供水管网系统抗震可靠性分析及加固优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
供水管网系统是城市生命线工程的重要组成部分,在强烈地震作用下,供水系统的破坏及其功能失效会产生次生灾害并引起巨大的生命、财产损失。而我国现有的供水管网系统,大多数没有经过正规的抗震设计,且不少城市又有着可能遭受中、强地震影响的背景。因此,对供水管网系统进行震害预测和地震可靠性分析,评估系统震后运行状态、掌握其抗震薄弱环节,进一步增强其抗震能力,对开展城市防震减灾工作具有重要的现实意义。本文在综合分析国内外相关研究的基础上,对供水管网系统的地震功能分析和抗震加固优化问题作了较为全面系统的研究,主要内容如下:
     (1)以地震波作用下埋地管道的接头损坏作为主要破坏模式,主要考虑管道的轴向变形性能,采用波动理论对供水管线进行地震反应分析,比较了两种管土间轴向变形传递系数的计算差异,建议采用《室外给水排水和燃气热力工程抗震设计规范》(GB50032-2003)中给出的变形传递系数进行管道抗震验算,并讨论了地震波入射角、剪切波速、管径等参数对管道变形的影响。考虑地震作用效应和管道抗力的随机特性,建立了埋地管道单元的概率预测模型,评估其在地震时的震害状态,比较了管道随机变量采用不同的概率分布模型对管道抗震可靠性的影响差异,建议管道的允许变形和实际变形分别采用正态分布和极值Ⅰ型分布进行计算。
     (2)根据管线抗震可靠性分析结果,通过Monte Carlo随机模拟过程,近似再现管网中各管段的破坏状态。把供水管网系统简化为边权有向网络图,分别结合图论理论方法和模糊关系矩阵法,对管网进行连通可靠性分析,定性评价管网系统的运行状态,为进一步分析其抗震功能可靠性提供参考。由于Monte Carlo模拟方法是以管网各节点与水源点处于连通状态的近似频率计算代替精确概率分析,所得数值解具有一定的误差,为获得稳定的计算结果,对文中所用算例进行了5000次模拟。算例分析表明,基于图论方法和模糊关系矩阵法得到的管网连通可靠性结果基本相等。
     (3)首先建立管网微观水力模型,进行震前无破坏状态下的流分析。然后根据震后管线的破坏情况,对严重破坏的管线关闭其两端阀门;对轻微或中等破坏的管线在其中间位置增设虚拟漏水节点,建立带渗漏管网的水力分析模型,进行管网震后服务功能分析。该模型在传统的管网水力计算基础上,考虑了节点流量随水压的动态变化,避免了负的压力计算值的产生。同时震后的及时关阀措施,有效地提高了管网系统的供水能力。在进行供水管网的抗震功能可靠度分析时,借鉴结构可靠度的分析方法,以节点水压为评价指标,采用均值一次二阶矩方法计算管网各节点的功能可靠度,该方法通过一次水力分析即可给出震后低压供水和渗漏状态下管网各节点的可靠性指标,较之前发展的随机模拟方法大为简化且概念清晰。
     (4)以节点水压和流量为指标,建立了管网系统的服务性能准则。基于震后管网功能分析结果,绘制了节点水压和节点流量的服务性能曲线,采用转换函数的方法对其进行服务性能等级划分。引入模糊数学的理论与方法,构造节点水压和节点流量两个单因素指标的梯形隶属函数,建立震后管网系统服务性能的二级模糊综合评判模型,通过加权平均型评判模型和最大隶属度原则对管网系统进行综合评定,实现了地震对供水管网系统服务性能影响的量化评价。同时兼顾管网系统的连通特性和水力特性,采用分层的分析方法,对其进行地震易损性风险评估,以便找出系统薄弱环节进而确定减少风险的合理方法。
     (5)通过优化管道接头形式,来减少震时管道接头处的变形和渗漏、提高其抗震性能,进而增强管网的抗震功能可靠性,实现系统的抗震加固优化。从系统全局出发,以管网系统震后水压总降幅和系统加固总投入最小为目标函数,以管线抗震可靠度和震后管网各节点的自由水压为约束,建立多目标优化数学模型,将优化变量转化为较少的离散变量,对管网系统进行抗震加固优化。基于不刻意追求最优解,而寻求满意解的优化思想,利用正交枚举法进行简化计算,从而避免了大规模非线性规划求解的困难,为已建供水管网系统的抗震加固及拟建管网系统的抗震优化设计提供了理论依据。
Water supply network system is an important constituent of urban lifeline engineering, its damage and disabler under the destructive earthquake will cause great loss on life and property or even severe secondary disaster. Most of the water supply systems in our country were not designed with seismic standards, while many cities may have the seismic risk background. Therefore, earthquake disaster predictions and seismic reliability analysis of water supply network are of great importance to evaluate cities' ability of reducing earthquake disasters, which constitute the basis for finding out the vulnerable spot and enhancing seismic reliability of the system. Based on related research at home and abroad, this paper focuses on the further study of seismic reliability and optimum retrofit of water supply network system. The main contents are included as follows:
     (1) Taking the breakage of the conduit joints caused by seismic wave propagation as main failure mode, seismic performance analysis of the pipeline was performed with wave theory method by considering pipe's axial deformation. Two different methods for calculating axial deformation transfer coefficient were presented to check pipeline's seismic deformation, and influencing factors such as seismic wave's incident angle, shear wave velocity, pipeline's diameter and wall thickness were deeply discussed. Considering the randomness of seismic response and resistance of the pipe, probabilistic forecasting model was built to evaluate pipe's earthquake disaster. Comparisons of pipe's seismic reliability analysis with different probability distribution models of the random variable shows that it is conservative to evaluate pipe's seismic reliability by considering that seismic response and resistance of the pipe are all submitting normal distribution.
