基于逆向工程技术的体表器官仿真修复重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体表器官缺损是现代整形外科领域的治疗重点和难点,体表器官的仿真修复重建是整形外科水平的最高体现。在传统的整形外科模式中,医生主要依靠自己的主观经验完成诊断分析和手术设计,整个过程缺乏客观评判指标和有效辅助手段,极大地影响到手术的效果和安全性。本研究借鉴工业领域逆向工程思想的先进技术,建立体表快速立体成像、手术仿真模拟设计、疗效客观评价系统,以期为体表组织器官修复重建提供一种全新的治疗模式,达到个性化治疗的目的。论文主要研究内容如下:
     1人体体表组织器官的三维数据采集
     高效、高精度地实现被测对象的三维数据获取,是逆向工程的第一环节,也是实现计算机辅助手术模拟的基础。基于相位偏移测量原理的莫尔条纹测量方法解决了传统测量方法不适合采集活体表面三维数据采集的问题。应用CT扫描获取器官内部结构的二维图像信息,用数学方法经过电子计算机处理而重建断层截面图象,根据不同位置的断层图像建立被测器官的三维信息。这两种方法相互补充,可以根据不同需求分别获取器官表面或内部结构的三维数据信息,充分满足器官再造的需求。
     2数据预处理
     针对相位偏移测量原理采集的人体点云数据,数据处理主要包括滤波和拼接。结合人体数据的自身特点,设计了矩形窗口加权中值滤波器,使用滤波器可以以较高的精度剔出大部分噪声数据。
     3构建三维曲面模型
     将经预处理后的一组点云数据导入逆向工程软件,通过对多视点云的拼接拟合,融合构建成为三角面片组成的曲面;再将构成曲面进行补洞、平滑、细分、曲面拟合、曲面光顺等处理,构建精确完整的数字化曲面模型。
     应用数据转换软件和三维重建软件完成了基于DICOM标准的CT图像数据采集和三维重建,获得了颅骨模型的三维数字化曲面模型。
     4制作三维实体模型
     将三维数字化曲面模型转换为STL格式后输入到激光快速成型机,制造出三维实体模型。实体模型能够精确地复制和再现被测对象的形貌状态,直观、详尽的表达解剖结构和周围关系。对于复杂病例,手术前可以在三维实体模型上进行手术模拟。
     5精度和误差分析
     对精度的追求是逆向工程技术在人体体表器官仿真修复重建中应用的首要目标。本研究通过对人体器官相应三维形貌信息进行传统方法测量和计算机辅助测量,验证构建的三维数字化模型和三维实体模型的精度均小于0.2mm,能够满足临床应用的要求。
     6临床应用研究
     本研究分别对颜面部软组织畸形、小耳畸形、颅骨缺损以及乳房整形进行了临床应用研究。
     (1)在逆向工程软件中对三维数字模型人工交互曲面变形方法或镜像模拟法设计手术后效果,并测量分析出需要整形修复的量化数据,为手术提供参考。
     (2)应用快速原型技术,制作正常的实体模型,为手术前设计和手术中修复重建提供直观的参考。
     (3)应用CAD软件分析缺损和畸形部位,设计植入体的三维数字模型,应用数控机床生产出与缺损或畸形部位完全契合的个性化植入体,无需再在手术台上对植入体进行裁剪、塑形,缩短手术时间,降低手术难度,提高手术安全性。
     (4)将患者手术前、手术模拟和手术后的三维数字模型应用逆向工程软件进行配准、分析,验证手术效果和手术设计方案的实现程度,
     (5)将患者手术后的颜面部数字化曲面模型和模拟的手术后曲面模型导入逆向工程软件,进行配准比较,验证手术设计方案的实现程度。
     课题引入逆向工程思想的先进知识,建立了体表快速立体成像、手术仿真模拟设计、疗效客观评价系统。经精度验证完全可以满足临床需求。通过试验研究和临床应用研究验证了该系统在体表组织器官仿真修复重建中的可行性,获得了良好的手术效果。但是本研究尚未能建立成为一个完整的计算机系统,进行手术预测和模拟时还比较复杂。此外,器官再造手术前后组织的形态变化是手术精确化的重大障碍,手术前模拟以及模型外科都是将组织器官认为是刚性结构,预测不够精确。在进一步地研究中我们要将现有的系统和程序结合起来,并构建人体体表器官的三维数据库和数据自动分析程序,建立组织生物力学的三维有限元分析模型,为体表组织器官的修复重建建立一个界面友好的计算机辅助三维虚拟现实的计算机系统。
The restoration and reconstruction of surface organs remains the challenging field inmordern plastic surgery. There are still many technical obstacles for plastic surgeons to makea new vividely substitute. In traditional way, surgeons make the diagnostic analysis andoperative plan mainly depending on theire limitied personal experiences, which seems moresubjective and may jeopardize the final outcome. Originated from the idea of industrialreverse engineering, a new therapeutic model is developed with the aim to make a quickpreoperative three-dimensional imaging, a mimic model shaping, and a objectivepost-operative outcome evaluation. This dissertation includes the following 6 major parts:
     1.3-dimantional data acquisition
     3-dimantional data collection is the primary step in reverse project and based thecomputer-asisted operative manipulation. Two kind of method is adopted to efficiently andprecisely obtain the 3-dimantional data. The first method is Moire-fringe technology, which isbased on the phase measuring profilometry, to collect the 3-D surface data on a livingobjective. The other method is CT. CT scan can easily get the 2-dimentional data of a organ'sinternal structure. Processed by some special software, these data can be used to reestablishthe internal 3-D framwork of a specific organ. In reconstructive surgery, no matter external3-D data or the underface, internal 3-D data is required, the surgeon can readily get what theydesired through these two reliable methods, making a solid basis for further work.
