新型化学单体药物AFI及Gs-Rd脑保护作用的药效学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     缺血性脑血管病是导致人类死亡和致残的最严重疾病之一,尽管大量的科研人员在此领域进行了不懈的研究,但除了溶栓治疗之外,还没有任何一种治疗措施及药物被临床验证疗效确实可靠。由于溶栓治疗的时间窗很短,所以目前寻找一种确切并行之有效的神经保护剂成为较迫切的任务。
     本实验室长期致力于寻找和筛选具有脑保护作用的药物和措施。由于脑缺血再灌注损伤是由一连串的有害级联反应导致的,涉及多个病理环节,既往研究已证实针对某一单一环节的神经保护剂其临床疗效均不确切,因此神经保护剂联合应用或多作用靶点药物的研究成为当前脑保护研究的一种新途径。
     自由基损伤一直是脑缺血损害中的重要病理环节。在新药靶点研究中,针对自由基损伤的药物很可能成为脑保护新的候选药物。自由基分为氧自由基(OFR)和氮自由基(NFR)。氧自由基主要包括超氧阴离子(·O2-)、过氧化氢(H2O2)和羟自由基(·HO)。氮自由基主要指内源性一氧化氮(NO)、二氧化氮(NO2)及由NO与·O2-反应所生成的过氧亚硝基阴离子(peroxynitrite,ONOOˉ)。
     内源性NO在脑缺血再灌注损伤中的作用主要取决于合成NO的一氧化氮合酶(NOS)的类型,尽管由内皮细胞型一氧化氮合酶(eNOS)在缺血早期合成的少量NO可起到一定的神经保护作用,但由神经元型一氧化氮合酶(nNOS)、诱导型一氧化氮合酶(iNOS)在再灌注过程中大量产生的NO的神经毒性作用使得内源性NO在脑缺血损害中主要发挥负面效应。最新有研究提示外源性NO可抑制由内源性NO介导的c - jun N末端激酶3 (JNK3)磷酸化所导致的神经元凋亡产生保护作用,此外,外源性NO还可促进血管形成及神经细胞分化来发挥神经保护作用。同样有大量研究证实脑缺血再灌注过程中氧自由基爆发性释放在脑缺血再灌注损伤中扮演了多重有害作用,而氧自由基清除剂可通过清除氧自由基发挥一定的神经保护作用。
     以往针对自由基的新药研发均是将氧自由基与氮自由基两者分割开来分别进行。我们根据趋利避害,扶正抑邪的理念,前期已利用氧自由基清除剂阿魏酸(FA,图1A)和外源性NO供体单硝酸异山梨醇酯(ISMN,图1B)这两种药物设计并合成了可同时清除氧自由基和释放外源性NO的双靶点药物乙酰阿魏酸单硝酸异山梨醇酯(acetyl ferulaic isosorbide,AFI,图2),本研究旨在研究其脑保护作用并探讨相关机制。
     中药单体人参皂甙Rd(Gs-Rd)是用于治疗缺血性脑血管病的国家一类新药,目前正在进行临床三期研究。活血类中药单体川芎嗪、葛根素都已被大量研究证实具有脑保护效应,人参皂甙Rd与川芎嗪、葛根素联合应用后是否能发挥更加强大的脑保护作用值得进行进一步研究。
     本研究分两部分,实验一:研究可在体内同时清除OFR和外源性释放NO的双靶点药物——乙酰阿魏酸单硝酸异山梨醇酯(AFI)在脑缺血再灌注损伤中的保护效应,并探讨其抑制神经元凋亡的相关机制。实验二:探讨中药单体人参皂甙Rd与葛根素和(或)川芎嗪联合应用的脑保护效应。
     实验一AFI的脑保护效应及机制研究
     目的AFI对脑缺血再灌注损伤的保护作用及机制进行研究
     方法
     1 AFI对大鼠局灶性脑缺血再灌注损伤的保护作用
     60只SD大鼠,随机分为6组:对照(control)组,乙酰阿魏单硝酸异山梨醇酯(AFI)组,单硝酸异山梨醇酯(ISMN)组,阿魏酸钠(SF)组,阿魏酸钠+乙酰单硝酸异山梨醇酯(SF+ISMN)组,依达拉奉(edavarone)组。各组动物制备右侧MCAO模型,各给药组均于再灌注前10min腹腔注射相应药物,对照组给予相应体积的溶剂(1ml, 20%丙酮)。再灌注后72h神经功能学评分,并处死动物,取脑行2,3,5-氯化三苯四哇(TIC)染色,以测量脑梗死容积。
     2 AFI脑保护作用的剂量效应关系研究
     40只SD大鼠,随机分为四组:对照组,AFI 1mg/kg组,AFI 3mg/kg组,AFI 9mg/kg组。各组动物制备右侧MCAO模型,均于再灌注前10min给予相应剂量的AFI(1,3,9mg/kg)或溶剂。再灌注后72h神经功能学评分,并处死动物,取脑行2,3,5-氯化三苯四哇(TIC)染色,以测量脑梗死容积。
     3 AFI对脑缺血再灌注损伤后caspase-3活性的影响
