纳米金及金/凹凸棒土复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米材料的特殊性能已经被广泛应用于光电子学,生物医学以及催化等领域。尽管目前在金纳米粒子的形貌和尺寸控制生长以及性能研究方面已经取得了巨大进展,但是对于探索环境友好并更具有实用价值的合成方法仍旧是人们关注的热点。本文通过使用不同化学方法合成了粒径以及形状各异的金纳米粒子材料,采用TEM、HRTEM、SEM、XRD、SAED、EDS和UV-vis等手段对所制备的金纳米粒子的形貌、尺寸、晶体结构以及光学性质等进行了表征,并初步探索了各种形状金纳米粒子的生长机理。
     本文的研究内容主要包括:
     1.通过改变反应中的氯金酸和柠檬酸钠的摩尔比例来调控金纳米粒子的粒径和形状,结果表明,制备的纳米金颗粒呈球形,为面心立方结构;柠檬酸钠作为还原剂不但提高了金颗粒的单分散性和稳定性,还在一定程度上抑制了金纳米粒子的生长,使得其粒径可控,且分布均匀。紫外-可见吸收光谱反映出,随着粒径的增大,纳米金在可见光区域的吸收峰发生红移。
     2.利用乳酸作为还原剂制备的金纳米粒子,通过XRD分析产物的衍射峰得出分别对应于金的(111),(200),(220)和(311)晶面,证明了金纳米粒子的晶体结构是面心立方结构。由高分辨率透射图可知由相邻条纹间的面间距为0.233 nm,与面心立方结构金的(111)晶面相对应。实验发现氯金酸和乳酸的摩尔比强烈影响着金纳米粒子的粒径和形状,基于此结果,提出了合成金纳米颗粒的机理。由于金纳米粒子优良的生物相容性以及在乳酸水溶液中的易溶性,通过该方法制备出的金纳米粒子将来在生物和医学上有更多的应用。
     3.结果表明,十六烷基三甲基溴化铵(CTAB)、银离子的浓度和溶液的pH值在合成金纳米棒过程中有着重要作用。在十六烷基三甲基溴化铵(CTAB)和硝酸银浓度一定的条件下,研究了溶液pH值对金纳米粒子生长过程的影响,所获得的金纳米粒子形貌和尺寸分布与溶液pH值密切相关。研究结果表明:金纳米棒的尺寸和形貌在很大程度上取决于溶液的pH值。在弱酸性和高浓度的CTAB的条件下,能够合成出高产率的金纳米棒。在合成过程中,CTAB不仅作为表面活性剂,而且作为形成金纳米棒的引导剂。高分辨电镜结果表明,金纳米棒为单晶结构,沿[100]晶向生长,从对照实验的结果可知,得出硝酸银的加入量和溶液的pH值强烈影响金纳米棒的形成,同时对合成的金纳米棒进行了初步的机理探讨。
     4.纳米凹凸棒土是一种新型的天然纳米材料,它具有纤维结构,相互交叉形成“乱稻草堆状”网架结构。此外,凹凸棒土是一种结晶的硅酸盐材料,主要包含Si、O、C等元素,凹凸棒土中含有Mg,Al,Fe,Si等元素;对其性质的研究直接关系到它的工业应用与开发前景。在环境温度为25℃时,抗坏血酸加入量为10μL时,纳米金能更好地吸附到凹凸棒土的孔道内。在环境温度为4℃时,抗坏血酸加入量为20μL时,形成的小尺寸的金纳米粒子填充到凹凸棒土的孔道内。
The special properties of gold nanoparticles have been widely used in the fields of optoelectronics, biomedicine and catalysis. Although the remarkable progress has been achieved in the research of shape and size controlled synthesis and physicochemical properties of gold nanoparticles. However, it is still a challenge to find an environment friendly and practical synthesizing the gold nanoparticles. Different sizes and various shapes of gold nanoparticles are synthesized via cheimcal sol-gel method here. The morphology, size, structure and optical properties of the as-prepared gold nanoparticles were characterized systemically by transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), EDS and UV-vis spectroscopy. A growth mechanism of the gold nanoparticles with different shapes was also discussed.
