging with a dynamic aperture. Opt. Lett.,2000,25(15):1122-1124
    [49]Xinke Wang, Lei Hou, Yan Zhang. Continuous-wave terahertz interferometry with multiwavelength phase unwrapping. Appl. Opt.,2010,49(27):5095-5102
    [50]A. B. Ruffin, J. Decker, L. S. Palencia, et al. Time reversal and object reconstruction with single-cycle pulses. Opt. Lett.,2001,26(10):681-683
    [51]K. Y. Kim, B. Yellampalle, G. Rodriguez, et al. Single-shot, interferometric, high-resolution, terahertz field diagnostic. Appl. Phys. Lett.,2006,88(4):041123-041123-3
    [52]H. Kitahara, M. Tani, M. Hangyo. Three-Dimensional Tomographic Imaging in Terahertz Region. Japan. J. Appl. Phys.,2010,49(2):020207-020207-3
    [53]C. A. Weg, W. V. Spiegel, B. Hils, et al. Fast active THz camera with range detection by frequency modulation. Proceedings of SPIE,2009.7215-7219
    [54]C. A. Weg, W. V. Spiegel, R. Henneberger, et al. Fast Active THz Cameras with Ranging Capabilities. J. Infrared Milli. Terahz Waves,2009,30(12):1281-1296
    [55]D. Huang, E. A. Swanson, C. P. Lin, et al. Optical Coherence Tomography. Science, 1991,254(5035):1178-1181
    [56]X. Clivaz, F. M. Weible, R. P. Salatrhe, et al. High-resolution reflectometry in biological tissues. Opt. Lett.,1992,17(1):4-6
    [57]E. A. Swanson, D. Huang, M.R. Hee, et al. High-speed optical coherence domain reflectometry. Opt. Lett.,1992,17(2):151-153
    [58]J. M. Schmitt, A. knuttel, R. F. Bonner. Measurement of optical propertye of biological tissues by low coherent reflectometry. Appl. Opt.,1993,32(30):6032-6042
    [59]E. Beaurepaire, L. Moreaux, F. Amblard, et al. Combined scanning optical coherence and two-photon-excited fluorescence microscopy. Opt. Lett.,1999,24(14): 969-971
    [60]L. V. Wang, G. Ku. Frequency-swept ultrasound-modulated optical tomography of scattering media. Opt. Lett.,1998,23(12):975-977
    [61]S. Wang, X. C Zhang. Pulsed terahertz tomography. J. Phys. D:Appl. Phys.,2004, 37(4):R1-R36
    [62]Jun Takayanagi, Hiroki Jinno, Shingo Ichino, et al. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Opt. Express,2009,17(9): 7549-7555
    [63]马宾,隋青美,徐健.一种新型的OCT成像方案设计及其应用.微计算机信息,2008,24(21):270-272
    [64]F. Bradley,张希成.太赫兹科学与技术研究回顾.物理,2003,32(5):286-293
    [65]X. Ding, S. M. Zhang, H. M. Ma, et al. Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate. Chin. Phys. B,2008,17(1):211-216
    [66]X. Ding, Q. Sheng, N. Chen, et al. High efficiency continuous-wave tunable signal output of an intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate. Chin. Phys. B,2009,18(10):4314-4318
    [67]S. K. Shen, A. Y. Yang, L Zuo, et al. Temperature-dependent second harmonic generation process based on an MgO-doped periodically poled lithium niobate waveguide. Chin. Phys. B,2011,20(10):104206-104206-4
    [68]Y. Furukawa, K. Kitamura, S. Takekawa, et al. Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics. Opt. Lett.,1998,23(24):1892-1894
    [69]Y. Furukawa, K, Kitamura, A. Alexandrovski, et al. Green-induced infrared absorption in MgO doped LiNbO3. Appl. Phys. Lett.,2001,78(14):1970-1972
    [70]L. Palfalvi, J. Hebling, G. Almasi, et al. Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects. J. Opt. A:Pure Appl. Opt., 2003,5(5):S280~S283
    [71]W. J. Wang, Y. F. Kong, H. D. Liu, et al. Light-induced domain reversal in doped lithium niobate crystals. J. Appl. Phys.,2009,105(4):043105-043105-4