     24只SD大鼠,随机分为假手术组,对照组和AFI组,各组动物制备右侧MCAO模型(假手术组不栓线,其余操作与其他两组相同),均于再灌注前10min给予AFI 3mg/kg或溶剂,再灌注后24h处死动物,分别取半暗带皮层和纹状体行caspase-3活性测定。
     4 AFI对神经元凋亡的影响
     36只SD大鼠,随机分为假手术组,对照组和AFI组,各组动物制备右侧MCAO模型,均于再灌注前10min给予AFI 3mg/kg或溶剂,分别于再灌注后4h和24h经左心室进行灌注固定,石蜡包埋切片,行TUNEL染色,每组6只动物,高倍镜下在相应部位取4个视野行TUNEL染色阳性神经元计数,计算均数及标准差。
     结果
     1神经功能学评分及脑梗死容积测定
     再灌注后72h,相比于对照组,AFI组,SF组,SF+ISMN组,edaravone组神经功能学均有改善(P<0.05),其中edaravone组改善最明显(P<0.001),AFI组次之(P<0.01),而ISMN组与对照组相比无明显统计学差异。再灌注后72h,相比于对照组,AFI组,SF组,SF+ISMN组,edaravone组梗死容纳百分比均有明显下降(P<0.05),其中edaravone组梗死容积最小(P<0.001),AFI组次之(P<0.01),而ISMN组与对照组相比无明显统计学差异。
     2剂量效应关系
     再灌注后72h, AFI 3mg/kg组及AFI 9mg/kg组均可以提高神经功能学评分(P<0.05),减少脑梗死容积(P<0.05),AFI 1mg/kg组神经功能学评分及脑梗死容积百分比与对照组相比并无明显统计学差异。
     3 AFI对脑缺血再灌注损伤后caspase-3活性的影响。
     再灌注后24h,想比于对照组,AFI可以明显降低半暗带皮层和纹状体的caspase-3活性(P<0.01)。
     4 AFI对神经元凋亡的影响
     相比于对照组,再灌注后4h,AFI可以明显减少半暗带皮层和纹状体TUNEL染色阳性神经元的数目(P<0.05),再灌后24h减少更明显(P<0.01)。
     结论
     AFI可以改善大鼠脑缺血再灌注损伤后的神经功能,降低脑梗死容积,进一步研究发现其可以通过降低caspase-3的活性,减少神经元的凋亡发挥神经保护作用。
     实验二Gs-Rd及其联合用药的脑保护效应研究
     目的探讨人参皂甙Rd及人参皂甙Rd与川芎嗪和(或)葛根素联合应用是否具有脑保护效应并比较单独使用人参皂甙Rd与联合用药之间的保护效应有无差异。
     方法50只雄性SD大鼠随机分为5组(每组10只)。各给药组按设定时间和剂量分别单独或联合腹腔注射相应药物,对照组给予相应体积的溶剂(20%丙二醇1ml)。各组行局灶性脑缺血,2h后恢复灌注至72h。在再灌注后72h进行神经功能评分(NBS),72h评分后取脑行TTC(2, 3, 5-氯化三苯四唑)染色计算脑梗死容积百分比。
     结果单独使用人参皂甙Rd及人参皂甙Rd与川芎嗪和(或)葛根素联合使用均能显著改善大鼠局灶性脑缺血再灌注损伤的神经功能评分(P<0.05),减少脑梗死容积(P<0.05),各给药组间相比均无统计学差异。
     结论单独使用人参皂甙Rd和人参皂甙Rd与川芎嗪和(或)葛根素联合使用均具有明显的脑保护效应,但联合用药组没有表现出强于单独给药组的协同保护效应。
Background
     Ischemic cerebrovascular disease is one of the causes that result in human death and disability. Although a large number of researchers in this field have made unremitting studies, in addition to thrombolytic therapy, there are not any kind of treatment measures or medicines that their therapeutic effect have been proved reliable in clinic. As the time window of thrombolytic therapy is short, to find some effective neuroprotective agents become more urgently.