     In this thesis, the following subjects are included:
     1. The size and shape of gold nanoparticles are modulated by varying the ratios of chloroauric acid and sodium citrate in the reaction medium. The results indicate that the as-prepared gold nanoparticles with spherical structures are face center cubic( FCC). Sodium citrate not only improves monodispersity and stability of gold nanoparticles, but also restrains their crystal growth, which makes the nanoparticles with a narrow size distribution and controllable size. The peak positions of UV-Vis absorption spectra exhibit a blue-shift as the crystal size decreases.
     2. A synthesis method of green chemistry of gold nanoparticles using lactic acid as a reducing agent is reported. Crystalline nature of the as-prepared gold nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0 ), (2 2 0) and (3 1 1) planes, which are bright circular spots in the SAED and clear lattice fringes in the HRTEM image. It is found that the size and shape of gold nanoparticles are strongly influenced by the molar ratio of HAuCl4 to lactic acid. Based on these results, a potential mechanism of this prepared method of gold nanoparticle is also discussed. It could be found more biological and medical applications of gold nanoparticles based on their biocompatibility and solubility in aqueous solutions of lactic acid in this novel method in future.
     3. These result suggest that the pH values of growth solution, CTAB concentration and silver ions concentration play the important role in the process of the as-synthesized gold nanorods. The results showed that the size and morphology of the as-prepared gold nanoparticles were much affected by the solution pH. A synthetic method of high-yield gold nanorods at weak acidic condition and higher cetyltrimethylammonium bromide (CTAB) concentrations was reported. Here, CTAB is not only a stable agent for nanoparticles but also is an inductive agent for forming gold nanorods. The single-crystalline nature of gold nanorods with an oriented growth along the [100] axis direction was confirmed by HRTEM. Based on the controlled experiments, the formation of the gold nanorod are strongly influenced by the concentrations of silver ions and different pH. A possible mechanism for synthesis of gold nanorods was also discussed.
     4. Attapulgite is a new type of natural nanomaterials with a fiber structure, formed the intersection "wild straw-like" network structure. Attapulgite is a crystalline silicate materials, mainly containing Si, O, C and some other elements. Moreover, attapulgite contains a considerable content of Mg, Al, Fe, Si elements.It is important to investigate their properties for their applications in industry in furtue. Under condition of 10μL of ascorbic acid as the reduced agent, gold nanoparticles were adsorbed to the on the surface of attapulgite at 25℃. Under condition of 20μL of ascorbic acid as the reduced agent, the gold nanoparticles with small sizes were filled into the channels of attapulgite at 4℃forming nanocomposites.
引文
[1]王锐,黄永攀,陈磊.纳米材料和纳米科技的进展、应用及产业化现状.山东陶瓷, 2004, 27(6): 22-27.
    [2]吕洞庭,梦幻纳米,北京:中共中央党校出版社,2001, 94-96.
    [3]倪星军,沈军,张志华,纳米材料的理化特性与应用.化学工业出版社2006, 6-8.
    [4]方云,杨澄宇,陈明清,等.纳米技术与纳米材料.日用化学工业, 2003, 33(1): 55-58.
    [5]曹茂盛,王中林,纳米材料表征.北京:化学工业出版社,2005,10-17.
    [6] Lue J T. Review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids, 2001,62 (9, 10): 1599-1621.
    [7]陈卫,孙世刚,纳米材料科学中的谱学研究.光谱学与光谱分析,2002, 22: 504-510.
    [8]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析.北京:高等教育出版社,1990, 31-35.
    [9] Zhang N, Raman N, Bailey J K.et al., A new sol-gel route for the preparation of nanometer-scale semiconductor particles that exhibit quantum optical behavior, J. Phys. Chem, 1992, 96(23): 9098-9100.
    [10] Eustis. S. El-Sayed M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35(3): 209-217.
    [11]张立德,牟季美.纳米材料和纳米结构.北京:科学技术出版社, 2001, 10-25.
    [12] Turkevich, J., Stevenson, P.C., Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc, 1951, 11: 55-75.
    [13] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London), Phys. Sci. 1973, 241: 20-22.
    [14] Goia D.A., Matijevie E. Preparation of mondispersed metal particles. New J. Chem. 1998, 1203-1215.
    [15]兰新哲,金志浩,赵西成等. PVP保护还原法制备纳米金溶胶.稀有金属材料与工程. 2003, 32(1): 50-53.
