一维纳米ZnO半导体材料的掺杂及器件制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用化学气相沉积(CVD)法,以高纯ZnO和活性碳混合粉末为原料,分别以Mg和N为掺杂元素,在Si(111)衬底上制备了不同掺杂浓度的取向ZnO纳米线阵列。用X射线衍射仪(XRD),扫描电镜(SEM),能量色散X射线分析(EDAX),拉曼光谱,透射电镜(TEM)及荧光光谱分析仪(PL)对样品的晶体结构,形貌、成分组成和光致发光特性等进行了分析。用霍尔效应测量系统测试了不同配比样品的载流子浓度。
     以Mg为掺杂元素制备Zn_(1-x)Mg_xO纳米线阵列。实验发现,Zn_(1-x)Mg_xO纳米线阵列中Mg原子相对Zn原子摩尔比X值较小时(X<0.29),XRD衍射谱中只有ZnO晶体标准衍射峰,没有MgO晶体衍射峰,说明此时制备的Zn_(1-x)Mg_xO纳米线样品晶格结构以ZnO纤锌矿结构为主,Mg原子只是作为替位或填隙原子分布在ZnO晶体中。但当样品中X>0.53时,ZnO与MgO的特征衍射峰同时出现在样品的衍射谱图中,说明随原料中Mg原子摩尔比的增加,制备的Zn_(1-x)Mg_xO纳米阵列样品中ZnO纤锌矿结构与MgO岩盐结构将同时存在,样品呈现多晶体结构形式。实验还对比了制备的纯ZnO与不同配比的Zn_(1-x)M_xO纳米线阵列的PL光谱和载流子浓度,发现随Mg含量的增加,Zn_(1-x)Mg_xO阵列紫光发光峰出现了较明显的蓝移现象,同时,测试结果也表明,随Mg含量的增加,Zn_(1-x)Mg_xO阵列的紫光(376nm)和绿光峰(535nm)发光强度都有所减弱,样品的载流子浓度也随之下降。
     在以N为掺杂元素制备的ZnO:N纳米线阵列中,N原子作为填隙原子确实掺杂进入ZnO晶体的晶体结构中,并且随着反应中NH_3气体流量的增加,掺杂到ZnO:N晶体中的N原子逐渐增多。XRD测试结果显示,随着N原子掺杂含量的增加,ZnO:N晶体的(002)易生长面减少。掺杂后的ZnO:N晶体仍为ZnO纤锌矿结构,未产生相分离。扫描电镜显示,NH_3气体在ZnO:N晶体的生长过程中影响了产物的表明形貌。最后,实验采用两步法,制备了一维纳、微米尺度的ZnO:N/ZnO结构P-N结。测试了微米尺度ZnO:N/ZnO结构P-N结的I-V特性,并对比ZnO:N微米线I-V特性的测试结果分析了ZnO:N/ZnO结构P-N结的电学性质。
The aligned doped ZnO nanowire arrays have been successfully prepared on Si(111) substrates via the chemical vapor deposition method with a mixture of ZnO and activated carbon powders as reactants.The Mg and N were inctoduced as the dopant,respectively.The microstructures and optical properties of synthesized nanowire arrays were investigated by X-ray diffraction(XRD),Scanning Electron Microscopy(SEM),Energy Dispersive Analysis of X-ray(EDAX),Raman Spectroscopy,Transmission Electron Microscope(TEM),and Photoluminescence Spectrum(PL) analytic apparatus,respectively.
     The aligned Zn_(1-x)Mg_xO nanowire arrays have been successfully prepared on Si(111) substrates via the chemical vapor deposition method with a mixture of ZnO,Mg and activated carbon powders as reactants.While Mg content was achieved or less about 29 at.%in ZnO lattice,the crystal lattice of the synthesized samples exhibited wurtzite structure.The Mg atoms were distributed into the ZnO crystal as the interstitial and displaced atoms,and there was no a phase separation in the preparing Zn_(1-x)Mg_xO nanowire arrays.However,as the Mg content was up to 53 at.%in the fabricating Zn_(1-x)Mg_xO samples,a clear phase separation phenomena appeared in the Zn_(1-x)Mg_xO crystal.Compared with the PL spectrum of the pure ZnO nanowire arrays,the analytic results showed that a blue-shift of the near-band edge emission with increasing Mg content was observed in the Zn_(1-x)Mg_xO arrays.And the relative intensity of green peak at~535nm and UV emission peak at~376nm were all restrained.