     We always focuse on finding and screening the drugs and measures which may have brain protection. Because cerebral ischemia-reperfusion injury is a cascade that include a series of insult factors involving several pathological aspects and previous studies have shown that almost all of the neuroprotective agents for a single insult factor are not effective in clinical research, the combination of neuroprotective agents or to develop multi-target drugs have become the new approach of cerebral protection.
     The role of nitric oxide (NO) is a hot issue in the study of cerebral ischemia-reperfusion injury. The majority view is that the role of endogenous NO depends on the nitricoxide synthase (NOS) type. the NO generated from the endothelium-nitricoxide synthase (eNOS) has the neuroprotective effect, that generated from induced-nitricoxide synthase (iNOS) and neuronal-nitricoxide synthase (nNOS) have neurotoxic effects. Several current studies suggests that exogenous NO can inhibit the harmful effects of endogenous NO, promote angiogenesis and neurogenesis to play a neuroprotective effect. The multiple harmful effects of the large number of OFR produced by cerebral ischemia-reperfusion injury is confirmed by a number of researches, so we designed and synthesized the double-target drug named acetyl ferulaic isosorbide using OFR scavenger FA and exogenous NO donor ISMN, and investigate it’s neuroprotective effect and the related mechanisms.
     Chinese traditional medicine play an important role in ischemic stroke treatment. Monomer ginsenoside Rd is a new drug for the treatment of ischemic cerebrovascular disease and it’s clinical phase III study is ongoing. The neuroprotective effects of tetramethylpyrazine and puerarin have been demonstrated, whether the combination of these three drugs have more stronger neuroprotective effects is worthy to further study.
     This study include two parts. Part I: To investigate the cerebral protective effect and related mechanism of the double-target drugs: acetyl ferulaic isosorbide (AFI); Part II: To study the whether the combination of these three drugs have more stronger neuroprotective effects than singles.
     Part I the neuroprotective effect of AFI: a novel ROS-eliminating and NO-releasing drug
     Objective
     To investigate the neuroprotective effect of AFI and related mechanism in rat.
     Method
     1 The neuroprotection of AFI
     Sixty male SD rats weighing 280 - 320 g were randomly assigned into 6 groups ( n = 10, each group): control group, AFI group, ISMN group, SF group, SF + ISMN group and Edavarone group. rats were subjected to the right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion for 72 h. 10 min before reperfusion, the drug or vehicle were respectively infused intraperitoneally. The neurological behavior scores (NBS) were assessed at 72 h after reperfusion. The percentage of infarct volume was determined at 72 h after reperfusion by using TTC stain.
     2 the dose-effect relationship of AFI
     Forty male SD rats weighing 280 - 320 g were randomly assigned into 4 groups ( n = 10, each group): control group, AFI-1mg/kg group, AFI-3mg/kg group, AFI-9mg/kg group. Rats were subjected to the right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion for 72 h. 10 min before reperfusion, the AFI(1,3,9mg/kg) or vehicle were respectively infused intraperitoneally. The neurological behavior scores (NBS) were assessed at 72 h after reperfusion. The percentage of infarct volume was determined at 72 h after reperfusion by using TTC stain.
     3 The effect of AFI on caspase-3 activity
     Twenty four male SD rats weighing 280 - 320 g were randomly assigned into 3 groups ( n = 8, each group): sham group, control group, AFI-3mg/kg group. rats were subjected to the right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion for 24 h. 10 min before reperfusion, the AFI(3mg/kg) or vehicle were respectively infused intraperitoneally. 24 h after reperfusion, the animals were sacrificed and the penumbra cortex and striatum of right hemisphere were dissected for the measurement caspase-3 activity.
     4 The effect of AFI on neuron apoptosis
     For immunohistochemistry and TUNEL analysis, 36 animals were randomly assigned into 3 groups ( n = 12, each group): sham group, control group, AFI-3mg/kg group. Rat were anesthetized with an overdose of 2% sodium pentobarbital and perfusion-fixed via the left ventricle using 4% paraformaldehyde at 4 h and 24 h after MCAO. The brain blocks were embedded in paraffin and cut into 5μm coronal sections and were used for and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. TUNEL-positive cell numbers were counted in a blind fashion in four fields in the penumbra cortex and striatum of right hemisphere at high-power microscopic magnification (×400) and expressed as the number of positive cells per high-power field. Data from six animals in each group at corresponding time point were analyzed.