     (2) According to seismic reliability analysis, each pipeline's damage state was simulated by Monte Carlo random process. Simplifying the water supply network system as an edge-weighted directed network figure, connectivity reliability of the network was performed by graph theory and fuzzy relation matrix method separately, which referenced for qualitative analysis of system's running status and seismic functional reliability evaluation of network. Since precision probability analysis was substituted by approximate frequency of the connectivity between each node of the network and water source for Monte Carlo method, the arithmetic solution were with errors, therefore, 5000 simulations were proceeded to obtain steady numerical solution. Results indicate that there is almost no difference between graph theory and fuzzy relation matrix method to analysis the network's connectivity reliability.
     (3) Normal flow analysis of the water supply network before earthquake was performed by establishing microscopic hydraulic model. According to damage states of the pipelines after earthquake, heavy damaged pipelines were isolated by cutting off valves setting on its two terminals, dummy leaky nodes were extended on center position of the pipes with medium damage state, and hydraulic model of the network with leakage was built to evaluate seismic functional reliability of the system. Since nodal flows were considered to vary with nodal pressures in this model, negative pressures were avoided during the hydraulic calculation. And the measure of cutting-off valves increased system's water-supply ability effectively. Considering nodal pressure as the evaluating indicator, functional reliability indexes of the nodes were calculated by the mean-first-order-second-moment method which was originally developed for structural reliability analysis. And the indexes can be obtained by once hydraulic analysis in this method, which is greatly simplified compared with stochastic simulation method.
     (4) Based on hydraulic analysis and serviceability criterions of the water supply network after an earthquake, a two level fuzzy comprehensive evaluation model considering nodal pressure and flow as evaluating indicators was built to assess the influence of earthquake on the network's serviceability by introducing fuzzy mathematical theory. According to the serviceability scales of the nodal pressure and flow divided by transfer function method, the trapezoidal membership function of each index was constituted, and comprehensive assessment of the network was performed through weighted average model and maximum membership grade principle, which is a realization of quantitative evaluation of the network's seismic serviceability. Considering system's topological and hydraulic characteristics simultaneously, earthquake vulnerability risk assessment of the water supply network was performed by stratified analytical method, which is convenient to find out system's vulnerable spot and make decisions of reducing risks.
     (5) Flexible joint model of the pipe was selected as the optimization manner to reduce joint deformation and leakage, which could strengthen the pipe's or even system's seismic reliability. With the global view of the water supply network, taking element seismic reliability and nodal pressure of the post-earthquake system as bounded variables, the multi-objective optimum mathematical model was discussed to make the system's total pressure shortfalls and strengthening expense be minimum. According to functional requirements of the system and earthquake disaster characteristics, the optimum variables were conversed to fewer discrete varieties. For the purpose of seeking satisfactory solution instead of optimum solution, orthogonal enumeration method was adopted to solve optimum retrofit problems for water supply network system, which avoided the difficulty of solving large nonlinear scheme, and referenced for the seismic optimum retrofit of existing network and optimum design of quasi-built system.
引文
[1]胡聿贤.地震:[程学[M].北京:地震出版社,1988.
    [2]赵成刚,冯启民等.生命线地震:[程[M].北京:地震出版社,1994.
    [3]李杰.生命线工程抗震-基础理论与应用[M].北京:科学出版社,2005.
    [4]ARIMAN T,MULESKI.A review of the response of buried pipelines under seismic excitations[J].Earthquake Engineering and Structural Dynamics,1981(9):133-151.
    [5]韩阳.城市地下管网系统的地震可靠性研究[D].大连:大连理工大学,2002.
    [6]赵成刚.地下管线抗震问题述评[J].世界地震工程,1998(4):7-15.
    [7]刘恢先等.唐山大地震震害(第三册)[M].北京:地震出版社,1986.
    [8]徐鼎文.唐山市区地下给水管网震害[M].北京:地震出版社,1986.
    [9]EERI.Northridge Earthquake of January 17.1994 Preliminary Reconnaissance Report[R].Earthquake Spectra,Supplement C to Vol.11,1995.
    [10]HISASHI,SUMITOMO.System analysis of earthquake damage on water supply networks in Kobe City[C]//Proceeding of the 4~(th) International Symposium on Water Pipe Systems,1997:137-145.
    [11]孙绍平.阪神地震中给水管道震害及其分析[J].特种结构,1997,14(2):51-55.
    [12]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
    [13]Technical Council on Lifeline Earthquake Engineering of ASCE,The Current State of Knowledge of Lifeline Earthquake Engineering[M].New York:ASCE,1977.
    [14]KIMURA E,MOCHIZUKI I.Effects of Earthquake on Telecommunications Facilities[J].Japan Telecommunications Review,1969(4):266-275.
    [15]AMIN M.Earthquake Response of Multiply Connected Light Secondary Systems by Spectrum Methods,In Symposium on Seismic Analysis of Pressure Vessel and Piping Components[M].New York:ASCE,1971:103-129.
    [16]KAPUR K,SHSO L.Generation of Seismic Floor Response Spectra for Equipment Design,In Structure Design of Nuclear Plant Facilities[M].New York:ASCE,1973:29-71.