    [16] Bonet F., Delmas V., Grugeon S., et al. Synthesis of monodisperse Au,Pt,Pd,Ru, and Ir nanoparticles in ethylene glycol. Nanostruc. Mater., 1999, 11: 1277-1284.
    [17]Shou-An Dong, Shi-Ping Zhou. Photochemical synthesis of colloidal gold nanoparticles.Materials Science and Engineering B, 2007, 140: 153-159.
    [18] Wei Chen, Weiping Cai, Liang Zhang, et al. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. Journal of Colloid and Interface Science, 2001, 238: 291-295.
    [19] Xu X C, Yang W S, Liu J, et al. Synthesis of a High-permeance NaA Zeolite Memberance by Mcrowave Heating. Adv Mater.,2000, 3(12): 195-197.
    [20] Masagaru Tsuji, Masayuki Hashimoto, Yuki Nishizawa, et al. Synthesis of gold nanorods and nanowires by a microwave-polyol method. Materials Letters, 2004, 58: 2326-2330.
    [21] Yu-Ying Yu, Ser-Sing Chang, Chien-Liang Lee et al. Gold nanorods: electrochemical Synthesis and Optical Properties. J. Phys. Chem. B, 1997, 101(34): 6661-6664.
    [22] Marc Wirtz, C.R.Martin. Template-fabricated gold nanowires and nanotubes. Adv. Mater., 2003, 15(5): 455-458.
    [23] Daniel M C , Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1): 293-346.
    [24] Katz E,Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed., 2004, 43(45): 6042-6108.
    [25] Storhoff J J, Mucic R C, Mirkin C A. Strategies for organizing nanoparticles into aggregate structures and functional materials. Journal of Cluster Science, 1997, 8(2): 179-216.
    [26] Schmidt A. J., Alper J.D., Chiesa M., Chen G., Das S., Hamad-Schifferli K. Probing the gold nanorod-ligand-solvent interface by plasmonic absorption and thermal decay. Journal of Physical Chemistry C, 2008, 112: 13320-13323.
    [27] Hainfeld J F, Slatkin D N, Focella T M, Smilowitz H M. Gold nanoparticles: a new X-ray contrast agent [J]. Brit. J. Radiol., 2006, 79(939): 248-253.
    [28] Xu C J, Tung G A, Sun S H. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem. Mater., 2008, 20(13): 4167-4169.
    [29]杨薇,纳米金的修饰及金属离子检测的应用:[硕士论文].天津大学,2006.
    [30] Kim H K,Rasnik I,Liu J W,Ha T J,Lu Y. Nat. Dissecting metal ion–dependent folding and catalysis of a single DNAzyme. Chem. Biol.,2007,3(12): 763-768.
    [31] Wang Z,Lee J H,Lu Y. Label-free colorimetric detection of lead ions with a dynamic rangeby using nanoparticles and DNAzyme. Adv. Mater.,2008,20(17): 3263-3267.
    [32]殷焕顺,艾仕云,汪建民.制备金纳米粒子的研究进展.材料研究与应用. 2007, 1(4): 277-280.
    [33] Maye M M, Lou Y, Zhong C J. Core-shell Gold nanoparticle assembly as novel lectrocatalyst of Co oxidation. Langmuir, 2000, 16(19): 7520-7523.
    [34]Chien-Jung Huang, Pin-Hsiang Chiu, Yeong-Her Wang, et al. Preparation and haracterization of gold nanodumbbells. Nanotechnology, 2006, 17: 5355-5362.
    [35]杨生春,董守安,唐春等.金纳米粒子自球形向棒状的转变和生长的光化学法研究.化学学报,2005, 63 (10): 873-879.
    [36] Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414-6420. [37」Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater., 2002, 14(1): 80-82.
    [38] Busbee B D, Obare S O, Murphy C J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater., 2003, 15(5): 414-417.
    [39] Gou L F, Murphy C J. Fine-tuning the shape of gold nanorods. Chem. Mater., 2005, 17(14): 3668-3672.
    [40] Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods using seed-mediated growth method. Chem. Mater., 2003, 15(10): 1957-1962.
    [41] Murphy C. J., Sau T. K., Gole A. M.,etc. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109: 13857-13870.
    [42] Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods: complete removal of platelets [J]. J. Am. Chem. Soc., 2008, 130(38): 12634-12636.