     Result
     1 The AFI induced neuroprotection on neurologic scores and infarct volume.
     AFI, SF, Edaravone, the combined application of SF and ISMN all can siganifacantly elevate the neurological behavior scores (NBS) and reduce the infart volume of rats after reperfusion than those of control group ( P< 0.05). Edaravone has the best effect (P<0.001) and AFI has the better(P<0.01). There are no siginicant difference between ISMN group and control group on NBS and infart volume
     2 The dose-effect relationship of AFI
     Compare with the control group, AFI with the dose of 3 mg/kg and 9 mg/kg both elevate the neurological behavior scores (NBS) and reduced brain infarct volume after reperfusion(P<0.05), AFI with the dose of 1 mg/kg has not produce significant neuroprotection.
     3 The effect of AFI on caspase-3 activity
     AFI(3mg/kg) treatment can inhibit the caspase-3 activity in the the penumbra cortex and striatum of right hemisphere as compare with control group(P<0.01).
     4 The effect of AFI on neuron apoptosis
     In the the penumbra cortex and striatum of right hemisphere, the number of apoptotic neurons in the AFI treatment (3 mg/kg) group was significantly lower than that in the control group at 4 h (P<0.05) and 24 h after reperfusion(P<0.01). Conclusion
     AFI has neuroprotective effect against cerebral ischemia-reperfusion injury. The neuroprotection of AFI may be mediated by it’s inhibition of caspase-3 and decrease the number of neuron apoptosis.
     Part II Neuroprotective effects study of ginsenoside Rd and it’s combined application with others
     Objective
     To investigate the neuroprotective effect of ginsenoside Rd and the combined application of ginsenoside Rd with puerarin and(or) tetramethylpyrazine in rats. Compare whether combination of ginsenoside Rd with puerarin and (or) tetramethylpy -razine have more effective protection than ginsenoside Rd.
     Method
     Fifty male SD rats weighing 280 - 320 g were randomly assigned into 5 groups ( n = 10, each group). Drugs were respectively infused intraperitoneally as single or combined method for medicine administration groups. The control group received infusions of vehicle. rats were subjected to the right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion for 72 h. The neurological behavior scores (NBS) were assessed at 72 h after reperfusion. The percentage of infarct volume was determined at 72 h after reperfusion. Result
     Either ginsenoside Rd or the combined application of ginsenoside Rd with puerarin and(or) tetramethylpyrazine can siganifacantly elevate the NBS and reduce the infart volume after reperfusion than those of control group ( P< 0. 05). No significant difference was found in NBS and infarct volume among drug administration groups.
     Conclusion
     Ginsenoside Rd and the combined application of ginsenoside Rd with puerarin and(or) tetramethylpyrazine have similar neuroprotective effects. The combined application of ginsenoside Rd with puerarin and (or) tetramethylpyrazine did not generate synergistic effect.
引文
1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ: Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006; 367: 1747-57
    2. Murray CJ, Lopez AD: Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997; 349: 1269-76
    3. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA: The lifetime risk of stroke: estimates from the Framingham Study. Stroke 2006; 37: 345-50
    4. Feigin VL, Lawes CM, Bennett DA, Anderson CS: Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003; 2: 43-53
    5. Goldstein LB: Acute ischemic stroke treatment in 2007. Circulation 2007; 116: 1504-14
    6. Hickenbottom SL, Barsan WG: Acute ischemic stroke therapy. Neurol Clin 2000; 18: 379-97
    7. Ginsberg MD, Pulsinelli WA: The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol 1994; 36: 553-4
    8. Baron JC: Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 1999; 9: 193-201
    9. Astrup J, Siesjo BK, Symon L: Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 1981; 12: 723-5
    10. Fisher M, Schaebitz W: An overview of acute stroke therapy: past, present, and future. Arch Intern Med 2000; 160: 3196-206
    11. McIlvoy LH: The effect of hypothermia and hyperthermia on acute braininjury. AACN Clin Issues 2005; 16: 488-500
    12. Nita DA, Nita V, Spulber S, Moldovan M, Popa DP, Zagrean AM, Zagrean L: Oxidative damage following cerebral ischemia depends on reperfusion - a biochemical study in rat. J Cell Mol Med 2001; 5: 163-70