    [17]久保庆三郎.生命线地震工程的发展[J].世界地震工程,1987(1):46-48.
    [18]张素灵,李亦纲,曲国胜等.生命线地震工程的发展与前瞻[J].世界地震工程,2001,17(2):79-85.
    [19]柳春光,林皋,李宏男等.生命线地震工程导论[M].大连:大连理工大学出版社,2005.
    [20]高惠瑛.基于GIS供水系统地震反应分析[D].哈尔滨:中国地震局工程力学研究所,2000.
    [21]赵成刚,冯启民.管网系统的抗震问题述评….臼然灾害学报,1992,1(2):102-111.
    [22]TAKADA S.Seismic response analysis of buried vessels and ductile iron pipelines[C]//The 1980Pressure Vessels and Piping conference,ASCE,1980:23-32.
    [23]NISHIO N.Damage ratio prediction for buried pipelines based on the deformation ability of pipelines and the no uniformity of ground[J].Pressure Vessel Technology,ASCE,1994:459-466.
    [24]WANG L.美国理设管线抗震设计分析述评[J].世界地震工程,1991(2):61-70.
    [25]胡聿贤等.地震危险性分析中的综合概率法[M].北京:地震出版社,1990.
    [26]章在墉.地震危险性分析及其应用[M].上海:同济大学出版社,1996.
    [27]CORNELL C A.Engineering seismic risk analysis[J].BSSA,1968,.58(5):1583-1606.
    [28]KIUREGHIAN A,A H-S.A fault-rupture model for seismic risk analysis[J].BSSA,1977,67(4).
    [29]高孟潭.京津唐地区地震危险性分析[D].北京:国家地震局地球物理研究所,1981.
    [30]HENDRICKSON C,KUFERT D,OPPENHEIM I.Water system network analysis under seismic hazard[C]//Pressure Vessel and Piping Technology Conference,San Francisco:ASME,August,1980.
    [31]苏经宇,王广军,周锡元.工程场址地震危险性分析的实用方法[J].建筑科学,1986:44-52.
    [32]李小军,赵凤新,胡聿贤.埋设管网系统地震危险性分析方法[J].自然灾害学报,1995(4)增:39-48.
    [33]NEWMARK N M.Problems in wave propagation soil and rock[C]//Proceeding of international symposium on propagation and dynamic properties of earth materials,Albuquerque,New Mesico,1975:7-26.
    [34]PARMELEE R A,LUDTKE C A.Seismic soil-structure interaction of buried pipelines[C]//Proceeding of US National Conference Earthquake Engineering,Oakland,1975:406-415.
    [35]WANG R L,CHENG K M.Seismic response behavior of buried pipelines[J].Pressure Vessel Technology,ASME,1979(101):21-30.
    [36]WANG R L.Seismic evaluation model for buried lifelines[C]//Proceeding of the Speciality Conf on Lifeline Earthquake Engineering.San Francisco:ASCE,1981:335-347.
    [37]HINDY A,NOVAK M.Earthquake response of underground pipelines[J].Earthquake Engineering and Structure Dynamics,1979(S):451-476.
    [38]OWENS F C.Seismic analysis of buried pipelines[J].Optimizing Post-Earthquake Lifeline System Reliability,TCLEE,ASCE,1999(16):130-139.
    [39]TAKADA S,TANABE K.Three-dimensional seismic response analysis of buried continuous or jointed pipelines[J].Transaction ofASME,1987(109):35-42.
    [40]TAKADA S,HIGASHI S.Shell model FEM analysis for jointed buried pipelines[C].//Proceeding of China-Japan Symposium on Life.line Earthquake Engineering,Beijing:1990:145-152.
    [41]熊占路.用离散模型分析地下管道的地震应力[C]//第二届全国地震工程会议论文集.武汉,1987.
    [42]谢旭,何玉傲.地下埋设管线通过不同介质时的地震反应研究[C]//第二届全国地震工程会议论文集.武汉,1987.
    [43]林惠杰,胡聿贤.非均匀场地中埋设管线的地震反应分析[C]//第三届全国地震工程会议论文集.大连,1990.
    [44]梁建文,何玉傲.地下管线的轴向动态失稳分析[J].工程力学,1994,11(3):129-136.
    [45]曲铁军,王前信.地下管线在空间随机分布的地震作用下的反应[J].工程力学,2003,20(3):120-124
    [46]NEWMARK N M.Seismic design criteria for structures and facilities[C].//Proceedings of U.S National Conference on Earthquake Engineering,EERT,1975.
    [47]KENNEDY R P,CONW A W,WILLIAMSON R A.Fault movement effects on buried oil pipeline[J].Journal of Transportation Engineering,ASCE,1977:617-633.
    [48]WANG R L,WANG L J.Parametric study of buried pipelines duo to large fault movement[C]//Proceedings of 3~(th) Trilateral China-Japan-USA Symposium on Lifeline Earthquake Engineering,1998:165-172.
    [49]HOU Z,GAN W,XIAO W.Response of buried pipeline under fault movement[C]//Proceeding of 1~(th)
    Trilateral China-Japan Symposium on Lifeline Earthquake Engineering,Beijing,1990:173-181.
    [50]LIANG J W.Seismic response of pipelines through multiple soil media[C]# Proceeding of 1995ASME Pressure Vessels and Piping Conference,Honolulu:1995.
    [51]LIANG J W.3-D seismic response of pipelines laid through faults[C]// Proceeding of 4~(th) US Conference on Lifeline Earthquake Engineering,San Francisco:1995,200-207.