    [43] Christopher J. Orendorff, Catherine J. Murphy.Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B, 2006, 110: 3990-3994.
    [44] Linfeng Gou, Catherine J.Murphy. Fine-tuning the shape of gold nanorods. Chem. Mater. 2005, 17: 3668-3672.
    [45] Michael H. Huang.Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem., 2006, 45 (2): 803-813.
    [46] Cuncheng Li, Weiping Cai, Bingqiang Cao, et al. Mass Synthesis of Large,Single-crystal Au nanosheets based on a polyol process. Adv. Funct.Mater., 2006, 16: 83-90.
    [47] Jianping Xie, Jim Yang Lee, Daniel I. C. Wang, et al. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 2007, 3(4): 672-682.
    [48]王益庆,张立群,张慧峰等.凹凸棒土/橡胶纳米复合材料结构和性能研究.北京化工大学报,1999, 26(3): 25-29.
    [49]刘晓东,孙秀云,周学铁.凹凸棒土颗粒吸附剂的制备.污染防治技术,1999, 12(3): 168-170.
    [50] Frost R L , Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites Thermochimica Acta , 2003 , 119-128.
    [51]李虎杰,郑自立.坡缕石粘土的吸附性能研究.矿产综合利用,2002, (5): 24-27.
    [52]刘珺,秦善.岩石矿物学杂志. 2001, 20(4): 461-463.
    [53]李彦锋,姜鸿基,周林成,李贤真,牛晓军.纳米SiOx复合聚丙烯酞胺阳离子絮凝剂.中国专利.A 0215230.7 2002.
    [1] Turkevich, J., Stevenson, P.C., Hillier, J. A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc, 1951, 11: 55-75.
    [2] G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London), Phys. Sci. 1973, 241: 20-22.
    [3] Qu X, Peng Z, Jiang X, et al . Surface charge influence on the surface plasmon absorbance of electroactive thiol-protected gold nanoparticles. Langmuir , 2004 , 20 : 2519-2522.
    [4] Zanchet D , Hall B D , Ugarte D. Structure population in thiol- passivated gold nanoparticles. J . Phys. Chem. B , 2000 , 104: 11013-11018.
    [5] Hussain I , Graham S , Wang Z, et al . Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers. J .Am. Chem. Soc., 2005, 127: 16398-16399.
    [6] Martin J E , Wilcoxon J P , Odinek J , et al. Control of the interparticles spacing in gold nanoparticles superlattices. J. Phys. Chem. B, 2000 , 104: 9475-9486.
    [7] Hussain I , Brust M, Papworth A J , et al . Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir , 2003, 19: 4831-4835.
    [8] Mandal T K, Fleming M S , Walt D R. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett ., 2002, 2: 3-7.
    [9] Mangeney C , Ferrage F , Aujard I , et al . Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers. J . Am. Chem. Soc. ,2002 , 124 : 5811 -5821.
    [10] Chen X Y, Li J R , Jiang L. Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique. Nanotechnology , 2000, 11: 108-111.
    [11] Fan C, Jiang L. preparationof Hydrophobic nanometer gold particles and their optical absorption in chloroform. Langmuir, 1997, 13: 3059-3062.
    [12] Kumar A , Mandal S, Selvakannan P R , et al. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir, 2003, 19: 6277 -6282.
    [13]任小卉.柠檬酸钠生产浅谈.医药化工. 2006 (5): 33-35.
    [14] Hussain, S. Graham, Z. Wang, B. Tan, D.C. Sherrington, S.P. Rannard, A.I., Size-controlledsynthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers. J.Am. Chem. Soc. 2005, 127: 16398-16399.
    [15] Wang R.,Yang J.,Zheng Z.,Carducci M.D.,Jiao J.,Seraphin S., Dendron-controlled growth of gold nanoparticles. Angew.Chem. 2001, 40: 549-550.
    [16] Schulz-Dobrick M.,Sarathy K.V.,Jansen M.,Surfactant-free synthesis and functionalization of gold nanoparticles. J.Am.Chem.Soc. 2005,127: 12816-12817.
    [17] Bhargava S.K., BoothJ.M., S.Agrawal, P.Coloe, G.Kar, Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 2005,21: 5949-5050.
