正交频分复用系统信号优化设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)以其高频谱利用率和对抗频率选择性衰落的能力,成为未来无线通信系统的候选技术之一。但OFDM具有峰值功率和平均功率的比值(Peak-to-Average Power Ratio,PAPR,简称峰均比)过高的缺点:当具有高峰值的信号通过放大器时会产生非线性失真,恶化传输性能。针对上述缺点,本文重点研究了OFDM系统中峰均比问题,从而对传输信号进行优化设计。
     本文首先介绍了OFDM通信系统的特点和峰均比优化的研究现状,总结了需要进一步解决的问题,并指出了本文的研究内容。
     本文的第二部分对OFDM信号的峰均比进行了理论分析和数学推导,阐明了峰均比的定义、分布以及相关建模,为后面的章节提供了理论依据。
     部分传输序列法(Partial Transmit Sequence,PTS)是一类能够有效控制OFDM信号峰均比的非畸变算法,但其具有计算复杂度偏高的缺点。本文的第三部分提出了一种低复杂度的改进算法:通过数学推导,揭示了部分传输序列所生成的备选信号之间的相关性,并提出利用信号的相关性来简化备选信号的计算。理论分析和仿真结果表明新算法能够有效降低传统算法的计算复杂度,且不会造成峰均比抑制性能的损失。此外,本文还提出一种能够提高峰均比抑制性能的改进算法:削弱低峰均比信号的处理复杂度,并且强化对高峰均比信号的抑制处理,从而在计算复杂度和峰均比控制性能间取得更好的折衷。部分传输序列的另一个缺点在于需要传输额外的副信息,影响了频谱效率。针对这个问题,本文还提出了一种降低副信息传输量的改进算法。
     限幅法是目前应用较为广泛的一类预畸变峰均比抑制算法,但其会引入额外的限幅噪声,从而对数据信号和导引符号造成干扰,恶化传输性能。现有研究往往没有考虑限幅噪声对于导引符号辅助信道估计的影响。本文的第四部分提出了一种适用于限幅OFDM系统的信道估计优化算法:将数据信号和导引符号分别处理,并滤除导引符号位置的限幅噪声,从而优化接收端的信道估计,提升系统的传输性能。在新算法的基础上,本文还提出了利用迭代处理进一步优化信道估计性能。同时本文还提出利用新算法改进导引符号辅助频偏估计的性能。此外,针对传统的迭代限幅滤波算法,本文提出一种具有更强峰均比抑制能力的改进算法:该算法在同样的迭代次数和计算复杂度下,可以取得更佳的峰均比抑制性能。
     最后,本文研究了联合多址的OFDM系统的峰均比抑制:对于正交频分复用多址系统,比较了各种子载波分配方式下的峰均比分布,并针对交织OFDMA系统提出了一种低复杂度的峰均比抑制方法;对于联合交织多址的OFDM系统,分析了交织多址OFDM信号的峰均比分布,并提出一种基于可变交织器设计的峰均比抑制方法。
Orthogonal Frequency Division Multiplexing (OFDM) is one of the promising techniques for future wireless communication systems, since it is with high spectrum efficiency and robustness to the frequency selective fading environments. However, OFDM has the drawback of high peak-to-average power ratio (PAPR) . In this case, when OFDM signals with high peak values pass through high power amplifier, nonlinear distortions will be introduced so as to degrade the transmission performance. According to the problems methioned above, this dissertation focuses on PAPR reduction techniques for OFDM systems, so as to design the optimal transmission signal.
     Firstly, the dissertation introduces the features of OFDM systems and the research status of PAPR reduction techniques, summarizes the fundamental problems needed to be solved, and points the main research contents of this dissertation.
     Secondly, the dissertation makes a theoretical analysis and mathematic calculation on the PAPR of OFDM signals, and clarifies the definition, the distribution and the models of PAPR, so as to make a theoretical base for the latter sections.
     Partial transmit sequence (PTS) is a class of distortless method for effectively controlling the PAPR of OFDM signals. However, it has the drawback of high computational complexity. On the third part of the dissertation, an improved method with low complexity is proposed. In the improved method, the correlationships among the candidate signals generated from PTS are explored and utilized for simplifying the compuatation for candidate signals. Theoretical analysis and simulation results show that the proposed method can effectively reduce the computational complexity without loss of PAPR reduction performance. Furthermore, an improved method with more PAPR reduction performance is proposed. In the proposed method, the processing for high PAPR signals is enhanced while the processing for low PAPR signlas is simplified, so as to make a better tadeoff between PAPR reduction performance and computational complexity. Another drawback of PTS is the desire of extra side information so as to influence the spectral efficiency. To solve this problem, an improved method with less side information amount is proposed.