     2. Data preprocessing
     Aiming at character of body points cloud data measured by optical photogrammetryscanner, data disposal include mainly filter and registration. Combined with self-character ofbody data, this paper designed a Rectangle Window Weighted Median Fiter. Using of Fitercan eliminate most noise data with higher accuracy.
     3. Surface entity model construction
     After scanning, point cloud is transmitted to work space and modelling under software ofreverse engineering. Several point cloud from different visual angle is obtained. Data registration can transform them to the same coordinate system and obtain registered 3D trigon.These trigonal patches can be processed further, such as hole-filling, smoothing, subdivision,surface merger, surface smoothing. Finally a precision intergrated digital surface entity modelis formed.
     The obtained CT scan data, which fulfill the DICOM standard, are modelling undersoftware of data transformation and 3-D reconstruction, and further produce the surface entitymodel of craniofacial bone.
     4. Body entity model reconstruction
     Transformed into STL format, the 3-D digital surface entity model is put into astereolithography and the body entity model is then manufactured. This model presents theprecise topograghy of the prototype, including the anatomic features and the surroundingrelationships. It is also beneficial to some complicated surgical cases, for preoperativepractice being feasible.
     5. Precision and erroe analysis
     The primary goal of plastic surgical reverse engineering is to make a high precision finalmodel. In this study, traditional mearsuring method and computer-asisted mearsuring methodare used respectively to reveal the dimentional differences between the prototype and the finalmodel. In both method, less than 0.2 mm differences are found, which obviously meet theclinicla requirement.
     6. Clinical application
     One part of this research is its clinical application. Some patients, such as those presentwith facial soft tissue deformities, microtia, cranial bone defects, breast deformities, arebeneficial from this study.
     (1) In some cases, artificial interact surface transformation of the 3-D digital model, ormirror simulation method is used. So the surgeons can get the desired post-operativeappearance and the specific data which need to be altered during operation. This methodprovides an objective basis for operative plan.
     (2) A body entity model can readily be obtained with the rapid-prototyping technique insome patients. On this model, the surgeons can make practice and whatever modification ifneeded, to fulfill the operative plan.
     (3) Also the implant can be produced with the modelling of CAD software and digitalmanufacturing. This kind of implant has the exact defect dimention, concaves andconcvexness, which apparently avoid in-operation shaping and tailoring, and make theoperative outcome more satisfactory.
     (4) A objective evaluation system can be established through the comparision of pre-op3-D imaging, in-op models, post-op 3D imaging. Also the feasibility of such kind of operationcan be appraised, if large sample is provieded.
     This study first introduces reverse engineering into plastic surgery, and successfullyestablished a new dianostic and therapeutic system consisting of rapid prototyping of surfaceorgans, computer-asisted preoperative design and objective outcome evaluation. The precisionof this system is high enough for clinical application. The feasibility is also confirmed by thelaboratory and clinic experiments, besides the satisfactory operative results being obtained.But this new system is not yet perfect. One disavantage is the too complicated process insimulation and manipulation. The other disavantage relate to the presumed tissue's physicalcharacter. In this system, not only the prototype's but also the substitute's tissue is presumedto be rigid, not as pliable as real one. This inevitably affects the final result of reconstruction.In further studies, the present system will evolve into a more friendly interface, easycontrolling, computer-asisted virtual 3-D modeling, biological physical limited elementsanalysis system.