     The aligned N-doped ZnO(ZnO:N) nanowire arrays have been prepared on Si(111) substrates by CVD method with NH_3 gas as nitrogen source.Raman scattering spectra testify the nitrogen atoms were indeed doped into the wurtzite structure ZnO:N nano/microwire crystal as the substitutional atoms.And the content of N atoms in the ZnO crystal is increaseing as the NH_3 gas flux.The XRD pictures reveal that the(002) planes of ZnO:N crystal were decreased as the NH_3 gas increaseing in the reaction.The crystal lattice of the synthesized ZnO:N samples exhibited wurtzite structure,and no phase separation phenomena appeared in the ZnO:N crystal..The SEM images reveal that the growth morphology of the synthesized ZnO:N samples can be influenced by the quantities of doped NH_3 gas.Meanwhile, one dimensional ZnO:N microwire and ZnO:N/ZnO microwire junction devices have been fabricated.TheⅠ-Ⅴcharacters of the devices have been discussed.And the electron properties have been analyzed by compareing theⅠ-Ⅴcharacters of ZnO:N microwires.
引文
[1]F.Masuok,K.Oob,H.Sasaki,et al.,Applicability of ZnO single crystals for ultraviolet sensors,Phys.stat.sol.,2006,3:1238-1241
    [2]K.Keem,H.Kim,G.T.Kim,et al.,Photocurrent in ZnO nanowires grown from Au electrodes,Appl.Phys.Lett.,2004,84:4376-4378
    [3]S.Fung,Xu XiaoLiang,Zhao Youwen,Gallium/aluminum interdiffusion between n-GaN and sapphire.J.Appl.Phys.,1998,84:2355-2357
    [4]Zhiyong Fan,Pai-chun Chang,et al.,Photoluminescence and polarized photodetection of single ZnO nanowires,Appl.Phys.Lett.,2004,25:6128-6130
    [5]冯玉春,胡加辉,张建宝等,过渡层结构和生长工艺条件对Si基GaN的影响,人工晶体学报,2005,5:907-910
    [6]D.G.Baik,S.M.Cho,Application of sol-gel derived films for ZnO/n-Si junction solar cells,Thin Solid Films,1999,354:227-231
    [7]K.Lott,S.Shinkarenko,T.Kirsanova,et al.Atomic absorption photometry of excess Zn in ZnO,Phys Stat.Sol.,2005,2:1200-1205
    [8]LinFeng C.,Takao Y.,Shimizu Y.,et al.,The Properties of Nanocrystalline Metal Oxide Semiconductor-based Gas Sensor Materials and Gases Identification by Neural networks and Multi-gas Sensors,Journal of The American ceramic Society,1995,78(9):2301-2306
    [9]Shimizu Y.,LinFeng-Cang,Takao Y,et al.,Studies on fabrication,characterization and sensing of Pd/InP Schottky diode based hydrogen sensors,Journal of The American ceramic Society,1998,81(6):1633-1643
    [10]B.B.Hooloka Rao,Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour,Materials Chemistry and Physics,2000,64:62-65
    [11]Suzoki Y.,Ohki A.,Mizutani T.,et al.,Nonlinear Forward Drift of Electrons in a Laser Beam,Appl.Phys.Lett.,1987,20:511-517
    [12]N Horio,M Hiramatsu,M Nawata,K Imaeda,T Torii,Preparation of zinc oxide/metal oxide multilayered thin films for low-voltage varistors,Vacuum,1998,51(4):719-722
    [13]贾锐,曲凡钦,武光明,ZnO系低压压敏薄膜的喷雾热分解法制备及膜厚对其压敏特性影响的研究,功能材料,1999,30(6):636-638
    [14]L.E.Brus,The study of Tribological and Optoelectronic Properties of Nanocrystal composite films,J.Phys.Chem.,1984,80:440