     Clipping is a popular method to control the PAPR with distortions, but it introduces additional clipping noise, so as to distort the data and pilot symbols and degrade the system performance. However, most of current reserches do not consider the influence to pilot-aided cannel estimation by clipping noise. On the fourth part of the dissertation, a new method is proposed to improve the channel estimation performance in clipped OFDM systems. In the proposed method, the data and pilot symbols are divided for individual processing, and the clipping noise on the positions of pilot symbols is filtered directly. In this case, the channel estimation at the receiver is improved, and the system performance of clipped OFDM systems is also enhanced. Based on the new method, an iterative method is proposed to further the channel estimation performance. Meanwhile, for the proposed method, the improvement of pilot-aided carrier frequency offset estimation performance is also considered. Furthermore, for traditional iterative clipping and filtering method, an improved method with more PAPR reduction is proposed. The new method can achieve better PAPR reduction performance on the same number of iterations and complexity as traditional method.
     Finally, the dissertation investigates the PAPR reduction of multiple access combined OFDM systems. For orthogonal frequency division multiplexing access (OFDMA) system, the PAPR of OFDMA signals with different subcarrier allocation styles is compared, and a low complexity PAPR reduction method for interleaved OFDMA is proposed. For interleave division multiple access (IDMA) combined OFDM system, the PAPR of the transmitted signal is analyzed, and a PAPR reduction method based on variable interleaver designing is proposed.
引文
[1] Chang R. W., Gibby R. A. A Theoretical study of performance of an orthogonal multiplexing data transmission scheme [J]. IEEE Transactions on Communications, 1968, 16(4): 529-540.
    
    [2] Weinstein S. B., Ebert P. M. Data transmission by frequency-division multiplexing using the discrete fourier transform [J]. IEEE Transactions on Communications, 1971, 19 (5): 628-634.
    [3] 3GPP TR 25.814 V7.0.0 (2006-06). Technical specification group radio access network: Physical layer aspects for evolved universal terrestrial radio access (UTRA) (Release 7).
    [4] Bolcskei H, Paulraj A J, Hari K V S. Fixed broadband wireless access: state of the art, challenges, future directions [J]. IEEE Communication Magazine, 2001, 38(1):100-108.
    [5] Sampath H, Talwar S, Tellado J, et al. A fourth-generation MIMO-OFDM broadband wireless system: Design, performance, field trial results [J]. IEEE Communication Magazine, 2002, 38(9): 143-149.
    [6] Stuber G L, Barry J R, Mclaughlin S W, et al. Broadband MIMO-OFDM wireless communications [J], Proceedings of the IEEE, 2004, 92(2):271-294.
    [7] Van Zelst A., Schenk T. C. W. Implementation of a MIMO OFDM-based wireless LAN system [J]. IEEE Transactions on Signal Processing, 2004, 52(2):483-494.
    [8] Ojanpera T, Prasad R. An overview of air interface multiple access for IMT-2000/UMTS [J]. IEEE Communication Magazine, 1998, 36(9): 82-95.
    [9] Rappaport T. S., Annamalai A., Buehrer R. M., Tranter W. H. Wireless communications: past events and a future perspective [J]. IEEE Communication Magazine, 50th Anniversary Commemorative Issue, May 2002: 148-161.
    [10] Mohr W. WWRF - the Wireless World Research Forum, Electronics & Communication Engineering Journal [J], 2002, 14(6):283-291.
    
    [11] Kim Y., Jeong B. J., Chung J. Beyond 3G: vision, requirements, enabling technologies [J]. IEEE Communication Magazine, 2003, 41(3): 120-124.
    
    [12] Hui S. Y., Yeung K. H. Challenges in the migration to 4G mobile systems [J]. IEEE Communication Magazine, 2003, 41(12): 54-59.
    
    [13] Lu W W. 4G research in Asia [J]. IEEE Communication Magazine, 2003, 3:104-106.
    [14] Sampath H, Talwar S, Tellado J, et al. A fourth-generation MIMO-OFDM broadband wireless system: Design, performance, field trial results [J]. IEEE Communication Magazine, 2002,38(9):143-149.