引文
1.朱军,王艳萍,梁娟等.1988~1992年全国先天性无耳和小耳畸形发病率的抽样调查[J].中华耳鼻喉科杂志,2000,35(1):62~65.
    2.王炜.整形外科学.浙江:科学技术出版社[M].1999,1062~1094.
    3.代礼,朱军,周光萱,等.1996—2000年中国围产儿总唇裂畸形的监测[J].中华口腔医学杂志,2003,38(6):438~440.
    4. Buseman S, Mouchawar J, Calonge N, et al. Mammography screening matters for women with breast carcinoma [J]. Cancer. 2003, 15: 352-358.
    5. Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues [J]. IEEE Trans Pattern Anal Mach Intell. 2004, 26(5): 530-549.
    6. A statistical model for contours in images [J]. IEEE Trans Image Process. 2004, 26(5): 626~638.
    7. Hashemi J, Chandrashekar N, Cowden C, Slauterbeck J. An alternative method of anthropometry of anterior cruciate ligament through 3-D digital image reconstruction [J]. J Biomech. 2005, 38(3): 551~555.
    8. Appenzeller T. Ozone loss hits us where we live [J]. Science, 1991, 254: 645~652.
    9.邹波,吕培军,王勇.标准牙冠数据的获取[J].实用口腔医学杂志,2002,18(2):550~552.
    10.高洪涛,颜永年,祁鹏.医学牙颌石膏模型数字化技术研究[J].制造业自动化.2005,27(8):9~12.
    11.王克强,杨钦,陈建治,等.基于逆工程的口腔修复体CAD研究[J].系统仿真学报.2001,13:580~582.
    12. A. Coombes, J. P. Moss, A. D. Linney, R. Richards, et al. A Mathematical method for the comparison of three dimensional changes in the facial surface[J]. European Journal of Orthodontics [J]. 1991, 13: 95~110.
    13. Aung S C, Foo C L, Lee S T. Three dimensional laser scan assessment of the Oriental nose with a new classification of Oriental nasal types [J]. Br J Plast Surg, 2000, 53: 109~116.
    14. L H Jin, Y Otani, Shadow moire profilometry by frequency [J]. Opt Eng. 2001, 40: 1383~1386.
    15.金涛,童水光等.逆向工程技术[M].北京:机械工业出版社,2003.
    16.王霄.逆向工程技术及其应用[M].北京:化学工业出版社,2004,
    17.金涛,单岩,胡明辅等.反求工程中产品三维模型重建技术综述[J].机械科学与技术.2001,20(5):787~791.
    18.朱玉红.反求工程中的三维测量技术[J].测量与设备.2004,10:5~8.
    19.李久权,王平,王永强等.逆向工程及其在CAD软件中的实现[J].微计算机信息.2006,22(8):141~143.
    20.赵中华,王建新.正向工程、逆向工程、双向工程技术及应用[J]计算机应用,2003.23(6):76~79.
    21.粟全庆,王宏,赵汝嘉.实物逆向工程的关键技术分析[J].机械设计.1999,6:4~7.
    22.杜立彬,高晓辉,王昊,夏进军.逆向工程各关键技术的研究进展[J]机械制造,2004,(06)
    23.来新民.基于计算机视觉的逆向工程关键技术研究.天津大学博士学位论文.1997.
    24.李永怀,冯其波.光学三维轮廓测量技术进展[J].激光与红外.2005,35(3):143~147.
    25.周旭东,李艳梅.人体三维测量技术分析[J].上海纺织科技.2002,30(6):58~60.
    26.李洪全.三坐标测量技术在汽车制造业的应用[M].天津:天津大学出版社,2004.
    27. Keicher D M, Smugeresky J E, Romero J A. Using the laser engineered net shaping(LENS) process complex component from a CAD solid model[J]. SPIE, 1997, 91: 2993.
    28.王英惠,赵汝嘉,栗全庆.基于逐层切削扫描测量法的实用化逆向工程[J].小型微型计算机系统,2003,24(07):1405~1407.
    29. Ac Kerman MJ. The visible human project: a resource for education[J]. Acad Med, 1999, 74(6): 667~670.
    30. Spitzer VM, Ac Kerman MJ, Scherzinger AL, etal. The visible human male: a technical report[J]. J Am Med Inform Assoc, 1996, 3(2): 118~130.
    31. Chung MS, Kim SY. Three dimensional image and virtual dissection program of the brain made of Korean cadaver[J]. Yousei Med J, 2000, 41(3): 299~303.
    32.柴慧臻,杜光伟,罗述谦.中国第1例数字化女虚拟人的三维重建[J].中国医学影像技术.2003,19(4):387~389.