    [18] Teranishi T., Kiyohawa I., Miyake M., Planar array of 1D gold nanoparticles on ridge-and-valley structured carbon. Adv. Mater. 1998, 10: 596-597.
    [19] Slocik J.M., Stone M.O., Naik R.R., Synthesis of gold nanoparticles using multifunctional peptides. Small. 2005, 1: 1048-1050.
    [20] Aslam M., Su M., Vijayamohanan K., Dravid V.P.. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater.Chem. 2004, 14: 1795-1797.
    [21] Ishii, tsuka H.O ,Kataoka K., Nagasaki Y., Preparation of functionally pegylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly(2- (N,N-dimethylamino)ethyl methacrylate)]. Langmuir. 2004, 20: 561-563.
    [22] Brown K.R., Natan M.J., Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir, 1998, 14: 726-728.
    [23] Brown K.R., Walter D.G., Natan M.J., Seeding of colloidal Au nanoparticle solutions 2. Improved control of particle size & shape. Chem.Mater. 2000, 12: 306-306.
    [24] Jana N.R., Gearheart L., Murphy C.J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001, 17: 6782-6783.
    [25] Jana N.R., Gearheart L., Murphy C.J.. evidence for seed-mediated nucleation in the formation of gold nanoparticles from gold salts. Chem.Mater. 2001, 13 : 2313-2315.
    [26] M.K.Chow,C.F.Zukoski, Gold sol formation mechanisms: role of colloidal stability J.Colloid Interface Sci. 1994, 165: 97-99.
    [27] Henglein A., Giersig M.. Formation of colloidal silver nanoparticles: capping action of citrate. J.Phys.Chem.B. 1999, 103: 9533-9535.
    [28] Hornyak G L , Pat rissi C J ,Martin C R. Fabrication ,Characterization ,and optical properties of gold nanoparticle/ porous alumina composites : the nonscattering maxwell-garnet limit. J Phys Chem B ,1997 ,101 (9) :1548-1555.
    [29] Hiemenz, P. C.; Rajagopalan, R. Principles of colloid and surface chemistry, 3rd ed., Marcel Dekker, New York, 1997: 575-576.
    [30] Chen F, Xu G Q, Hor T S A. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Mater Lett, 2003, 57: 3282-3285.
    [31] Turkevich J , Stevenson P C , Hillier J. Nucleation and growth process in the synthesis of colloidal gold. Discuss. Faraday Soc. ,1951, 11: 55-75.
    [32] Munro C H, Smith W E, White P C, et al. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir, 1995, 11: 3712-3720.
    [33] Enüstün B V, Turkevich J. Coagulation of Colloidal Gold. J Am Chem Soc, 1963 , 85 ( 21 ): 3317-3328.
    [34]彭菊村,卢强华,吴波英.金纳米颗粒水相合成工艺研究.稀有金属材料与工程. 2006, 35 ( 6 ) : 954 -958.
    [1] Link S., El-Sayed M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem, 2000, 19: 409-453.
    [2] El-Sayed M.A. Some interesting properties of metals confined in time and nanometer space of different shapes, Accounts Chem Res, 2001, 34: 257-264.
    [3] Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R., Sastry,M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 2005, 21: 10644-10654.
    [4] Liang, K.Z., Mu, W.J. Flow-injection immuno-bioassay for interleukin-6 in humans based on gold nanoparticles modified screen-printed graphite electrodes. Anal Chim Acta, 2006, 580: 128-135.
    [5] Shi, X.Y., Wang, S.H., Sun, H. P., Baker, J. R.Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter, 2007, 3: 71-74.
    [6] Faraday, M. The Bakerian Lecture: Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond., 1857, 147: 145-181.
    [7] Turkevich, J., Stevenson, P.C., Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss Faraday Soc, 1951, 11: 55-75.
    [8] Perrault, S.D., Chan, W.C.W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J Am Chem Soc, 2009, 131: 17042-17043.
    [9] Jana, N. R., Gearheart, L., Murphy, C. J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17: 6782-6786.
    [10] Pei, L. H., Mori, K., Adachi, M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir, 2004, 20: 7837-7843
    [11] Nikoobakht, B., El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003, 15: 1957-1962.
    [12] Kim, F., Connor, S., Song, H., Kuykendall, T., Yang, P.D. Platonic gold nanocrystals. Angew Chem Int Edit, 2004, 43: 3673-3677.