    [15]Raivio Y.4G-hype or reality[mobile communications].Proceedings of IEE 3G Mobile Communication Technologies,2001:346-350.
    [16]Fonollosa J R,Gaspa R,Mestre X,et al.The IST METRA project[J].IEEE Communication Magazine,2002,40(7):78-86.
    [17]IEEE 802.20.Contribution document of IEEE 802.20.http://grouper.ieee.org/groups/802/20/Contributions.html.
    [18]尤肖虎,曹淑敏,傅学群.我国未来移动通信研究开发展望[J].电信科学,2002,18(8):26-29.
    [19]Zou W Y,Wu Y.COFDM:an overview[J].IEEE Transactions on Broadcasting,1995,41(1):1-8.
    [20]Michael S,Stefan A.F,Gunnar F,Heinrich M.Optimum receiver design for wireless broad-band systems using OFDM-Part Ⅰ[J].IEEE Transactions on Communications,1999,47(11):1668-1677.
    [21]Michael S,Stefan A.F,Gunnar F,Heinrich M.Optimum receiver design for wireless broad-band systems using OFDM-Part Ⅱ:A case study[J].IEEE Transactions on Communications,2001,49(4):571-578.
    [22]Kim Y H,Song I,Kim H G,Chang T,Kim H M.Performance analysis of a coded OFDM system in time-varying multipath Rayleigh fading channels[J].IEEE Transactions on Vehicular Technology,1999,48(5):1610-1615.
    [23]Moose P.H.A technique for orthogonal frequency division multiplexing frequency offset correction[J].IEEE Transactions on Communications,1994,42(10):2908-2914.
    [24]Nati Dinur,Dov Wulich.Peak-to-average power ratio in high-order OFDM[J],IEEE Transactions on Communications,2001,48(6):1063-1072.
    [25]Pauli M.,Kuchenbecker P.On the reduction of the out-of-band radiation of OFDM-signals [C],IEEE International Conference on Communications,1998,3:7-11.
    [26]Costa E.,Midrio M.,Pupolin S.Impact of amplifier nonlinearities on OFDM transmission system performance[J].IEEE Communication Letters,1999,3(2):37-39.
    [27]Banelli P.,Cacopardi S.Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels[J].IEEE Transactions on Communication,2000,48(3):430-441.
    [28]Han S.H.,Lee J.H.An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[J],IEEE Wireless Communications,2005,12(2):56-65.
    [29]Jones A.E.,Wilkinson T.A.,Barton S.K.Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes[J],Electronics Letters,1994,30(25):2098-2099.
    [30]Paterson K.G.Generalized reed-muller codes and power control in OFDM Modulation[J].IEEE Transactions on Information Theory,2000,46(1):104-120.
    [31] Golay M. Complementary series [J]. IEEE Transactions on Information Theory, 1961, 2(7): 82-87.
    [32] Davis J. A., Jedwab J. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes [J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397-2417.
    [33] Wulich D. Reduction of peak to mean ratio of multicarrier modulation using cyclic coding [J] Electronics Letters, 1996,32(5): 432-433.
    [34] Paterson, K. G., Tarokh V. On the existence and construction of good codes with low peak-to-average power ratios [J], IEEE Transactions on Information Theory, 2000, 46(6): 1974-1987.
    [35] Paterson K G. Coding techniques for power controlled OFDM [C], IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1998, 2: 801-805.
    [36] Jiang T, Zhu G. Complement block coding for reduction in peak-to-average power ratio of OFDM signals [J]. IEEE Communications Magazine, 2005,43(9): S17-S22.
    [37] Ahn H. J., Shin Y., Im S. A block coding scheme for peak-to-average power ratio reduction in an orthogonal frequency division multiplexing system [C]. IEEE Vehicular Technology Conference, 2000-Spring, 1: 56-60.
    [38] Alex J. G, Richard van N. Efficient maximum likelihood decoding of peak power limiting codes for OFDM [C]. IEEE Vehicular Technology Conference, 1998: 2081-2084.
    [39] Schmidt H., Kammeyer K. Reducing the peak to average power ratio of multicarrier signals by adaptive subcarrier selection [C], IEEE International Conference on Universal Personal Communications, 1998, 2: 933-937.
    [40] Lawrey E., Kikker C. J. Peak to average power ratio reduction of OFDM signals using peak reduction carriers [C]. International Symposium on Signal Processing and its Applications, 1999: 737-740.