    13. Lewen A, Matz P, Chan PH: Free radical pathways in CNS injury. J Neurotrauma 2000; 17: 871-90
    14. Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21: 2-14
    15. Sies H: Strategies of antioxidant defense. Eur J Biochem 1993; 215: 213-9
    16. Lo EH, Dalkara T, Moskowitz MA: Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 4: 399-415
    17. Katsuki H, Okuda S: Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 1995; 46: 607-36
    18. Niwa M, Inao S, Takayasu M, Kawai T, Kajita Y, Nihashi T, Kabeya R, Sugimoto T, Yoshida J: Time course of expression of three nitric oxide synthase isoforms after transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo) 2001; 41: 63-72; discussion 72-3
    19. Pei DS, Song YJ, Yu HM, Hu WW, Du Y, Zhang GY: Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J Neurochem 2008; 106: 1952-63
    20. Zhang R, Wang L, Zhang L, Chen J, Zhu Z, Zhang Z, Chopp M: Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res 2003; 92: 308-13
    21. Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, Chopp M: A nitric oxide donor induces neurogenesis and reduces functional deficits after strokein rats. Ann Neurol 2001; 50: 602-11
    22. Zhang RL, Zhang Z, Zhang L, Wang Y, Zhang C, Chopp M: Delayed treatment with sildenafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. J Neurosci Res 2006; 83: 1213-9
    23. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-57
    24. Mergenthaler P, Dirnagl U, Meisel A: Pathophysiology of stroke: lessons from animal models. Metab Brain Dis 2004; 19: 151-67
    25. Love S, Barber R, Wilcock GK: Neuronal death in brain infarcts in man. Neuropathol Appl Neurobiol 2000; 26: 55-66
    26. Sairanen T, Karjalainen-Lindsberg ML, Paetau A, Ijas P, Lindsberg PJ: Apoptosis dominant in the periinfarct area of human ischaemic stroke--a possible target of antiapoptotic treatments. Brain 2006; 129: 189-99
    27. Guglielmo MA, Chan PT, Cortez S, Stopa EG, McMillan P, Johanson CE, Epstein M, Doberstein CE: The temporal profile and morphologic features of neuronal death in human stroke resemble those observed in experimental forebrain ischemia: the potential role of apoptosis. Neurol Res 1998; 20: 283-96
    28. Danial NN, Korsmeyer SJ: Cell death: critical control points. Cell 2004; 116: 205-19
    29. Zou H, Li Y, Liu X, Wang X: An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274: 11549-56
    30. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science1998; 281: 1305-8
    31. Stewart JHt, Nguyen DM, Chen GA, Schrump DS: Induction of apoptosis in malignant pleural mesothelioma cells by activation of the Fas (Apo-1/CD95) death-signal pathway. J Thorac Cardiovasc Surg 2002; 123: 295-302
    32. Ferrer I, Planas AM: Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 2003; 62: 329-39
    33. Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K: Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24: 458-66
    34. Emerich DF, Dean RL, 3rd, Bartus RT: The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 2002; 173: 168-81
    35. Dirnagl U, Iadecola C, Moskowitz MA: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22: 391-7
    36. Danton GH, Dietrich WD: Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 2003; 62: 127-36
    37. Gartshore G, Patterson J, Macrae IM: Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol 1997; 147: 353-60
    38. Yang GY, Gong C, Qin Z, Liu XH, Lorris Betz A: Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res 1999; 69: 135-43
    39. Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM: Biphasic opening ofthe blood-brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci 1999; 26: 298-304
    40. Belayev L, Busto R, Zhao W, Ginsberg MD: Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 1996; 739: 88-96
    41. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333: 1581-7
    42. Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, Lutsep HL, Nesbit GM, Grobelny T, Rymer MM, Silverman IE, Higashida RT, Budzik RF, Marks MP: Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005; 36: 1432-8
    43. Caplan LR: Stroke treatment: promising but still struggling. JAMA 1998; 279: 1304-6
    44. Fisher M, Bogousslavsky J: Further evolution toward effective therapy for acute ischemic stroke. JAMA 1998; 279: 1298-303
    45. Heiss WD, Thiel A, Grond M, Graf R: Which targets are relevant for therapy of acute ischemic stroke? Stroke 1999; 30: 1486-9