    [13] Kim, D., Park, S., Lee, J. H., Jeong, Y. Y., Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am ChemSoc, 2007, 129: 7661-7665.
    [14] Hainfeld, J. F., Slatkin, D. N., Focella, T. M., Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. Brit J Radiol, 2006, 79: 248-253.
    [15] Xu, C. J., Tung, G. A., Sun, S. H. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater, 2008, 20: 4167-4169.
    [16] Jahno, V. D., Ribeiro, G. B., Santos, L. A., Ligabue, R., Einloft, S., Ferreira, M. R., Bombonato-Prado, K. F. Chemical Synthesis and in vitro biocompatibility tests of Poly (L-lactic acid). J Biomed Mater Res A, 2007, 83: 209-215.
    [17] Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12: 788-800.
    [18] Szunerits, S., Boukherroub, R.. Electrochemical investigation of gold/silica thin film interfaces for electrochemical surface plasmon resonance studies. Electrochem Commun, 2006, 8: 439-444.
    [19] Rechberger, W., Hohenau, A., Leitner, A., Krenn, J. R., Lamprecht, B., Aussenegg, F. R. Optical properties of two interacting gold nanoparticles. Opt Commun, 2003, 220: 137-141.
    [20] Prasad, B. L. V., Stoeva, S. I., Sorensen, C. M., Klabunde, K. J. Digestive-ripening agents for gold nanoparticles: Alternatives to thiols. Chem Mater, 2003, 15: 935-942.
    [21] Kwon, K., Lee, K. Y., Lee, Y. W., Kim, M., Heo, J., Ahn, S. J., Han, S. W. Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J Phys Chem C, 2007, 111: 1161-1165.
    [22] Munro, C. H., Smith, W. E., Garner, M., Clarkson, J., White, P. C. Characterization of the surface of a citrate-Reduced colloid optimized for use as a substrate for surface-enhanced resonance raman-scattering. Langmuir, 1995, 11: 3712-3720.
    [23] Privman, V., Goia, D. V., Park, J. Matijevic, E. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interf Sci, 1999, 213: 36-45.
    [1] Link S., El-Sayed M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem, 2000, 19: 409-453.
    [2] El-Sayed M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem Res, 2001, 34: 257-264.
    [3] Perrault, S. D., Chan, W.C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J Am Chem Soc, 2009, 131: 17042-17043.
    [4] Jana, N. R., Gearheart, L., Murphy, C. J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17: 6782-6786.
    [5] Pei, L. H., Mori, K., Adachi, M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir, 2004, 20: 7837-7843.
    [6] Millstone, J. E. Hurst, S. J. Metraux, G. S. Cutler, J. I. Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 2009, 5: 646-664.
    [7] Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods using seed-mediated growth method . Chem. Mater., 2003, 15(10): 1957-1962.
    [8] Gao S Y, Zhang, Jiang S X, Yan g S X. Biopolymer-assisted synthesis of single crystalline gold disks by a hydrothermal route Current. Current Nanoscience, 2008, 4: 145-150.
    [9] Kim, F., Connor, S., Song, H., Kuykendall, T., Yang, P.D. Platonic gold nanocrystals. Angew Chem Int Edit, 2004, 43: 3673-3677.
    [10] Chakravarthy KV, Bonoiu AC, Davis WG et al. Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 inluenza viral replication. Proc. Natl Acad. Sci. 2010, 107(22): 10172–10177.
    [11] Huang, X., Neretina, S. and El-Sayed, M. A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21 (48): 4880-4910.
    [12] Yu-Ying Yu, Ser-Sing Chang, Chien-Liang Lee et al. Gold Nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B, 1997, 101(34): 6661-6664.
    [13] Ser-Sing Chang, Chao-Wen Shih, Wei-Cheng Lai, and C.R.C. Wang The shape transition of gold nanorods. Langmuir, 1999, 15: 701-709.
    [14] Jana, N. R., Gearheart, L. and Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B, 2001.105: 4065-4067.
    [15] Nikhil R, Latha A, Sherine O. Obare. Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem., 2002. 12: 2909–2912.
    [16] Gao J X , Bender C M , Murphy C J . Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 2003, 19: 9065-9070.
    [17] Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods using seed-mediated growth method . Chem. Mater., 2003, 15(10): 1957-1962.