    [41] Tellado J. Peak to average power reduction for multicarrier modulation [M]. Ph.D. dissertation, Stanford University, 2000.
    [42] Krongold B.S., Jones D.L. An active-set approach for OFDM PAR reduction via tone reservation [J]. IEEE Transactions on Information Theory, 2004, 52(2): 495-509.
    [43] Bauml R. W., Fisher R. F. H., Huber J. B. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping [J]. Electronics Letters, 1994, 22(32): 2056-2057.
    [44] Jayalath A.D.S., Athaudage C.R.N. On the PAR reduction of OFDM signals using multiple signal representation [J]. IEEE Communications Letters, 2004,7(8): 425 -427.
    [45] Jayalath A.D.S., Tellambura C., Wu, H. Reduced complexity PTS and new phase sequences for SLM [C]. IEEE Vehicular Technology Conference, 2000-Spring, 3: 15-18.
    [46] Ohkubo N., Ohtsuki T. Design criteria for phase sequences in selected mapping [J]. IEICE Transactions on Communication [J], 2003, E86-B(9): 2628-2636.
    [47] Lim D. W., No J. S., Lim C. W., Chung H. A new SLM OFDM scheme with low complexity for PAPR reduction [J]. IEEE Signal Processing Letters, 2005, 12(2): 93-96.
    [48] Wang C. L., Yuan O. Y. Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems [J]. IEEE Transactions on Signal Processing, 2005, 53(12): 4652-4660.
    [49] Wang C. L., Yuan O. Y. A low-complexity selected mapping scheme for peak-to-average power ratio reduction in OFDM systems [C]. IEEE Vehicular Technology Conference, 2004-Fall, 1:26-29.
    [50] Lim D. W., No J. S., Lim C. W., Chung H. A new SLM OFDM scheme with low complexity for PAPR reduction [J]. IEEE Signal Processing Letters, 12(2): 93-96.
    [51] Jayalath A.D.S., Tellambura C. A blind SLM receiver for PAR-reduced OFDM to reduce PAP of an OFDM signal [C]. IEEE Vehicular Technology Conference, 2002-Fall, 1: 24-28.
    [52] Breiling M., Miiller-Weinfurtner S.H., Huber J.B. Distortionless reduction of peak power without explicit side information [C]. IEEE Global Telecommunications Conference, 2000, 3: 1494-1498.
    [53] Hill G. R., Faulkner M., Singh J. Reducing the peak-to-average power ratio in OFDM by cyclically shifting partial transmit sequences [J]. Electronics Letters, 2000, 36(6): 560-561.
    [54] Van Eetvelt P., Wade G., Tomlinson M. Peak to average power reduction for OFDM schemes by selective scrambling [J]. Electronics Letters, 1996, 32(21): 1963-1964.
    [55] Jayalath A. D. S., Tellambura C. Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving [J]. Electronics Letters, 2000, 36(13): 1161-1163.
    [56] Yang K., Chang S. Peak-to-average power control in OFDM using standard arrays of linear block codes [J]. IEEE Communications Letters, 2003, 7(4): 174-176.
    [57] Ryu H. G., Lee J. E., Park J. S. Dummy sequence insertion (DSI) for PAPR reduction in the OFDM communication system [J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 89-94.
    [58] Ochiai H., Imai H. OFDM-CDMA with peak power reduction based on the spreading sequences [C]. IEEE International Conference on Communications, 1998, 3:1299-1303.
    [59] Fujii T., Nakagawa M. Code selecting peak power reduction for MC-CDMA [C]. IEEE Wireless Communications and Networking Conference, 2002,1:482-486.
    [60] Ginige, T., Rajatheva N., Ahmed K.M. Dynamic spreading code selection method for PAPR reduction in OFDM-CDMA systems with 4-QAM modulation [J]. IEEE Transactions on Consumer Electronics, 2001, 5(10): 408-410.
    [61]Cho M.H.,Lee S.J.,Jin J.Y.,Park Y.W.A study on the PAPR using variable code sets (VCS) in multi-user MC-CDMA system[C].IEEE Vehicular Technology Conference,2004-Fall,5:3448-3451.
    [62]Talasaz A.H.,Kenari M.N.Peak-to-average reduction in MC-CDMA based on using different spreading and despreading codes[C].IEEE Wireless Communications and Networking Conference,2002,2:665-668.