    33.唐雷,原林,黄文华,等.“虚拟中国人”(VCH)数据采集技术研究.中国临床解剖学杂志[J].2002,20(5):324~326.
    34.罗冬梅.快速而精确的激光测量技术[J].产品与技术,2002,4:69~70.
    35.叶晓平.激光扫描技术在逆向工程中的应用[J]制造技术与机床.2004,06:1058~1061.
    36.金树人,姚月龄,高勃等。应用激光扫描法实现磨牙金属全冠三维重建的试验研究[J].口腔颌面修复学杂志.2003,4(1):47~48.
    37. Chen LH, Tsutsumi S, Lizuka T. A CAD/CAM technique for fabricating facial prostheses: a preliminary report[J]. Int J Prosthodont. 1997, 10 (5): 467~472.
    38. Runte C, Dirksen D, Delere H etal. Optical data acquisition for computer-assisted design of facial prostheses[J]. Int J Prosthese. Int J Prosthodont. 2002, 15 (2): 129~132.
    39.欧宗瑛,张勇,侯建华等.医学图像三维重建系统的数据结构表达及表面模型的构建[J].生物医学工程学杂志.2002;19(2):239~243.
    40. Futran ND, Wadsworth JT, Villaret D, etal. Midface reconstruction with the fibula free flap [J]. Arch Otolaryngol Head Neck Surgery, 2002, 22(1): 17.
    41. M.Takeda, K.Mutoh. Fourier transform profilometry for the auto measurement of 3D object shapes[J]. Appl. Opt, 1983, 22: 3977~3982.
    42. L H Jin, Y Otani, Shadow moire profilometry by frequency[J]. Opt Eng. 2001, 40: 1383~1386.
    43.反求工程中三维几何形状测量及数据预处理[J].机电工程技术,2001,30(1):7~10.
    44.赵宇峰.基于面结构光投影法的三维物体形状检测与重建技术的研究[D].东南大学硕士学位论文,2001.
    45.吴琦峰.基于ATOS测量系统的常规工程零件CAD模型重构方法研究[D].重庆大学硕士学位论文.2003.
    46.孙世为,王耕耘,李志刚.逆向工程中多视点云的拼合方法[J].计算机辅助工程,2002,1:8~12.
    47.王淑君,赵玉刚,赵国勇.曲面激光数字化测量数据平滑方法的研究[J].计算机测量与控制,2002,10(08):494~496.
    48.王淑君,赵玉刚,赵国勇.曲面激光数字化测量数据平滑方法的研究[J].计算机测量与控制,2002,10(08):494~496.
    49.周儒荣,张丽艳,苏旭等.海量散乱点的曲面重建算法研究[J].软件学报,2001,12(02):249~255.
    50.熊邦书,雷鸰.三维散乱数据的非均匀简化算法[J].计算机工程,2004,30(22):32~34.
    51.张丽艳,周儒荣,蔡炜斌等.海量测量数据简化技术研究[J].计算机辅助设计与图形学学报,2001,13(11):1019~1024.
    52.何炳蔚,林志航.逆向工程中的三维测量数据点云的分割[J].小型微型计算机系统.2004,25(06):1068~1071.
    53. Chan VH, Bradley C, Vickers GW. A multi-sensor approach for rapid digitization in reverse engineering[J]. Journal of Manufacturing Scienceand Engineering. 2000. 122: 725~733.
    54.Puntambekar N V, Jablokow A G, Sommer H J.逆向工程中三维模型生成综述[J].计算机集成制造系统,1994,7(4):259-268.
    55.郭伟青,李际军,吴小刚.逆向工程中扫描数据点的曲面重构[J]计算机集成制造系统-CIMS.2004,10(09):1060~1064.
    56.王英惠,赵汝嘉.逆向工程中自由曲面的自适应采样与建模[J].小型微型计算机系统.2002,23(11)1406~1408.
    57.柯映林,肖尧先,李江雄.反求工程CAD建模技术研究[J]计算机辅助设计与图形学学报,2001,13(06):571~576.
    58.吕震.反求工程CAD建模中的特征技术研究[D].浙江大学:硕士学位论文.2002.
    59.王运赣.快速成型技术[M].华中理工大学出版社.1999
    60.朱林泉,白培康,朱江淼.快速成型与快速制造技术[M].北京:国防工业出版社.2003.
    61.格布哈特著,曹志清等译.快速原型技术[M].北京:化学工业出版社.2005
    62.宾鸿赞,杨明.快速成型制造技术—制造技术的新突破[J].中国机械工程.1993,4(6):22.