    [72]X. J. Chen, D. S. Zhu, B. Li, et al. Fast photorefractive response in strongly reduced near-stoichiometric LiNbO3 crystals. Opt. Lett.,2001,26(13):998-1000
    [73]X. J. Chen, B. Li, J. J. Xu, et al. Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O. J. Appl. Phys.,2001,90(3): 1516-1520
    [74]L. Galambos, S. S. Orlov, L. Hessenlink, et al. Doubly doped stoichiometric and congruent lithium niobate for holographic data storage. J. Cryst. Growth.,2001, 229(1-4):228-232
    [75]F. Abdi, M. Aillerie, P. Bourson, et al. Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition. J. Appl. Phys.,1998, 84(4):2251-2254
    [76]孙敦陆,杭寅,张连瀚等.助熔剂提拉法生长化学计量比LiNbO3晶体.人工晶体学报,2002,31(3):314-317
    [77]Z. Y. Li, J. Q. Yao, D. G. Xu, et al. High-power terahertz radiation from surface-emitted THz-wave parametric oscillator. Chin. Phys. B,2011,20(5):054207-054207-5
    [78]钟维烈.铁电体物理学.北京:科学出版社,1996.1-3
    [79]S. C. Abrahams, W. C. Hamilton, J. M. Reddy. Etude par correlation angulaire y-y perturbee des aspects statiques et dynamiques de la structure du heptafluorohafniate de sodium. J. Phys. Chem. Solids,1966,37(11):1019-1029
    [80]S. C. Abrahams, E. Buehler, W. C. Hamilton, et al. Ferroelectric lithium tantalate—Ⅲ. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K. J. Phys. Chem. Solids,1973,34(3):521-532
    [81]朱登松,陈晓军,李兵等.气相交换平衡技术在获得近化学计量比LiNbO3晶体中的应用.南开大学学报,2002,35(2):23-27
    [82]K. Kitamura, J. K. Yamamoto, I. iN, et al. Stoichiometric LiNbO3 Single Crystal Growth by Double Crucible Czochralski Method Using Automatic Powder Supply System. J. Cryst. Growth.,1992,116(3-4):327-332
    [83]G. I. Malovichko, V. G. Grachev, L. P. Yurchenko, et al. Improvement of LiNbO3 Microstructure by Crystal growth with Potassium. Physica Status Solidi (a),1992, 133(1):K29-K32
    [84]K. Polgar, A. Peter, L. Kovacs, et al. Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method. J. Cryst. Growth.,1997,177(3-4): 211-216
    [85]P. F. Bordui, R. G. Norwood, D. H. Jundt, et al. Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys.,1992,71(2):875-879
    [86]S. Brian, miniature terahertz time-domain spectrometry:[Ph.D paper]. Rensselaer Polytechnic Institute:Rensselaer Polytechnic Institute Library,2008
    [87]L. Palfalvi, J. Hebling, J. Kuhl, et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range. J. Appl. Phys.,2005,97(12):123505-123505-6
    [88]Y. C. Chen, L. Wu, Y. P. Chou, et al. Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate. Mater.Sci. Eng. B.,2000,76(2):95-100
    [89]K. M. Johnson. Variation of Dielectric Constant with Voltage in Ferroelectrics and Its Application to Parametric Devices. J. Appl. Phys.,1962,33(9):2826-2831
    [90]R. G. Smith, D. B. Fraser, R. T. Denton, et al. Correlation of Reduction in Optically Induced Refractive-Index Inhomogeneity with OH Content in LiTaO3 and LiNbO3. J. Appl. Phys.,1968,39(10):4600-4602
    [91]J. M. Cabrera, J. Olivares, M. Carrascosa, et al. Hydrogen in lithium niobate. Adv. Phys.,1996,45(5):349-392
    [92]M. Wohlecke, L. Kovacs. OH- ions in Oxide Crystals. Crit. Rev. Solid State Mater. Sci.,2001,26(1):1-86
    [93]I. W. Kim, B. C. Park, B. M. Jin, et al. Characteristics of MgO-doped LiNbO3, crystals. Materials Lett.,1995,24(1-3):157-160