    [63]Mailer S.H.,Huber J.B.OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences.Electronics Letters,1997,33(5):368-369.
    [64]M(u|¨)ller S.H.,Huber J.B.A Novel Peak Power Reduction Scheme for OFDM[C].IEEE Iternational Symposium on Personal,Indoor and Mobile Radio Communicaitons,1997,1090-1094.
    [65]佟学俭,罗涛.《OFDM移动通信技术原理与应用》[M].人民邮电出版社,2003.
    [66]Chen H.,Pottie G.J.An orthogonal projection-based approach for PAR reduction in OFDM [J].IEEE Communications Letters,2002,6(5):169-171.
    [67]Kwon O.J.,Ha Y.H.Multi-carrier PAP reduction method using sub-optimal PTS with threshold[J].IEEE Transactions on Broadcasting,2003,49(2):232-236.
    [68]Jayalath A.D.S.,Tellambura C.Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal[J].Electronics Letters,2000,36(14):1226-1228.
    [69]Alavi A.,Tellambura C.,Fair I.PAPR reduction of OFDM signals using partial transmit sequence:an optimal approach using sphere decoding[J].IEEE Communications Letters,2005,9(11):982-984.
    [70]Han S.H.,Lee J.H.PAPR reduction of OFDM signals using a reduced complexity PTS technique[J].IEEE Signal Processing Letters,2004,11(11):887-890.
    [71]Yang L.,Chen R.S.,Siu Y.M.,Soo K.K.PAPR reduction of an OFDM signal by use of PTS with low computational complexity[J].IEEE Transactions on Broadcasting,2006,52(1):83-86.
    [72]Wu B.,Cheng S.X.,Wang H.F.Trellis factor search PTS for PAPR reduction in OFDM[C].IEEE International Symposium on Personal,Indoor and Mobile Radio Communications,2005,4:2514-2517.
    [73]Xin Y.,Fair I.J.Low complexity PTS approaches for PAPR reduction of OFDM signals[C].IEEE International Conference on Communications,2005,3:1991-1995.
    [74]Lee B.M.,Figueiredo D.A low complexity tree algorithm for PTS-baased PAPR reduction in wireless OFDM[C].IEEE International Conference on Acoustics,Speech and Signal Processing,2006,4:371-376.
    [75]Tellambura C.Improved Phase Factor Computation for the PAR Reduction of an OFDM Signal Using PTS[J].IEEE Communications Letters,2001,5(4):135-137.
    [76]Kang S.G.,Kim J.G.,Joo E.K.A novel subblock partition scheme for partial transmit sequence OFDM[J].IEEE Transactions on Broadcasting,1999,45(3):333-338.
    [77]Kim H.,Li J.,Lee Y.The cross-partitioning scheme for an OFDM signal in multiple transmit antenna systems[C].IEEE International Conference on Communications,2003,5:3408-3412.
    [78]Latinovic Z.,Bar-Ness,Y.SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion[J].IEEE Communications Letters,10(4):266-268.
    [79]Wong S.H.,Madhukumar A.S.,Chin F.Peak-to-average power reduction using partial transmit sequences:a suboptimal approach based on dual layered phase sequencing[J].IEEE Transactions on Broadcasting,2003,49(2):225-231.
    [80]Lei X.,Li S.,Tang Y.The optimization arithmetic for power allocation scheme on partial transmit sequences[C].IEEE Symposium on Personal Indoor and Mobile Radio Communications,2003,2:1217-1221.
    [81]雷霞,唐友喜,李少谦,肖悦,部分传输序列法中副信息功率分配的优化算法[J].电子与信息学报,2004,26(7):1094-1100.
    [82]Feng C.,Wang C.,Lin C.,Hung Y.Protection and transmission of side information for peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences [C].IEEE Vehicular Technology Conference,2003-Fall,4:2461-2465.
    [83]Chen N.,Zhou G.T.Peak-to-average power ratio reduction in OFDM with blind selected pilot tone modulation[J].IEEE International Conference on Acoustics,Speech,and Signal Processing,2005,3:845-848.
    [84]O'Neill R.,Lopes L.B.Envelope Variations and spectral splatter in clipped multicarrier signals[C].IEEE Iternational Symposium on Personal,Indoor and Mobile Radio Communicaitons,1995,71-75.
    [85]Heiskala J.,Terry J.OFDM Wireless LANs:A theoretical and practical guide[M].Sams Publishing,2002.