    [15]Ying Wang,Walter Mahler.Degenerate four-wave mixing of CdS/polymer composite,Opt.Commun,1987,61:233
    [16]赵于文,超细粉的性能、制备及应用,现代化工,1991,5:52
    [17]Bernard Barbara,Wolfgang Wernsdorfer,Quantum tunneling effect in magnetic particles,Current Opinion in Solid State and Materials Science,1997,2(2):220
    [18]蒋剑莉,李江,纳米ZnO的量子限域效应和激光散射特性研究,物理实验,2004,24:20-25
    [19]张志棍,崔作林,纳米技术与纳米材料,北京:国防土业出版社,2000
    [20]胡志张,无机材料科学基础教程,北京:化学士业出版社,2004
    [21]P.Yu,Z.K.Tang,G.K.L.Wong,M.Kawasaki,A.Ohtomo,H.Koinuma,Y.Segawa,Room-temperature gain spectra and lasing in microcrystalline ZnO thin films,J.Cryst.Growth,1998,184-185:601-605
    [22]D.M.Bagnall,Y.F.Chen,M.Y.Shen,Z.Zhu,T.Goto,T.Yao,Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE,J.Cryst.Growth 1998,184-185:605-609
    [23]Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma,Y.Segawa,Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,Appl.Phys.Lett.,1998,72:3270
    [24]R.F.Servic,Materials Science:Will UV Lasers Beat the Blues,Science,1997,276:895
    [25]周婷,MOCVD法生长ZnO晶体薄膜及p型掺杂研究[硕士学位论文],浙江:浙江大学,2005
    [26]M.H.Huang,S.Mao,H.N.Feick,et al.,Room-temperature ultraviolet nanowire nanolasers,Science,2001,292:1897-1899
    [27]A.H.Chokshi,A.Rosen,J.Karcli,H.Gleiter,Scripts Metall,1989,23:1679
    [28]Yoichiro Nakanishi,Aki Miyake,Hiroko Kominami,Tom Aoki,Yoshinori Hatanaka,Goro Shimaoka,Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,Applied Surface Science,1999,142:233-236
    [29]王锦春,ZnO纳米线的光致发光((PL)行为研究[硕士学位论文],四川:成都:电子科技大学,微电子学与固体电子学专业,2006
    [30]A.Ohtomo,M.Kawasaki,T.Koida,K.Masubuchi,H.Koinuma,Y.Sakurai,Y.Yoshida,T.Yasuda,Y.Segawa Mg_xZn_(1-x)O as a Ⅱ-Ⅵ widegap semiconductor alloy.Appl.Phys.Lett.,1998,72:2466
    [31]Jr H.He,Chang S.Lao,Lih J.Chen,Dragomir Davidovic,Zhong L.Wang.Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties,J.Am.Chem.Soc.2005,127:16376-16377
    [32]X.M.Cheng,C.L.Chien,Magnetic properties of epitaxial Mn-doped ZnO thin films,J.Appl.Phys.,2003,93:7876
    [33]Y.J.Zeng,Z.Z.Ye,J.G.Lu,W.Z.Xu,L.P.Zhu,B.H.Zhao,Identification of acceptor states in Li-doped p-type ZnO thin films,Appl.Phys.Lett.,2006,89:042106
    [34]Hong Seong Kang,Byung Du Ahn,Jong Hoon Kim,Gun Hee Kim,Sung Hoon Lim,Hyun Woo Chang,Sang Yeol Le,Structural,electrical,and optical properties of p-type ZnO thin films with Ag dopant,2006,88:202108
    [35]A.N.Georgobiani,A.N.Gruzintsev,V.T.Volkovb,M.O.Vorobiev,V.I.Demin,V.A.,Dravin.p-Type ZnO:N obtained by ion implantation of nitrogen with post-implantation annealing in oxygen radicals,Nuclear Instruments and Methods in Physics Research A,2003, 514:117-121
    [36]M.H.Huang,S.Mao,H.Feick,et al.,Room-Temperature Ultravilet Nanowire Nanolasers,Science,2001,292:1897-1899
    [37]Seu Yi Li,Pang Lin,Chia Ying Lee,et al.,Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process,J.Appl.Phys.,2004,95:3711-3716