    [52]郭恩栋,冯启民.跨断层埋地钢管道抗震计算方法研究[J].地震工程与工程振动,1999,19(4):43-47.
    [53]冯启民,郭恩栋,宋银美等.跨断层埋地管道抗震试验[J].地震工程与工程振动,2000,20(1):56-62.
    [54]TAKADA S,HASSANI N,FUKUDA K.A new proposal for simplified design on buried steel pipes crossing active faults[J].Journal of Structural Mechanics and Earthquake Engineering,2001,668(54):187-194.
    [55]张素灵,许建东,曹华明等.地震断层作用对地下输油(气)管道破坏的分析[J].地震地质,2001,23(3):432-438.
    [56]AIWEN LIU,TAKADA S,YUXIAN HU.A shell model with equivalent boundary for buried pipelines under the fault movement[C]// 13th World Conference on Earthquake Engineering,Vancouver:Canada,2004.
    [57]林均岐,胡明祎.跨越断层地下管道地震反应研究[J].地震工程与工程振动,2007,27(5):129-133.
    [58]YEH Y H,WANG R L.Combined effects of soil liquefaction and ground displacement to buried pipelines[J].Pressure Vessels and Piping,ASME,1985,98(4):43-52.
    [59]KITAURA M,MIYAJIMA M.Reliability of lifeline systems subjected to lateral spreading during soil liquefaction[C]//Proceedings of the Trilateral Seminal-Workshop on Lifeline Earthquake Engineering,Taipei,1985:347-354.
    [60]NISHIO.Dynamic strain in buried pipelines due to soil liquefaction earthquake behavior[J].Pressure Vessels and Piping,ASME,1989(162):83-89.
    [61]WANG R L,SHIM J S,ISHIBASHI I,et al.Dynamic responses of buried pipeline during a liquefaction process[J].International Journal of Soil Dynamic-sand Earthquake Engineering,1990,99(1):44-45.
    [62]KUNIHIKO F,WANG R L.Behavior of a buried pipeline subjected to liquefied ground movements [C]//第二届中日美生命线工程会议论文集,两安,1994:59-67.
    [63]甘文水,侯忠良.液化土中地下管线的上浮反应[M]//地下管线抗震-计算方法与工程应用,冶金工业部建筑研究总院防灾抗震]:程研究所,1991:61.65.
    [64]侯忠良,蔡建原,刘学杰.输油管线地震液化反应计算[J].工程抗震,1991(2):35-39.
    [65]KITAURA M,MIYAJIMA M.Large dynamic response of buried pipelines in liquefaction processes [C]//第二届中日美生命线工程会议论文集,西安,1994:75-81.
    [66]TAKADA S,SUZUKI T,KOIKE T,et al.A simplified estimation method elastic-plastic deformations of buried pipelines caused by lateral spreading due to liquefaction[C]//Proc.Of 12th WCEE,Auckland:New Zealand,2000.
    [67]林均岐,熊建国.液化场地土中埋殴管线的上浮反应分析[J].地震工程与工程振动,2000,20(2):97-100.
    [68]邹德高,孔宪京,LING H I等.地震时饱和砂土地基中管线上浮机理及抗震措施试验研究[J].岩土工程学报,2002,24(3):323-326.
    [69]林均岐,李祚华,胡明禛等.液化土中管道上浮反应的影响因素研究[J].地震工程与工程振动,2005,25(4):130-134.
    [70]包日东,闻邦椿.地震载荷作用下液化士中输流管道动态响应研究[J].工程力学,2008,25(6):170-175.
    [71]李杰.地震灾害预测与防灾规划[M].郑州:河南科学技术出版社,1992.
    [72]BRESKO D,HENDRICKSON C,OPPENHEIM I.Seismic risk analysis of an urban water system[C]//Lifeline Earthquake Engineering,the Current State of Knowledge.New York:ASCE,1981:241-256.
    [73]HWANG H,LIN H,SHINOZUKA M.Seismic performance assessment of water delivery systems[J].Infrastructure System,ASCE,1998,4(3):118-125.
    [74]王东炜.地下管线震害预测初探[J].郑州工学院学报,1991,12(1):65-68.
    [75]邓民宪.埋地管道震害的多因素灰色关联分析[J].灾害学,1998,13(2):22-27.
    [76]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999.
    [77]ISOYAMA R,KATAYAMA T.Practical performance evaluation of water supply networks during seismic disaster[C]//Lifeline Earthquake Engineering,the Current State of Knowledge,New York:ASCE,1981,111-126.
    [78]SHAOPING SUN.The countermeasures against earthquake for water supply[C]//Proceeding of Third China-Japan-USA Trilateral Symposium on Lifeline Earthquake Engineering,1998:31-348.
    [79]CHEN W,SHIH B,CHEN Y,et al.Seismic response of natural gas and pipelines in the Ji-Ji earthquake[J].Soil Dynamics and Earthquake Engineering,2002,22(12):1209-1214.
    [80]American Lifeline Alliance.Seismic fragility formulations for water system[M].ASCE,2001.
    [81]SH1NOZUKA M,TAN R Y,KOIKE T.Serviceability of water transmission systems under seismic risk[C]//Lifeline Earthquake Engineering,The Current State of Knowledge,ASCE,Aug.1981:97-110.
    [82]韩阳,孙绍平.城市给水管网的震害预测研究[R].北京市政工程研究院研究报告,1987.
    [83]赵成刚,冯启民,王前信.地下管线的模糊随机动力可靠性分析[J].士木工程学报,1992,25(6):66-72.