    [18] Tapan K. Sau, Catherine J. Murphy. Roorn Temperature, High-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc., 2004, 126(28):8648– 8649.
    [19] Garg, Niti. Scholl, Clark; Mohanty, Ashok; Jin, Rongchao, The role of bromide ions in seeding growth of Au nanorods. Langmuir 2010, 26(12): 10271–10276.
    [20] Kim, F., Song, J. H. and Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc., 2002, 124: 14316–14317.
    [21] Murphy C. J., Sau T. K., Gole A. M., etc. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109: 13857-13870.
    [22] Perez-Juste J., Liz-Marzan L. M., Carnie S., Mulvaney P. Electric-field-directed growth of gold. nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14: 571–579.
    [23] Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution [J]. Langmuir, 2004, 20(15): 6414-6420.
    [24] Link S., Mohamed M. B., El-Sayed M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. Phys. Chem. B 1999, 103: 3073-3077.
    [25] Brioude A. et al, Optical Properties of Gold nanorods: DDA simulations supported by experiments, J. Phys. Chem. B 2005, 109: 13138-13142.
    [26] Kooij E. S., Poelsema B., Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys. 2006. 6: 3349–3357.
    [27] Payne, E. K., Shuford, K. L., Park, S., Schatz, G. C., and Mirkin, C. A., Multipole Plasmon Resonances in Gold Nanorods. J. Phys. Chem. B 2006, 110: 2150–2154.
    [28] Nikhil R. Jana, Latha Gearheart, Catherine J. Murphy. Seed-mediated growth approach forshape-controlled synthesis of spheroidal and rod-like gold nanoparticles Using a Surfactant Template. Adv Mater., 2001, 13(18): 1389-1393.
    [29] Chen H M, Peng H-C, Liu R-S, et al. Controlling the length and shape of gold nanorods. J. Phys. Chem. B, 2005, 109: 19553-19555.
    [30] Jinxin GAO, Christopher M. Bender, Catherine J. Murphy. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir, 2003, 19(21): 9605-9070.
    [1] Uárez M S Barrios , Flores L V González , Vicente M A Rodríguez , et al . Applied Clay Science , 1995 , 10: 247-249.
    [2] Frost R L , Ding Z. Thermochimica Acta , 2003 , 397: 119-121.
    [3] Galan E. Properties and applications of palygorskite-sepiolite clays. Clay Miner , 1996 ,31 (4): 443-445.
    [4] Shariatmadari H, Mermut A R, Benke M B. Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite . Clays Clay Miner , 1999 , 47 (1) : 44-46.
    [5] Barrios M S ,Gonzalezl V F. Acid activation of a palygorskite with HCl : development of physico- chemical , textural and surface properties. Appl Clay Sci , 1995 ,10 (3): 247-249.
    [6] Yacaman J ,et al. Maya blue paint :an ancient nanost ructured material. Science ,1996, 273 (5272): 223-224.
    [7] Neaman A ,Singer A. Rheological properties of aqueous suspensions of palygorskite. Soil Sci Soc Am J, 2000 ,64 (1): 427-429.
    [8]詹庚申,郑茂松.美国凹凸棒黏土开发应用浅议.非金属矿, 2005 ,28 (2) : 36-37.
    [9] Frost R L, Locos O B, Ruan H. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorslites. Vibrational Spectroscopy, 2001, 27: 1-13.
    [10] Madejova J. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 2003, 31: 1-10.
    [11]郝青丽,杨绪杰,王瑛.机械研磨影响高岭石结构的光谱研究.光谱学与光谱分析,2000, 20(3): 302-304.
    [12] Melo Araujo D M, Ruiz J A C, Melo M A F. Preparation and characterization of lanthanum palygorslite clays as acid catalysts. Journal of Alloys and Compounds, 2002, 344: 352-355.
    [13] Melo Araujo D M, Ruiz J A C, Melo M A F. Preparation and characterization of terbium palygorslite clay as acid catalyst. Microporous and Mesoporous Materia1, 2000, 38: 345-349.
    [14] Sing K S W, Everett D H, Haul R A W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57: 603-619.
    [15]黄健花,王兴国.凹凸棒土的有机改性及其应用:[博士学位论文].江苏:江南大学食品科学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700