    [38]C.J.Lee,T.J.Lee,S.C.Lyu,et al.,Field emission from well-aligned zinc oxide nanowires grown at low temperature,Appl.Phys.Lett.,2002,81:3648-3650
    [39]M.H.Huang,Y.Wu,H.Feick,et al.,Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,Adv.Mater.,2001,13:113-116
    [40]陈良惠,半导体异质结及其在电子和光电子中的应用,微纳电子技术,2002,39(1):15-16
    [41]沈海军,史友进,纳米电子器件与纳米电子技术,微纳电子技术,2004,41(6):14-19
    [42]Tsukazaki A.,Ohtomo A.,Onuma T.,et al.,Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,Nature Materials,2005,4:42-46
    [43]Guozhen Shen,Yoshio Bando,Baodan Liu,et al.,Characterization and Field-Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process,Adv.Funct.Mater.,2005 10:1-8
    [44]周新翠,叶志镇,陈福刚等,MOCVD法制备磷掺杂P型ZnO薄膜,半导体学报,2006(27)1:91-94
    [45]S.Joon Kwon,Jae-Hwan Park,Jae-Gwan Park,Patterned growth of ZnO nanorods by micromolding of sol-gel-derived seed layer,Appl.Phys.Lett.,2005,87:133112
    [46]Naglaa Fathy,Masaya Ichimura,Electrochemical deposition of ZnO thin films from acidic solutions,Journal of Crystal Growth,2006,294:191-196
    [47]Joowon Hwang,Byungdon Min,Jong Soo Le,et al.,Al_2O_3 Nanotubes Fabricated by Wet Etching of ZnO-Al_2O_3 Core-Shell Nanofibers,Adv.Mater.,2004,5(16):422-425
    [48]R.K.Thareja,H.Saxena,V.Narayanan,Laser-ablated ZnO for thin films of ZnO and Mg,,Zn_(1-x)O,Journal of Applied Physics,2005,98:034908
    [49]Xiangdong Meng,Bixia Lin,Zhuxi Fu,Influence of CH3COO- on the room temperature photoluminescence of ZnO films prepared by CVD,Journal of Luminescence,2006,6:1-4
    [50]Takashi Minemoto,Takayuki Negamib,Shiro Nishiwaki,Hideyuki Takakura,Yoshihiro Hamakawa,Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering,Thin Solid Films,2000,372:173-176
    [51]Hang Ju Ko,Yefan Chen,Soon Ku Hong,Takafumi Yao,MBE growth of high-quality ZnO films on epi-GaN,J.Cryst.Growth,2000,209:816
    [52]Kihyun Keem,Hyunsuk Kim,Gyu-Tae Kim,Jong Soo Lee,Byungdon Min,Kyoungah Cho,Man-Young Sung,Sangsig Kim,Photocurrent in ZnO nanowires grown from Au electrodes,Appl.Phys.Lett.,2004,84:4376
    [53]A.Ohtomo,M.Kawasaki,T.Koida,K.Masubuchi,H.Koinuma,Y.Sakurai,Y.Yoshida,T.Yasuda,Y.Segawa,MgxZn_(1-x)O as a Ⅱ-Ⅵ widegap semiconductor alloy,Appl.Phys.Lett.,1998,72:2466
    [54]Soumya Krishnamoorthy,Agis A.Iliadis,Aravind Inumpudi,Supab Choopun,Ratnakar D.Vispute,Tirumalai Venkatesan,Observation of resonant tunneling action in ZnO/Zn_(0.8)Mg_(0.2)O devices,Solid State Electronics,2002,46:1633
    [55]Won Il Park,Jinkyoung Yoo,Dong-Wook Kim,Gyu-Chul Yi,Miyoung Kim,Fabrication and Photoluminescent Properties of Heteroepitaxial ZnO/Zn_(0.8)Mg_(0.2)O Coaxial Nanorod Heterostructures,J.Phys.Chem.B,2006,110:1516
    [56]Hyucksoo Yang,Y.Li,D.P.Norton,S.J.Pearton Soohwan Jung,F.Ren,L.A.Boatner.Characteristics of unannealed ZnMgO/ZnO p-n junctions on bulk(100) ZnO substrates.Appl.Phys.Lett.,2005,86:172103
    [57]Li Meng-Ke,Wang De-Zhen,Shi Feng,Ding Sheng,Jin Hong,Growth and Characterization of Trumpet-Shaped ZnO Microtube Arrays on Si Substrates,Chin.Phys.Lett.,2007,24:236