    [84]麻水崎,王小军,王锋.管道系统综合概率震害预测方法[J].灾害学,1993,8(2):33-37.
    [85]撖凤玲,郭星全,王永霞.用模糊数学法进行管道系统的震害预测[J].山西地震,1997(3):33-36.
    [86]高小旺,王菁,李荷等,供水管线震害预测方法[J].建筑科学,1998,14(3):13-18.
    [87]邓民宪,高晓康,张永凯.地下管道震害预测实用方法的研究[J].地震工程与工程振动,2001,21(1):94-98.
    [88]符圣聪.地震时理设管道可靠度的实用算法[J].特种结构,2004,21(1):36-40.
    [89]周静海,刘爱霞,赵爽等.给水管道地震作用下可靠度分析[J].沈阳建筑大学学报(自然科学版),2007,23(2):204-206.
    [90]WAGNER J M,SHAMIR U,MARKS D H.Water distribution reliability:analytical methods[J].Journal of Water Resources Planning and Management,1988,114(3):253-275.
    [91]刘锡荟,李鹏程,张锐.城市生命线工程抗震的模糊图分析方法[J].地震工程与工程振动,1989,9(1):35-46.
    [92]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [93]韩阳.地下管网系统的震害预测研究[C]//第三届全国地震工程会议论文集.大连,1990.
    [94]金国粱.生命线工程网络可靠性分析的一种简化方法[J].地震工程与工程振动,1991,11(4):97-104.
    [95]金国梁.生命线工程网络震害预测方法讨论[J].工程抗震,1994(4):32-36.
    [96]王杨,邬瑞峰,侯忠良.Monte Carlo法分析地下管网系统在地震作用下的服务能力[C]//地下管线抗震一计算方法与工程应用,冶金工业部建筑研究总院防灾抗震工程研究所,1991:61-65.
    [97]李鹏程,杨广智.供水管网系统的可靠性分析[C]//地下管线抗震-计算方法与工程应用,冶金工业部建筑研究总院防灾抗震:[程研究所,1991:104-108.
    [98]王东炜,李桂青,霍达.生命线网络抗震可靠度的一般算法[J].地震工程与工程振动,1995,15(1):36-43.
    [99]YANG S L,HSU N S,LOUIE Pet al.Water distribution network reliability:connectivity analysis[J].Journal of Infrastructure Systems,1996,2(2):54-64.
    [100]YANG S L,HSU N S,LOUIE Pet al.Water distribution network reliability:stochastic simulation [J].Journal of Infrastructure Systems,1996,2(2):65-72.
    [101]赵新华,陈春芳,郑毅.给水管网可靠度的计算[J].中国给水排水,2000,16(1):57-60.
    [102]李昕.供水系统地震可靠性分析[D].大连:大连理工大学,2000.
    [103]HANG YANG,SUN SHAOPING.A disjoint algorithm for seismic reliability analysis of lifeline network system[J].Earthquake Engineering and Engineering Vibration,2002,1(2):207-212.
    [104]韩阳,刘宏奎.生命线网络可靠性分析的类分法[J].地震工程与工程振动,2002,22(2):49-53.
    [105]韩阳.用对偶理论求网络可靠度的下界解[J].华北水利水电学院学报,2000,21(3):77-80.
    [106]何军,李杰.单一震源下生命线系统失效概率分析的新方法(一)[J].地震工程与工程振动,2003,23(3):53-59.
    [107]金溪,张杰,高金良等.利用GO法进行供水管网可靠度计算[J].浙江工业大学学报,2007,35(6):682-686.
    [108]SHINOZUKA M,KOIKE T.Seismic risk of underground lifeline systems resulting from fault movement[C]//Proceedings of the 2~(nd) U.S national conference on earthquake engineering,Stanford University,1979:663-672.
    [109]KHATER M,GRIGORI M.Graphical demonstration of serviceability analysis[C]//Proceedings of the 5~(th) international conference on structural safety and reliability,San Francisco,1989:525-532.
    [110]SATO R,SHINOZUKA M.GIS-based interactive and graphic computer system to evaluate seismic risks on water delivery networks[C]//Proceedings of the third U.S conference on earthquake engineering,TCLEE,Los Angeles,1991:651-660.
    [111]北京市市政工程研究院.北京市自来水公司管网所,北京市给水管网震害预洲[R].北京,1993.
    [112]HUIJIE LIN.Seismic performance assessment of water delivery systems using GIS technology[D].Ph.D.dissertation,the University of Memphis,United States-Memphis,1997.
    [113]李小军,胡聿贤,赵风新.管网系统功能的地震影响分析[C]//城市与工程减灾基础研究论文集,中国科技出版社,1997.
    [114]O'ROURKE T D,JEON S.GIS assessment of water supply damage from the Northridge earthquake [C]//Geotechnical Special Publication,ASCE,Reston,1997:117-131.
    [115]O'ROURKE T D,JEON S.Factors affecting the earthquake damage of water distribution systems [C]//Proceedings of 5~(th) U.S conference on lifeline earthquake engineering,TCLEE,Reston,Aug.1999:379-388.
    [116]O'ROURKE T D,JEON S.GIS loss estimation and post-earthquake assessment of residential building damage[C]//Proceedings of 7~(th) national conference on earthquake engineering,Boston,2002.
    [117]THOMAS D,O'ROURKE T D,YU WANG et al.Advances in lifeline earthquake engineering [C]//13WCEE,Canada,Aug.1-6,2004.