    63.归来,余东,张智勇等.快速成形技术基本原理及其在颅颌面外科临床中的应用[J].中国临床康复第.2006,10(1):103~106.
    64.苏亚辉.快速成型技术及其在临床医学中的应用研究[D].合肥:合肥工业大学,硕士学位论文.2002.
    65.段彦静,孙文磊.逆向工程和快速成型技术及医学应用[J].医疗卫生设备.2006,27(10):31~33.
    66. R. Petzold, H. Zeilhofer, W. A. Kalender. Rapid Prototyping Technology in Medicine—Basicand Applications[J]. Computerized Medical Imaging and Graphics, 1999, 23 (5): 277~284.
    67.彭如恕,王剑彬,姚奇志.快速原型技术在医学中的应用研究[J].激光杂志.2005,26(03):87~88.
    68.郑国焱.计算机辅助外科手术系统技术进展和应用[J].国外医学生物医学工程分册,1995,18:202~209.
    69.王德江,杨俊,赵继宗,等.计算机辅助导航在脊柱脊髓手术中的应用[J].中华医学杂志,2004,84:1554~1557.
    70. Pieper SD, Laub DR, Rosen JM. A finite-dement facial model for Simulating plastic surgery[J]. Plast Reconstr Surg, 1995, 96: 1100~1105.
    71.郑国焱.计算机辅助外科手术计划和模拟:原理和方法[J].生物医学工程学杂志.1995,12:271~276.
    72. Altobelli DE, Kikinis R, Mulliken JB, et al. Computer-assisted three-dimensional planning in craniofacial srugery[J]. Plast Reconstr Surg. 1993, 92: 576~587.
    73.孙应明,段银钟,惠光燕等.计算机辅助整形外科手术的预测和模拟系统[J].中国美容医学,2002,11:473~475.
    74.罗春红.基于数字相位条纹投影技术的三维测量[D].湖南大学硕士学位论文.2003.
    75.刘元坤.基于结构光投影的光学面型测量方法研究[D].四川大学硕士学位论文.2004.
    76.徐东升.逆向工程在整形医学中的应用及开发[D].北京航空航天大学.2006
    77. Huang Ming-Chih, Tai Ching-Chih. The Pre-Processing of Data Points for Curve Fitting in Reverse Engineering [J]. The International Journal of Advanced Manufacturing Technology. 2000, 16(9): 635~642
    78.王从军.快速成型数据处理及若干关键技术的研究[D].武汉:华中科技大学,2000.
    79. Iterative Closet Point)[Paul.J.Besl, Neil D. McKay. A Method for Registration of 3D Shapes[J]. IEEE Transacaions On Pattern Analysis and Machine Intelligence, 1992, 14(2): 234~141.
    80. Yang Chen, Gerard Medioni. Object Modeling by Registration of Multiple Range Image[R]. Sacramento, California: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, 1991.
    81. Robert Bergevin, Marc Soucy, Herve Gagnon and Denis Laurendeau. Towards a General Multi-view Registration Technique[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996, 18(5): 540~547.
    82. Tamas Varady. Reverse Engineering of Geometric: Modeling an Introduction[J]. Computer-Aided Design, 1997, 29(4): 255~268.
    83.黄廷祝,李正良等.矩阵理论[M].北京:高等教育出版,2003.
    84.殷人昆,陶永雷等.数据结构[M].北京:清华大学出版社,2003.
    85. Park H, Kim K. Smooth surface approximation to serial cross-sect ions[J]. Computer Aided Design, 1996, 29(12): 995~1005.
    86. Ma W, Kruth J P. Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces[J]. Computer Aided Design. 1995, 27(9): 663~675.
    87.查选平,杜芳,高建华,等.应用计算机辅助投射条纹测试技术测量乳房的三维形貌[J].中华医学美学美容杂志.2005,11:321~325.
    88. Ji Y, ZhangF, SchwartzJ, etal.: Assessment of facial tissue expansion with three-dimensional digitizer scanning[J]. J Craniofac Surg. 2002, 13: 687~692.
    89. Galdino GM, Nahabedian M, Chiaramonte M, et al. Clinical applications of three-dimensional photography in breast surgery[J]. Plast Reconstr Surg. 2002; 110: 58~70.
    90. Losken, Albert, Seify, Hisham, Denson, Donald D, et al. Validating Three-Dimensional Imaging of the Breast[J]. Ann Plast Surg. 2005, 54(5): 471-476.
    91. Honrado CP. Larrabee WF Jr. Update in three-dimensional imaging in facial plastic surgery[J]. Current Opinion in Otolaryngology & Head & Neck Surgery. 2004 12: 327~331.