    [58]Niranjan S.Ramgir,Dattatray J.Late,Ashok B.Bhise,Mahendra A.More,Imtiaz S.Mulla,Dilip S.Joag,K.Vijayamohanan,ZnO Multipods,Submicron Wires,and Spherical Structures and Their Unique Field Emission Behavior,J.Phys.Chem.B,2006,110:18236
    [59]Q.Wan,T.H.Wang,J.C.Zhao,Enhanced photocatalytic activity of ZnO nanotetrapods,Appl.Phys.Lett.,2005,87:083105
    [60]Seu Yi Li,Chia Ying Lee,Tseung Yuen Tseng,Copper-catalyzed ZnO nanowires on silicon(100) grown by vapor-liquid-solid process,J.Crystal.growth,2003,247:357
    [61]施朝淑,张国斌,陈永虎,ZnO薄膜的特殊光谱性质及其机理,发光学报,2004,03:272
    [62]刘中仕,荆西平,宋宏伟,范丽波,ZnO荧光粉中的紫外发射和绿色发射之间的关系,物理化学学报,2006,22(11):1383
    [63]靳锡联,娄世云,孔德国,Mg掺杂ZnO所致的禁带宽度增大现象研究,物理学报,2006,55(9):4809-4815
    [64]J.Carrasco,N.Lopez,F.Illas,First Principles Analysis of the Stability and Diffusion of Oxygen Vacancies in Metal Oxides,Phys.Rev.Lett.,2004,93:225502
    [65]王全,张琦锋,孙晖,张俊艳,邓天松,吴锦雷,ZnO光子晶体的制备和光学特征,物理化学学报,2007,23(11):1667
    [66]Manoranjan Ghosh,A.K.Raychaudhuri,Structural and optical properties of Zn_(1-x)Mg_xO nanocrystals obtained by low temperature method,Journal of Applied Physics,2006,100:034315
    [67]A.F.Kohan,G.Ceder,D.Morgan,Chris G.Van de Walle,First-principles study of native point defects in ZnO,Phys.Rev.B,2006,61:15019
    [68]X.D.Bai,P.X.Gao,Z.L.Wang.E.G.Wang,Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett., 2003, 82: 4806
    [79] Hang Ju Ko, Yefan Chen, Soon Ku Hong, Takafumi Yao, MBE growth of high-quality ZnO films on epi-GaN, J. Cryst.,Growth, 2000, 209: 816-821
    [80] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Mg_xZn_(1-x)O as a II-VI widegap semiconductor alloy, Appl. Phys. Lett., 1998, 72: 2466
    [81] Z. Z. Ye, J. G. Lu, Y. Z. Zhang, Y. J. Zeng, L. L. Chen, F. Zhuge, G. D. Yuan, H. P. He, L. P. Zhu, J. Y. Huang, B. H. Zhao, Enhanced pyroelectric sensitivity using ferroelectric active mode detection, Appl. Phys. Lett., 2007, 91: 113503
    [82] Kihyun Keem, Hyunsuk Kim, Gyu Tae Kim, Jong Soo Lee, Byungdon Min, Kyoungah Cho, Man Young Sung, Sangsig Kim, Photocurrent in ZnO nanowires grown from Au electrodes, Appl. Phys. Lett., 2004, 84: 4376
    [83] A. F. Kohan, G. Ceder, D. Morgan, Chris G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000, 61:15019
    [84] S. B. Zhang, S. H. Wei, Alex Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, 2001, 63: 075205
    [85] Fumiyasu Oba, Shigeto R. Nishitani, Seiji Isotani, Hirohiko Adachi, Isao Tanaka, Energetics of native defects in ZnO, J. Appl. Phys., 2001, 90: 824
    [86] C. H. Park, S. B. Zhang, S. H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, 2002, 66: 073202
    [87] H. Kim, A. Cepler, M. S. Osofsky, R. C. Y. Auyeung, A. Pique, Fabrication of Zr-N codoped p-type ZnO thin films by pulsed laser deposition, Appl. Phys. Lett., 2007, 90: 203508
    [88] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett., 2002, 81: 1830