    [86]Wulich D.,Dinur N.,Glinowiecki A.Level clipped high-order OFDM[J].IEEE Transactions on Communications,2000,48(6):928-930.
    [87]Saeedi H.,Sharif M.,Marvasti F.Clipping noise cancellation in OFDM systems using oversampled signal reconstruction[J].IEEE Communication Letters,6(2):73-75.
    [88]Lei X.,Tang Y.,Li S.A minimum clipping power loss scheme for mitigating the clipping noise in OFDM[C].,IEEE Global Telecommunications Conference,2003,1:6-9.
    [89]Lei X.,Li S.,Tang Y.OFDM clipping noise mitigation by a novel minimum clipping power loss scheme[C].IEEE Vehicle Technology Conference,2003-Fall,4:2440-2443.
    [90]Ochiai H.,Imai H.Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems[J].IEEE Journal on Select Area in Communications,2000,18(11):2270-2277.
    [91] Kim D., Stuber G. L. Clipping noise mitigation for OFDM by decision-aided reconstruction [J]. IEEE Communication Letters, 1999, 3(1): 4-6.
    [92] Chen H., Haimovish M. Iterative estimation and cancellation of clipping noise for OFDM signals [J]. IEEE Communication Letters, 2003, 7(7): 305-307.
    [93] Deng S. K., Lin M. C. OFDM PAPR reduction using clipping with distortion control [C]. IEEE International Conference on Communications, 2005, 4: 2563-2567.
    [94] Zhang H., Xia X. G., Zhang Q., Zhu W. W. Iterative decision-aided clipping compensation and its application to scalable video transmission with multiband OFDM [J]. IEEE Transactions on Vehicular Technology, 2007, 56(2): 756-765.
    [95] Wu Y., Farhang-Boroujeny B., Attallah S. Clipping noise mitigation methods in DMT-based ADSL systems [C]., IEEE International Conference on Communications, 2001, 6: 1670-1673.
    [96] Yan B. , Letaief K B, Cheng R S, et al. Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling [J]. IEEE Transactions on Communications, 2001, 49(3):467-479.
    [97] Wu B., Cheng S., Wang H. Clipping effects on channel estimation and signal detection in OFDM [C]. IEEE Conference on Personal Indoor and Mobile Radio Communications, 2003, 1:531-534.
    [98] Li X., Cimini L. J., Jr. Effect of clipping and filtering on the performance of OFDM [J]. IEEE Communication Letters, 1998,2(5): 131-133.
    [99] Ochiai H., Imai H. Performance analysis of deliberately clipped OFDM signals [J]. IEEE Transactions on Communications, 50(1): 89-101.
    [100] Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering [J]. Electronics Letters, 2002, 38(8): 246-247.
    [101] Wang L., Tellambura C. A simplified clipping and filtering technique for PAR reduction in OFDM systems [J]. IEEE Signal Processing Letters, 2005, 12(6): 453-456.
    [102] May T., Rohling H. Reducing the peak-to-average power ratio in OFDM radio transmission systems [C]. IEEE Vehicle Technology Conference, 1998-Spring, 3:2474-2478.
    [103] Pauli M., Kuchenbecker H. P. On the reduction of the out-of-band radiation of OFDM-signals [C]. IEEE International Conference on Communications, 1998, 3: 1304-1308.
    [104] Huang X., Lu J. H., Zheng J. L., Letaief K.B., Gu J. Companding transform for reduction in peak-to-average power ratio of OFDM signals [J]. IEEE Transactions on Wireless Communications, 2004, 3(6): 2030-2039.
    [105] Jiang T., Zhu G. X. Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals [J]. IEEE Transactions on Broadcasting, 2004, 50(3): 342-346.
    [106] Wang X. B., Tjhung T. T., Ng C. S., Kassim A. A. On the SER analysis of A-law companded OFDM system [C]. IEEE Global Telecommunications Conference, 2000, 2: 756-760.
    [107] Jiang T., Yao W. B., Guo P., Song Y. H., Qu D. M. Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems [J]. IEEE Transactions on Broadcasting, 2006, 52(2): 268-273.
    [108] Huang X., Lu J. H., Zheng J. L., Chuang J., Gu J. Reduction of peak-to-average power ratio of OFDM signals with companding transform [J]. Electronics Letters, 2001, 37(8): 506-507.