    [94]U. Heinemeyer, M. C. Wengler, K. Buse. Annihilation of the OH absorption due to domain inversion in MgO-doped lithium niobate crystals. Appl. Phys. Lett.,2006, 89(11):112910-112911
    [95]C. A. Miller. Hysteresis loss and dielectric constant in barium titanate. Brit. J. Appl. Phys.,1967,18(12):1689-1697
    [96]L. Wu, F. R. Ling, Z. G. Zuo, et al. Far-infrared dispersion of the complex dielectric constant in ferroelectric near-stoichiometric LiNbO3:Ce. J. Opt.,2011,13(10): 105501-105501-4
    [97]F. S. Chen. Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3. J. Appl. Phys.,1969,40(8):3389-3396
    [98]L. Wu, F. R. Ling, Z. G. Zuo, et al. The dielectric behaviour of doped near-stoichiometric lithium niobate in the terahertz range. Chin. Phys. B,2012,21(1): 017802-017802-6
    [99]W. D. Johnston. Optical index damage in LiNbO3 and other pyroelectric insulators. J. Appl. Phys.,1970,41(8):3279-3285
    [100]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric Field Effect in Atomically Thin Carbon Films. Science,2004,306(5696):666-669
    [101]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200
    [102]A. H. Castro, F. Guinea, N. M. R. Peres, et al. The electronic properties of graphene. Rev. Mod. Phys.,2009,81(1):109-162
    [103]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett.,2008,100(1):016602-016602-4
    [104]K. S. Novoselov, Z. Jiang, Y. Zhang, et al. Room-Temperature Quantum Hall Effect in Graphene. Science,2007,315(5817):1379
    [105]Y. Pan, D. X. Shi, H. J. Gao. Formation of graphene on Ru(0001) surface. Chin. Phys. B.,2007,16(11):3151-3153
    [106]唐超,吉路,孟利军等.6H-SiC (0001)表面graphene逐层生长的分子动力学研究.物理学报,2009,58(11):7815-7820
    [107]韩鹏昱,刘伟,谢亚红等.石墨烯与太赫兹科学.物理,2009,38(6):395-400
    [108]H. Y. Choi, F. Borondics, D. A. Siegel, et al. Ultrafast Terahertz Studies of Dirac Fermion Dynamics in Graphene. IEEE Infrared, Millimeter, and Terahertz Waves, 34th International Conference,2009.1-2
    [109]A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater.,2007,6:183-191
    [110]F. T. Vasko, V. Ryzhii. Photoconductivity of intrinsic graphene. Phys. Rev. B,2008, 77(19):195433-195433-8
    [111]C. Berger, Z. Song, T. Li, et al. Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys.Chem., 2004,108(52):19912-19916
    [112]F. Rana. Graphene Terahertz Plasmon Oscillators. IEEE Trans. Nanotechnol.,2008, 7(1):91-99
    [113]A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, et al. Terahertz Laser with Optically Pumped Graphene Layers and Fabri-Perot Resonator. Appl. Phys. Express,2009, 2(9):092301-092301-3
    [114]V. Ryzhii, V. Mitin, M. Ryzhii, et al. Device Model for Graphene Nanoribbon Phototransistor. Appl. Phys. Express,2008,1:063002-063002-4
    [115]V. Ryzhii, M. Ryzhii. Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys. Rev. B,2009,79(24):245311-245318
    [116]Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, et al.100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science,2010,327(5966):662
    [117]J. Zhao, G. Y. Zhang, D. X. Shi. Review on graphene-based strain sensors. Chin. Phys. B,2013,22(5):057701-057701-9
    [118]T. Mueller, F. Xia, P. Avouris. Graphene photodetectors for high-speed optical communications. Nat. Photonics,2010,4(10):297~301
    [119]M. M. Lu, J. Yuan, B. Wen, et al. Carbon materials with quasi-graphene layers:the dielectric, percolation properties and the electronic transport mechanism. Chin. Phys. B,2013,22(3):037701-037701-6