    [89] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. I. Belogorokhov, E. A. Kozhukhova, A. V. Markov, A. Osinsky, J. W. Dong, S. J. Pearton, Persistent photoconductivity in p-type ZnO(N) grown by molecular beam epitaxy, Appl. Phys. Lett., 2007, 90: 132103
    [90] Z. Q. Fang, B. Claflin, D. C. Look, Lei L. Kerr, Xiaonan Li, Electron and hole traps in N-doped ZnO grown on p-type Si by metalorganic chemical vapor deposition, J. Appl. Phys., 2007, 102: 023714
    [91] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420: 57
    [92] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. Yang, Single-crystal gallium nitride nanotubes, Nature, 2003, 422: 599
    [93] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers, Appl. Phys. Lett., 2002, 80: 1058
    [94]W.I.Park,G.C.Yi,M.Kim,and S.J.Pennycook,Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,Adv.Mater.,2003,15:526
    [95]J.M.Bian,X.M.Li,C.Y.Zhang,W.D.Yu,X.D.Gao,p-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions,Appl.Phys.Lett.,2004,85:4070
    [96]刘洁,蒋毅坚,ZnO晶体的偏振拉曼散射的深入研究,光散射学报,2007,9:330-336
    [97]A.Kaschner,U.Haboeck,M.Strassburg,M.Strassburg,G.Kaczmarczyk,A.Hoffmann,C.Thomsen,A.Zeuner,H.R.Alves,D.M.Hofmann,B.K.Meyer,Nitrogen-related local vibrational modes in ZnO:N,Appl.Phys.Lett.,2002,80:1909
    [98]O Senthil Kumar,Eisuke Watanabe,Ryuichi Nakai,Naoki Nishimoto,Yasuhisa Fujita,Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,J.Cryst.Growth,2007:298,491-494
    [99]Ming-Lung Tu,Yan-Kuin Su,Chun-Yang Ma,Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering,J.Appl.Phys.,2006,100:053705
    [100]Xinqiang Wang,Shuren Yang,Jinzhong Wang,Mingtao Li,Xiuying Jiang,Guotong Du,Xiang Liu,R.P.H.Chang,Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition,J.Cryst.Growth,2001,226:123-129
    [101]L.Artus,R.Cusco,E.Alarcon-Llado,G.Gonzalez-Diaz,I.Martil,J.Jimenez,B.Wang,M.Callahan,Isotopic study of the nitrogen-related modes in N~+-implanted ZnO,Appl.Phys.Lett.,2007,90:181911
    [102]Y.G.Wang,S.P.Lau,X.H.Zhang,H.W.Lee,H.H.Hng,B.K.Tay,Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films,Journal of Crystal Growth 2003,252:265
    [103]Jun-Liang Zhao,Xiao-Min Li,Ji-Ming Bian,Wei-Dong Yu,Can-Yun Zhang,Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties,J.Cryst.Growth 2005,280:495-501
    [104]Yongge Cao,Lei Miao,Sakae Tanemura,Masaki Tanemura,Yohei Kuno,Yasuhiko Hayashi,Low resistivity p-ZnO films fabricated by sol-gel spin coating.Appl.Phys.Lett.,2006,88:251116
    [105]Chin-Ching Lin,San-Yuan Chen,Syh-Yuh Cheng,and Hsin-Yi Lee,Properties of nitrogen-implanted p-type ZnO films grown on Si_3N_4/Si by radio-frequency magnetron sputtering,Appl.Phys.Lett.,2004,84(24):5040
    [106]Lukas Schmidt-Mende,Judith L.MacManus-Driscoll,ZnO-nanostructures,defects,and devices,Materials today,2007,10(5):40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700