    92. Destrempes F, Mignotte M. Departement d'Informatique et .A statistical model for contours in images[J]. IEEE Trans Pattern Anal Mach Intell. 2004, 26(5): 626~638.
    93. Fu CW, Wong TT, Tong WS, Tang CK, Hanson AJ. Binary-space-partitioned images for resolving image-based visibility[J]. IEEE Trans Vis Comput Graph. 2004, 10(1): 58~71.
    94. Chen SY, Li YF. Automatic sensor placement for model-based robot vision[J]. IEEE Trans Syst Man Cybern B Cybern. 2004, 34(1): 393-408.
    95.谢小棉,李树祥,陈思平等.矢量场平滑及其在医学体数据场三维重建中的应用[J].中国生物医学工程学报.2004,23(3):205~209.
    96.邵象清.人体测量手册[M].上海:上海辞书出版社,1985:202~223.
    97.王兴伟,郑伟,刘宝善等.战斗机飞行员面部三维形态数字化测量研究[J].中华航空航天医学杂志,2005,16(04):258~292.
    98.罗任鉴,朱上上,孙守迁.人体测量技术的现状和发展趋势[J].人体工效学,2002,8(2):31~34.
    99. Zhang B, Molenbroek JFM. 3D anthropometric data to support human centered industrial design[D]. Tianjin: Tianjin Science and Technology, 2001. 142~144.
    100. Lee KS, Chun JS, Suh DA, et al. A comparsion of a direct body measurement and indirect measurement for anthropometric datd[M]. Tianjin: Tianjin Science and Technology Press, 2001. 148~150.
    101. Cai WD, Feng DG. Web based digital medical images[J]. Computer Graphics Application. 2001, 44~47.
    102.杨斌,黄洪章,李晶等.颅颌面整形外科立体可视化和手术仿真模拟系统的建立[J].现代临床医学生物工程学杂志.2000,6(3):170~174.
    103.李晶,雷曼平,杨斌等.颅颌面计算机手术模拟系统中的三维测量[J].第四军医大学学报.2003,24(2):186-189.
    104.归来.颅颌面外科前沿技术瞻望[J].整形再造外科杂志.2005,2(4):193~195.
    105.归来,罗茂萍,戴汝平等.电子束CT三维重建技术在颅颌面外科的应用[J].中华整形外科杂志.2001,17(5):313~315.
    106.朱光辉.颅颌面部组织测量方法应用进展[J].中国美容医学.2003,12(2):214~216.
    107.张庆福,吕春堂,周中华.快速原型技术在颅颌面整复中的应用[J].国外医学生物医学工程分册.2005,28(1):10~13.
    108.邵象清.人体测量手册[M].上海:上海辞书出版社.1985.57~64.
    109. Artzy E. Display of three dimension information in computer tomography[J]. Computer Graphics and Image Processing. 1979, 9: 196.
    110. Herman GT, Lin HK. Three-dimentional display of human organs from computed tomogramus[J]. Comput Graph Proc. 1979, 9: 1-21
    111. Vannier MW, Marsh JL, Warren JO. Three-dimensional CT reconstruction images for craniofacial surgical planning and evaluation[J]. Radiology. 1984, 150(1): 179.
    112. Marsh LJ, MW VannierS, Bresina KM Hemmer. Application of computer graphics in craniofacial surgery[J]. Clinic Plastic Surgery. 1985, 12: 279
    113. Fuhrmamn RA, Frohberg U, Diedrich PR. Treatment prediction with three-dimensional computer tomographic skull models[J]. Am J Orthod Dentofacial Orthop. 1993, 94(2): 56.
    114.刘洪臣,刘宁,吴高洪,等.颞下颌关节CT图像计算机三维重建方法的探讨[J].现代口腔医学杂志.1995,9(1):17.
    115.胡敏,周继林,洪民等.颞下颌关节三维影像重建与显示.军医进修学院学报,1995,16(3):256
    116.归来,罗茂萍,戴汝平等.颅颌面外科与三维重建技术[J].CT理论与应用研究.2000,9(3):31~34.
    117.童双立.多层螺旋CT的新进展.CT理论与应用研究[J].2005,14(4):50~53.
    118. Matteson SR, Bechtold W, Phillips C, et al. A method for three-dimensional image reformation for quantitative cephalometric analysis[J]. Journal of Oral & Maxillofacial Surgery. 1989, 47(10): 1053~1061.
    119. Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements[J]. American Journal of Physical Anthropology. 1990, 82(3): 283~294.