    [120]Y. M. Lin, K. A. Jenkins, G. A. Valdes, et al. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Lett.,2009,9(1):422-426
    [121]F. Xia, T. Mueller, M. R. Golizadeh, et al. Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Lett.,2009,9 (3):1039-1044
    [122]C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, et al. Graphene, the new nanocarbon. J. Mater. Chem.,2009,19:2457-2469
    [123]C. L. Kane. Materials Science:Erasing electron mass. Nature,2005,438:168-170
    [124]P. Avouris, Z. Chen, V. Perebeinos. Carbon-based electronics. Nat. Nanotech.,2007, 2:605-615
    [125]R. R. Nair, P. Blake, A. N. Grigorenko, et al. Fine structure constant defines transparency of graphene. Science,2008,320(5881):1308-1308
    [126]C. Lee, X. D. Wei, J. W. Kysar, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008,321(5887):385-388
    [127]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric Field Effect in Atomically Thin Carbon Films. Science,2004,306(5696):666-669
    [128]李利民.Si和SiO2/Si衬底上石墨烯的生长和结构表征:[硕士学位论文].合肥:中国科学技术大学,2010
    [129]X. S. Li, W. W. Cai, J. H. An, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324(5932):1312-1314
    [130]徐秀娟,秦金贵,李振.石墨烯研究进展.化学进展,2009,21(12):2559-2567
    [131]M. Ryzhii, V. Ryzhii. Injection and Population Inversion in Electrically Induced p-n Junction in Graphene with Split Gates. Jpn. J. Appl. Phys.,2007,46(8):L151-L153
    [132]Y. W. Son, M. L. Cohen, S, G. Louie. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett.,2006,97(21):216803-216806
    [133]P. A. George, J. Strait, J. Dawlaty, et al. Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene. NanoLetters,2008,8(12):4248-4251
    [134]K. S. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A.,2005,102(30):10451-10453
    [135]J, M, Dawlaty, S. Shivaraman, J. Strait, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett.,2008, 93(13):131905-131907
    [136]A. Satou, F. T. Vasko, V. Ryzhii. Nonequilibrium carriers in intrinsic graphene under interband photoexcitation. Phys. Rev. B,2008,78(11):115431-115441
    [137]V. Ryzhii, M. Ryzhii, T. Otsuji. Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys.,2007,101(8):083114-083114-4
    [138]K. F. Mak, M. Y. Sfeir, Y. Wu, et al. Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett.,2008,101(19):196405-196408
    [139]H. C. Zhang, L. Deng, J. H. Wen, et al. Ultrafast dephasing of interband transitions in semiconductors. Science in China Ser. A,2001,44(10):1340-1348
    [140]D. Zanato, S. Gokden, N. Balkan, et al. The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/ AlGaN. Semicond. Sci. Technol.,2004,19(3):427-432
    [141]M. Ryzhii, V. Ryzhii. Population inversion in electrically and optically pumped graphene. Physica E.,2007,40(2):317-320
    [142]Y. Zheng, T. Ando. Hall conductivity of a two-dimensional graphite system. Phys. Rev. B,2002,65(24):245420-245430
    [143]V. P. Gusynin, S. G. Sharapov. Transport of Dirac quasiparticles in graphene:Hall and optical conductivities. Phys. Rev. B,2006,73(24):245411-245428
    [144]V. Ryzhii, M. Ryzhii, T. Otsuji. Population inversion of photoexcited electrons and holes in graphene and its negative terahertz conductivity. Phys. Stat. Sol. (c),2008, 5(1):261-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700