    [118]冯启民,高惠瑛.供水系统功能失效分析方法[J].地震工程与工程振动,2000,20(4):80-86.
    [119]冯启民,高惠瑛,张伟林.天沣开发区供水系统地震反应分析[J].自然灾害学报,2000,9(4):39-44.
    [120]陈伶俐,李杰.供水管线震害量化参数-渗漏面积的估算方法[J].自然灾害学报,2003,12(1):69-72.
    [121]陈伶俐,李杰.供水管网渗漏分析研究[J].地震工程与工程振动,2003,23(1):115-121.
    [122]陈伶俐,李杰.城市供水管网系统抗震功能可靠度分析[J].工程力学,2004,21(4):45-50.
    [123]王圃,龙腾锐,王力等.城市给水管网可靠性分析与应用[J].中国给水排水,2005,31(6):107-110
    [124]LI JIE,WEI SHULIN,LIU WEI.Seismic reliability analysis of urban water distribution network[J].Earthquake Engineering and Engineering Vibration,2006,5(1):71-77.
    [125]符圣聪,江静贝,黄世敏.地震时供水管网的可靠性和功能分析(下)[J].工程抗震与加固改造,2007,29(2):95-99.
    [126]SU Y C,MAYS L W,DUAN N,et al.Reliability-based optimization model for water distribution systems[J].Journal of Hydraulic Engineering,1987,114(12):153,9-1556.
    [127]CULLINANE M J,LANSEY K E,MAYS L W.Optimization-availability-based design of waterdistribution networks[J].Journal of Hydraulic Engineering,1992,118(3):420-441.
    [128]GUPTA R,BHAVE P R.Reliability-based design of water-distribution systems[J].Journal of Environmental Engineering,1996,122(1):51-54.
    [129]GUERCIO R,XU ZUXIN.Linearized optimization model for reliability-based design of water systems[J].Journal of Hydraulic Engineering,1997,123(11):1020-1026.
    [130]XU CHENGCHAO,GOULTER I C.Reliability-based optimal design of water distribution networks [J].Journal of Water Resources Planning and Management,1999,125(6):352-362.
    [131]WALTERS G A,HALHAL D,SAVIC D,et al.Improved design of"anytown" distribution network using structured messy genetic algorithms[J].Urban Water,1999(1):23-38.
    [132]GARGANO R,PIANESE D.Reliability as tool for hydraulic network planning[J].Journal of Hydraulic Engineering,2000,126(5):354-364.
    [133]WU Z Y,SIMPSON A R.Competent genetic-evolutionary optimization of water distribution systems [J].Journal of Computing in Civil Engineering,2001,15(2):89-101.
    [134]TOLSON B A,MAIER H R,SIMPSON A R,et al.Genetic algorithm for reliability-based optimization of water distribution systems[J].Journal of Water Resources Planning and Management,2004,130(1):63-72.
    [135]GUPTA A,KRIPAKARAN P,MAHINTHAKUMAR G,et al.Genetic algorithm-based decision support for optimizing seismic response of piping systems[J].Journal of Structural Engineering,2005,131(3):389-398.
    [136]AGRAWAL M L,GUPTA R,BHAVE P R.Reliability-based strengthening and expansion of water distribution networks[J].Journal of Water Resources Planning and Management,2007,133(6):531-541.
    [137]陈森发.Steiner问题和给水管网布局的优化[J].南京工学院学报,1985(2):112-119.
    [138]赵新华,田一梅,武福平.城市配水系统优化运行的研究[J].中国给水排水,1992,8(3):18-22.
    [139]吕谋,赵洪宾,陈雷.供水网络的优化计算方法[J].哈尔滨建筑大学学报,1998,31(4):38-44.
    [140]陈艳艳,王东炜,王光远.管网系统抗震优化设计的正交枚举法[J].计算力学学报,1999,16(2):204-209.
    [141]包元峰,李杰.基于遗传算法的生命线工程网络抗震优化设计[J].防灾减灾工程学报,2006,26(1):21-27.
    [142]包元峰.生命线工程网络系统抗震可靠性分析及优化[D].上海:同济大学,2004.
    [143]李杰,刘威.大型城市管网抗震可靠性分析与优化[J].地震工程与工程振动,2006,26(3):172-175.
    [144]章征宝,余云进,徐得潜等.基于蒙特卡罗法的城市给水管网可靠性分析[J].给水排水,2007,33(7):106-109.
    [145]李敏.城市现有给水管网工程系统抗震加固优化策略[J].工程建设与设计,2007(7):100-102.
    [146]韩阳,孙绍平.地下管道抗震分析中的若干参数[J].特种结构,1999,16(3):14-16.
    [147]甘文水,侯忠良.地震行波作用下埋设管线的反应计算[J].地震工程与工程振动,1988,8(2):79-86.
    [148]李昕.考虑土体非线性特性的直埋管道一_十体系统的动力反应分析[J].计算力学学报,2001,18(2):167-172.
    [149]张安玉.基于GIS的供水管网地震功能评价系统研究[D].大连:大连理工大学,2006.
    [150]中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社,1979.
    [151]KITAURA M.Damage to water supply pipelines[C]//Japanese Geotechnical Society,Special issue of soils and foundations,Jan.1996:325-333.
    [152]谢志平,谢宇.给水工程抗震和震后给水[M].北京:地震出版社,1996.
    [153]OGAWA Y,KOIKE T.Structural design of buried pipelines for severe earthquake[J].Soil Dynamics and Earthquake Engineering,2001,21(3):199-209.