    120. Choi Jy, Kim NK. Analysis of medical of medical rapid prototyping model[J]. Int J Oral Maxiillfial Surgery. 2002, 31: 23~32.
    121. Fujino T, Nakajima H, Kaneko T, et al. Concept of simulation surgery[J]. Keio J Med. 1993, 42: 104~114.
    122.杨斌,张涤生,黄洪章等.颅面外科三维诊断分析和手术设计系统的临床应用研究[J].中华整形外科杂志.2001,17:80~83.
    123.王硕,唐龙.颌面外科手术三维模型测量和实体模型制造数据提取[J].计算机工程与应用.2001,18:127~129.
    124. Spitzer VM, Ac Kerman MJ, Scherzinger AL, etal. The visible human male: a technical report[J]. J Am Med Inform Assoc. 1996, 3(2): 118-130.
    125. Chung MS, Kim SY. Three-dimensional image and virtual dissection program of the brain made of Korean cadaver[J]. Yousei Med J. 2000, 41 (3): 299-303.
    126.钟世镇,李华,罗述谦,等.中国数字化虚拟人研究.香山科学会议[J].2001.174:4~12.
    127.钟世镇,李华,林宗楷等.数字化虚拟人背景和意义[J].中国基础科学.2002,6:12-16.
    128.苏显渝,李继陶.三维面形测量技术的新进展[J].物理.1996,25(10):614-620.
    129. Milan Sonka, Vaclav Hlavac, Roger Boyle. Image processing, analysis, and machine vision[J]. Second Edition. Thomson Leaning and PT Press. 1999: 1-6.
    130.张广军.机器视觉.科学出版社.2005:1-14.
    131. Kawabata H, Kawai H, Masada K, et al. Computer-aided analysis of Z-plasties. Plast Reconstr Surg. 1989, 83: 319~329.
    132.王晓军,刘志飞,乔群.先天性小耳畸形修复中的耳甲腔重建.整形再造外科杂志.2005,2(3):165~166.
    133.吴建明,吴包金,林子豪等.四种耳郭支架材料全耳再造的临床应用评估[J].中国实用美容整形外科杂志.2004,15(6):297~299.
    134. C. Quan, X.Y. He, C.F. Wang, et al. Shape measurement of small objects using LCD fringe projection with phase shifting [J]. Optics Communication, 2001, 189: 21~29.
    135. Huang Xue mei, Zhang Wen qiang, Ye Ming, etal. Design and fabrication of auricular prostheses based on rapid proto type technology[J]. Journal of Shanghai Jiaotong University. 2003, 37(5): 733~736.
    136.朱军,王艳萍,梁娟等.1988~1992年全国先天性无耳和小耳畸形发病率的抽样调查[J].中华耳鼻咽喉科杂志.2000,35(1):62~65.
    137. Harris J, Kallen B, Robert E. The epidemiology of anotia and microtia[J]. J Med Genet. 1996, 33: 809~813.
    138. Mastroiacovo P, Corchia C, Botto LD, etal. Epidemiology and genetics of microtia anotia: a registry based study on over one million births[J]. J Med Genet. 1995, 32: 453~457.
    139.杜佳梅,庄洪兴,蒋海越等.先天性小耳畸形患者及其家属心理状况调查研究[J].中华整形外科杂志.2005,21(3):218~221.
    140.韩强,张富强,焦婷等.耳廓三维图像数据库的建立[J].口腔颌面修复杂志.2004,5(2):123~126.
    141. Coward TJ, Watson RM. Use of laser scanning and CAD/CAM systems in the fabrication of auricular prostheses[J]. Ouintessence of Dental Technology. 1997, 23: 47~53.
    142. Coward TJ, Scott BJ, Watson RM, et al. Laser scanning of the ear identifying the shape and position in subjects with nomal facial symmetry[J]. Int J Oral Maxillofac Surg. 2000, 29(1): 18~23.
    143. Cao YL, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes using apolymer-cell construction to produce tissue engineered cartilage in the shape of a human ear[J]. Plast Reconstr Surg. 1997, 100: 297~302.
    144.汪绪武,胡秀云,李辉.耳畸形整形术[J].中华医学美学美容杂志.2005,11(5):263~266.
    145.魏庆堂,牛洪涛,周晶.多层CT三维成像在先天性外、中、内耳畸形中的应用[J].中国急救医学.2003,36(6):507~509.
    146.冷同嘉,李霞,赵守琴.耳畸形手术的面神经防护(519例手术回顾分析)[J].中华耳鼻咽喉科杂志.1997,32(1):11~14.