    [109] Wang X. B., Tjhung T.T., Wu Y. Y. On the SER and spectral analyses of A-law companded multicarrier modulation [J]. IEEE Transactions on Vehicular Technology, 2003, 52(5): 1408-1412.
    [110] Sulaiman A., Badran Ehab F., Mohamed Darwish A. E. A comparison between clipping and A-law companding schemes for the reduction of peak-to-average power ratio of OFDM [C], National Radio Science Conference, 2007, 1-10.
    [111] Choi Y. J., Park S., Bahk S. Multichannel random access in OFDMA wireless networks [J]. IEEE Journal on Selected Areas in Communications, 2006,24(3): 603-613
    [112] Ermolova, N.Y., Makarevitch, B. Low complexity adaptive power and subcarrier allocation for OFDMA [J]. IEEE Transactions on Wireless Communications, 2007,6(2): 433-437.
    [113] Lee W.C.Y. CS-OFDMA: a new wireless CDD physical layer scheme [J]. IEEE Communications Magazine, 2005, 43(2):74-79.
    [114] Koffman I., Roman V. Broadband wireless access solutions based on OFDM access in IEEE 802.16 [J]. IEEE Communications Magazine, 2002,40(4): 96-103.
    [115] Chen H. H., Zhang X., Xu W. Next-generation CDMA vs. OFDMA for 4G wireless applications [J]. IEEE Wireless Communications, 2007,14(3): 6-7.
    [116] Wang P., Xiao J., Li P. Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems [J]. IEEE Vehicular Technology Magazine, 2006,1(3): 4-11.
    [117] Li K., Wang X., Li P. Analysis and Optimization of Interleave-Division Multiple-Access Communication Systems [J]. IEEE Transactions on Wireless Communications, 2007, 6(5):1973-1983.
    [118] Li P., Liu L., Wu K., Leung W. K. Interleave division multiple-access [J]. IEEE Transactions on Wireless Communications [J], 2006, 5(4): 938-947.
    [119] Rosberg Z. Optimal transmitter power control in interleave division multiple access (IDMA) spread spectrum uplink channels [J]. IEEE Transactions on Wireless Communications, 2007, 6(1): 192-201.
    [120] Li P., Guo Q., Tong J. The OFDM-IDMA approach to wireless communication systems [J]. IEEE Wireless Communications, 2007,14(3): 18-24.
    [121] Zhou S., Li Y., Zhao M., Xu X., Wang J., Yao Y. Novel techniques to improve downlink multiple access capacity for beyond 3G [J]. IEEE Communication Magazine., 2005, 43(1): 61-69.
    
    [122] Fisz M. Probability theory and mathematical statistics [M]. New York, Wiley, 1963.
    [123] Van Nee R., Prasad R. OFDM for wireless multimedia communications [M], London, Artech House, 2000.
    [124] Wang H., Chen B. Asymptotic distributions and peak power analysis for uplink OFDMA signals [C], IEEE Conference on Acoustics, Speech, and Signal Processing, 2004: 1085-1088.
    [125] Cao Z., Tureli U., Liu P. Optimum subcarrier assignment for OFDMA uplink [C]. Asilomar Conference on Signals, Systems and Computers, 2003,1: 708-712.
    [126] Wu H., Li P., Perotti A. User-specific chip-level interleaver design for IDMA systems [J]. Electronics Letters, 2006, 42(4): 233-234.
    [127] Wu B., Chen S., Chen M., Wang H. Analysis of decision aided channel estimation in clipped OFDM [C]. IEEE Vehicular Technology Conference, 2005-Fall, 2: 1030-1033.
    [128] ETSI. Communication of the European communities: digital land mobile radio communication - COST207. ETSI, 1989.
    [129] Chu D. C. Polyphase codes with good periodic correlation properties [J]. IEEE Tranactions on Information Theory, 1972, 18(4): 531-532.
    [130] Garcia M., Paez-Borrallo J., Zazo S. DFT-based channel estimation in 2D-pilot-symbol-aided OFDM wireless systems [C]. IEEE Vehicular Technology Conference, 2001, 2: 810-814.
    [131] Sun Y, Xiong Z., Wang X. EM-based iterative teceiver design with carrier-frequency offset estimation for MIMO OFDM systems [J]. IEEE Transactions on Communication, 2005, 53(4): 581-586.
    [132] Classen F., Meyr H. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels [C]. IEEE Vehicular Technology Conference, 1994,3: 1655-1659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700