    [154]刘学杰,侯忠良.地下管网震害预测与抗震对策[c]//地下管线抗震一计算方法与工程应用,冶金工业部建筑研究总院防灾抗震工程研究所,1991:87-93.
    [155]TJ32-78室外给水排水和煤气热力工程抗震设计规范[S]//北京:建筑工业出版社,1978.
    [156]GB50032-2003室外给水排水和燃气热力工程抗震设计规范[S]//北京:建筑工业出版社,2003.
    [157]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [158]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005.
    [159]高小旺,鲍霭斌,地震作用的概率模型及其统计参数[J].地震工程与工程振动,1986,5(1):14-22.
    [160]金国梁,冯家琪.给水管网的震害预测方法[J].工程抗震,1989,2:31-35.
    [161]朱美珍.给水管网的震害率预测及可靠性评价[J].同济大学学报,1994,22(4):463-468.
    [162]李昕,周晶,陈健云.基于神经网络方法的地下管道系统地震可靠性分析[J].世界地震工程,2001,17(4):107-111.
    [163]牛燕利.基于GIS的城市供水管网动态震害预测[D].北京:北京工业大学,2004.
    [164]孙新利,陆长捷.工程可靠性教程[M].北京:国防工业出版社,2005.
    [165]潘仲立.可靠性分析的理论基础[M].北京:水利电力出版社,1988.
    [166]HAN Y,SUN SH P.Seismic reliability of lifeline systems[C]//Earthquake Engineering Frontiers in the New Millennium,Spencer & Hu,ISBN 9026518528,2001:209-213.
    [167]金国梁.生命线工程网络的一种震害预测分法[J].工程抗震,1993,1:22-24.
    [168]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [169]杨自强,魏公毅.综述:产生伪随机数的若干新方法[J].数值计算与计算机应用,2001(3):201-216.
    [170]李慧霸,王凤芹.图论简明教程[M].北京:清华大学出版社,2005.
    [17]]卢开澄,卢华明.图论及其应用[M].北京:清华火学出版社,1995.
    [172]严煦世,刘遂庆.给水排水管网系统[M].北京:建筑工业出版社,2002.
    [173]王朝瑞.图论[M].北京:北京理工大学出版社,1997.
    [174]吴文泷.图论基础及应用[M].北京:中国铁道出版社,1984.
    [175]刘锡荟,王海燕.网络模糊随机分析-原理、方法与程序[M].北京:电子工业出版社,1991.
    [176]郭恩栋,冯启民,王亚东.城市供水系统抗震可靠性分析及对策研究[J].地震工程与工程振动,1996,16(3):104-113.
    [177]LANSEY K,DUAN N,MAYS L,et al.Water distribution system design under uncertainties[J].Water Resources Planning and Management,1989,115(5):630,645.
    [178]LI D,DOLEZAL T,HAIMES Y.Capacity reliability of water distribution networks[J].Reliability Engineering and System Safety,1993,42(1):29-38.
    [179]BAO Y,MAYS L.Model for water distribution system reliability[J].Hydraulic Engineering,1990,116(9):1119-1137.
    [180]XU C C,GOULTER I C.Probabilistic model for water distribution reliability[J].Water Resources Planning and Management,1998,124(4):218-228.
    [181]OSTFELD A,KOGAN D,SHAMIR U.Reliability simulation of water distribution systems-single and multiquality[J].Urban Water,2002,4(1):53-61.
    [182]卫书麟.大型供水管网抗震可靠性分析与优化[D].上海:同济大学,2005.
    [183]严煦世,赵洪宾.给水管网理论和计算[M].北京:中国建筑工业出版社,1986.
    [184]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1999.
    [185]李杰,卫书麟.城市供水管网抗震功能可靠度分析[J].防灾减灾工程学报,2005,25(4):353.358.
    [186]宋仁元.怎样防止给水系统的漏损[M].北京:中国建筑工业出版社,1988.
    [187]BALLANTYNE D,BERG E,KENNRDY J,et al.Earthquake loss estimation modeling of the Seattle water system[R].U.S.Geological Survey,1990.
    [188]VAIRAVAMOORTHY K,LUMBERS J.Leakage reduction in water distribution systems:Optimal valve control[J].Hydraulic Engineering,1998,124(11):1146-1154.
    [189]GERMANOPOULOS G.A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models[J].Civil Engineering System,1985(2):171-179.
    [190]GERMANOPOULOS G,JOWITT P.Leakage reduction by excessive pressure minimization in a water supply network[J].Proceedings of the Institution of Civil Engineers:Civil Engineering,1989(87):195-214.
    [191]SCAWTHORN,BALLANTYNE D,BLACKBURN F.Emergency water supply needs-lessons from recent disasters[J].Water Science and Technology:Water Supply,2000,18(3):69-81.
    [192]MARTINEZ F,CONEJOS P,VERCHER J.Developing an integrated model for water distribution systems considering both distributed leakage and pressure-dependent demands[C]//26th Annual Water Resources Planning and Management Conference.Reston Va:ASCE,1999.
    [193]ALONSO M,ALVARRUIZ F,GUERRERO D,et ai.Parallel computing in water network analysis and leakage minimization[J].Water Resources Planning and Management,2000,126(4):251-260.
    [194]ULANICKI B,BOUNDS P,RANCE J,et al.Open and closed loop pressure control for leakage reduction[J].Urban Water,2000(2):105-114.