    147.张志远,张剑.耳廓缺损的赝复物应用[J].国外医学耳鼻咽喉科学分册,2003(3):36~38.
    148.黄雪梅,张文强,叶铭,等.基于快速成型技术的人耳赝复体的设计与制造[J].上海交通大学学报,2003,37(5):733~736.
    149.焦婷,叶铭,张富强,等.应用快速原形法(FDM法)制作耳廓模型的基础研究[J].上海口腔医学,2002(4):29~31.
    150.罗先波,钟约先,李仁举,等.基于标志点的多视角三维测量数据配准技术的研究[J].计量技术.2004,5:20~22.
    151. Shakespeare, V, Cole, R. P. Measureing patient-based outcomes in a plastic surgery service: beast redution surgical patients[J]. Br. J. Plast. Surg. 1997; 50: 242~248.
    152. Qiao Q, Zhou G, Ling Y. Breast volume measurement in young Chinese women and clinical applications[J]. Aesthetic Plast Surg. 1997, 21: 362~368.
    153. Loughry CW, Sheffer DB, Price TE, etal. Breast volume measurement of 248 women using biostereometric analysis[J]. Plast Reconstr Surg. 1987, 80: 553~558.
    154. Tebbetts JB. A system for breast implants election based on patient tissue characteristics and implants of ttissue dynamics[J]. Plast Reconstr Surg. 2002, 109: 1396~1409.
    155. Nagler RM, Braun J, Daitzman M, etal. Spiral CT angiography: an alternative vasculare valuation technique for head and neck microvascular reconstruction[J]. Plast Reconstr Surg. 1997, 100: 1697~1702.
    156.张韬,张燕,李彦生.CTA及CAD\CAM技术在吻合血管的游离腓骨瓣下颌骨重建中的应用[J].中华整形外科杂志.2006,22(5):325~327.
    157. Jin GL, Zhang YL, Yu XB. Clinic application of the titanium alloy prostheses in defect of skull[J]. Chinese Journal of Traumatology. 1999, 15: 472~473.
    158.丁真奇,谭富生,吴祖尧.四种移植材料修复兔颅骨缺损的比较研究[J].中华创伤杂志.1999,10:261~263.
    159.邓景阳,曹国彬,陆永建等.颅骨修补材料的选择及其评价[J]中华神经医学杂志.2005,4(12):1028~1031.
    160.闵长国,马如钧,王德仁,等:不同材料修补颅骨缺损225例并发症的临床分析[J].现代康复.2001,5(1):103.
    161. Ueda K, ObaS, Omiya Y, etal. Cranial boned effects with depression deformity treated with ceramic implants and free flap transfers[J]. Br J Plast Surg. 2001, 54: 403~408.
    162. Verheggen R, Merten HA. Correction of skull defects using hydroxyapatite cement(HAC)—evidence derived from animal experiments and clinical experience[J]. Acta Neurochir, 2001, 143: 919~926.
    163. Blom EJ, Klein NJ, Yin L, etal. Transforming growth factor-betal incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects[J]. Clin Oral Implants Res. 2001, 12: 609~616.
    164. Kamakura S, Sasano Y, Shimizu T, etal. Implanted octacalcium phosphate is more resorbable than betatrical ciumphosphate and hydroxyapatite[J]. J Biomed Mater Res, 2002, 59: 29~34.
    165. Schmoekel HG, Weber FE, Schense JC, etal. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell in growth matrices[J]. Biotechnol Bioeng. 2005, 89(3): 253-262.
    166. Pang EK, Im SU, Kim CS, etal. Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model[J]. J Periodontol. 2004, 75(10): 1364~1370.
    167.金国良,张永良,俞学斌.钛金属板在颅骨缺损中的应用[J].中华创伤杂志,1999,15(6):472~473.
    168.赵明,方乃成,邵高峰.钛网片修补颅骨缺损40例报告[J].温州医学院学报.2000,30(1):86.
    169.王玉峰,张鹏.自身颅骨、钛网和仿生颅骨的应用比较[J].中国临床康复.2003,7(19):2768.
    170.褚国民,李彦生,韩景芸等.钛金属板颅骨修复体数字化制造研究[J].应用基础与工程科学学报.2003,11(04):384~389.
    171.归来,左锋,张智勇等.颅骨缺损的个性化修复[J].中华整形外科杂志.2004,20(02):98~100.
    172. Gui Lai, L. Ten, Zhang Zhy, etal. Traitement chirurgical de la dysplasie fibreuse cranio-maxillo-faciale[J]. Rev Stomatol Chir Maxillofac. 2003, 104: 1560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700