    [195]GIUSTOLISI O,SAVIC D,KAPELAN Z.Pressure-driven demand and leakage simulation for water distribution networks[J].Hydraulic Engineering,2008,134(5):626-635.
    [196]周建华,曲世琳,赵洪宾.配水管网压力与漏水量关系试验研究[J].给水排水,2005,31(8):94-97.
    [197]GUPTA R,BHAVE P.Comparison of methods for predicting deficient-network performance[J].Water Resources Planning and Management,1996,122(3):214-217.
    [198]ANG W,JOWITT P.Solution for water distribution systems under pressure-deficient conditions[J].Water Resources Planning and Management,2006,132(3):175-182.
    [199]GUPTA R,BHAVE P.Closure of 'Comparison of methods for predicting deficient-network performance'[J].Water Resources Planning and Management,1997,123(6):370.
    [200]周建华,赵洪宾.低压供水时的管网平差计算方法[J].中国给水排水,2003,19(3):43-45.
    [201]刘丽霞.城市给水管网系统的可靠性分析与研究[D].重庆:重庆大学,2007.
    [202]陈伶俐,李杰,叶志明.震后特殊供水状态下的供水管网水力分析[J].自然灾害学报,2004,13(3):89-94.
    [203]AYALA G,LIGGETT J.Flow in damaged pipe networks[J].Hydraulic Engineering,1991,117(2):230-239.
    [204]杨伦标,高英仪。模糊数学原理及应用[M].广州:华南理工大学出版社,1993.
    [205]王彩华,宋连天.模糊论方法学[M].北京:中国建筑工业出版社,1988.
    [206]贺仲雄.模糊数学及其应用[M]。天津:天津科学技术出版社,1983.
    [207]Robert Y,Tan,S.M.Chen.The performance of water transmission systems under seismic loadings[J].Soil dynamics and earthquake engineering,1987,vo16(3):149-157.
    [208]孙会.对城市供水管网水力水质分析方法的研究[D].大连:大连理工大学,2006.
    [209]GB 50013-2006.室外给水设计规范[S]//北京:中国计划出版社,2006.
    [210]伍悦滨,袁一星,高金良.给水管网系统性能的评价方法[J].中国给水排水,2003,19(4):23-25.
    [211]张春宇,高燕希,蒋明锋等.二级模糊综合评判在公路边坡稳定性分析中的应用[J].公路工程,2008,33(5):109-113.
    [212]王强.供水管网科学调度决策支持系统理论和应用研究[D].上海:同济大学,2006.
    [213]陈耀辉,孙春燕.模糊综合评判法中的最大隶属原则有效度[J].重庆师范学院学报(自然科学版),2001,18(1):45-47.
    [214]汪培庄.模糊集合论及其应用[M].上海:上海科技出版社,1983.
    [215]李本海.贴近度分析法在等级划分中的应用[J].系统工程理论与实践,1990(3):43.48.
    [216]张晓平.基于贴近度的模糊综合评判结果的集化[J].山东大学学报(理学版),2004,39(2):25-29.
    [217]马力辉,刘遂庆,信昆仑.供水系统脆弱性评价研究进展[J].‘给水排水,2006,32(9):107.1 10.
    [218]鲁娟.给水管网脆弱性评估研究[D].合肥:合肥工业大学,2007.
    [219]王预震,路畅,吕锡香.一种新的网络脆弱性量化分析模型[J].西安工业学院学报,2005,25(6):568-571.
    [220]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法[J].电力系统自动化,2006,30(8):7-10.
    [221]李黎武,许仕荣,施周.基于拓扑理论确定多水源管网供水区域及绘制等压线的方法研究[J].给水排水,2001,27(12):5-8.
    [222]陈惠开.网论一网络流[M].北京:人民邮电出版社,1992.
    [223]刘宝利,肖晓春,张根度.基于层次分析法的信息系统脆弱性评估方法[J].计算机科学,2006,33(12):62-64.
    [224]中国地震局.中国防震减灾十年行动[J].中国减灾,200](1):1-3.
    [225]谢礼立.城市防震减灾能力的定义及评估方法[J].地震工程与工程振动,2006,26(3):1-10.
    [226]陈艳艳,王东炜,王光远.在役基础设施网络系统抗震加固优化策略[J].地震工程与工程振动,1998,18(2):19-24.
    [227]Kleiner Y,Adams B J,Rogers J S.Long-term planning methodology for water distribution system rehabilitation[J].Water Resources Research,1998,34(8):2039-2051.
    [228]Kleiner Y,Adams B J,Rogers J S.Selection and scheduling for rehabilitation alternatives for water distribution systems[J].Water Resources Research,1998,34(8):2053-2061.
    [229]Cheung P B,Reis L F R,Carrijo I B.Multi-objective optimization to the rehabilitation of a water distributions network[C]//Advances in water supply management,Maksimovic,Butler & MenonEds.,London,2000:315-325.
    [230]王光远等.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1999.
    [231]王东炜,李大望,霍达.单体结构抗震可靠性分析的简化方法[J].工程抗震,1998(2):23-26.
    [232]柳春光,张安玉.供水管网地震功能的失效分析[J].工程力学,2007,24(3):142-146.
    [233]吕谋,曲富林,丁峰.给水管道费用函数中a、b、a的确定[J].给水排水,1994(1):9-11.
    [234]陈艳艳,梁颖,刘小明.公路网布局优化设计的正交枚举法[J].土木工程学报,2003,36(7):14-17.
    [235]《正交试验法》编写组.正交试验法[M].北京:国防工业出版社,1976.
    [236]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700