    46. Muir KW, Grosset DG: Neuroprotection for acute stroke: making clinical trials work. Stroke 1999; 30: 180-2
    47. Fisher M, Tatlisumak T: Use of animal models has not contributed to development of acute stroke therapies: con. Stroke 2005; 36: 2324-5
    48. Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, Sasaki R: Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 1998; 253: 26-32
    49. Ehrenreich H, Aust C, Krampe H, Jahn H, Jacob S, Herrmann M, Siren AL: Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 2004; 19: 195-206
    50. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, Diener HC, Ashwood T, Wasiewski WW, Emeribe U: NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 2007; 357: 562-71
    51. Lo EH, Moskowitz MA, Jacobs TP: Exciting, radical, suicidal: how brain cells die after stroke. Stroke 2005; 36: 189-92
    52. Krieger DW, De Georgia MA, Abou-Chebl A, Andrefsky JC, Sila CA, Katzan IL, Mayberg MR, Furlan AJ: Cooling for acute ischemic brain damage (cool aid): an open pilot study of induced hypothermia in acute ischemic stroke. Stroke 2001; 32: 1847-54
    53. De Georgia MA, Krieger DW, Abou-Chebl A, Devlin TG, Jauss M, Davis SM, Koroshetz WJ, Rordorf G, Warach S: Cooling for Acute Ischemic Brain Damage (COOL AID): a feasibility trial of endovascular cooling. Neurology 2004; 63: 312-7
    54. Taniguchi T, Morikawa E, Mori T, Matsui T: Neuroprotective efficacy of selective brain hypothermia induced by a novel external cooling device on permanent cerebral ischemia in rats. Neurol Res 2005; 27: 613-9
    55. Clark DL, Colbourne F: A simple method to induce focal brain hypothermia in rats. J Cereb Blood Flow Metab 2007; 27: 115-22
    56. Kim ND, Pokharel YR, Kang KW: Ginsenoside Rd enhances glutathione levels in H4IIE cells via NF-kappaB-dependent gamma-glutamylcysteine ligase induction. Pharmazie 2007; 62: 933-6
    57. Yokozawa T, Satoh A, Cho EJ: Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 2004; 56:107-13
    58. Ye R, Han J, Kong X, Zhao L, Cao R, Rao Z, Zhao G: Protective effects of ginsenoside Rd on PC12 cells against hydrogen peroxide. Biol Pharm Bull 2008; 31: 1923-7
    59. Tamura T, Cui X, Sakaguchi N, Akashi M: Ginsenoside Rd prevents and rescues rat intestinal epithelial cells from irradiation-induced apoptosis. Food Chem Toxicol 2008; 46: 3080-9
    60. Lee HJ, Kim SR, Kim JC, Kang CM, Lee YS, Jo SK, Kim TH, Jang JS, Nah SY, Kim SH: In Vivo radioprotective effect of Panax ginseng C.A. Meyer and identification of active ginsenosides. Phytother Res 2006; 20: 392-5
    61. Yang Z, Chen A, Sun H, Ye Y, Fang W: Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 2007; 25: 161-9
    62. Yokozawa T, Liu ZW, Dong E: A study of ginsenoside-Rd in a renal ischemia-reperfusion model. Nephron 1998; 78: 201-6
    63. Guan YY, Zhou JG, Zhang Z, Wang GL, Cai BX, Hong L, Qiu QY, He H: Ginsenoside-Rd from panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur J Pharmacol 2006; 548: 129-36
    64. Wan HT, Wang Y, Yang JH: [Establishment of oxygen and glucose deprive model of in vitro cultured hippocampal neuron and effect of ligustrazine on intracellular Ca+ level in model neurons]. Zhongguo Zhong Xi Yi Jie He Za Zhi 2007; 27: 234-6
    65. Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W: Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Eur J Pharmacol 2003; 467: 41-7
    66. Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W: Tetramethylpyrazine scavengessuperoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci 2003; 72: 2465-72
    67. Chang Y, Hsiao G, Chen SH, Chen YC, Lin JH, Lin KH, Chou DS, Sheu JR: Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacol Sin 2007; 28: 327-33
    68. Xu XH, Zhao TQ: Effects of puerarin on D-galactose-induced memory deficits in mice. Acta Pharmacol Sin 2002; 23: 587-90
    69. Xu X, Zheng X: Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons. J Ethnopharmacol 2007; 113: 421-6
    70. Zhang YW, Morita I, Shao G, Yao XS, Murota S: Screening of anti-hypoxia/reoxygenation agents by an in vitro model. Part 1: Natural inhibitors for protein tyrosine kinase activated by hypoxia/reoxygenation in cultured human umbilical vein endothelial cells. Planta Med 2000; 66: 114-8
    71. Pan HP, Li G: Protecting mechanism of puerarin on the brain neurocyte of rat in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury. Yakugaku Zasshi 2008; 128: 1689-98
    72. Xu XH, Zheng XX, Zhou Q, Li H: Inhibition of excitatory amino acid efflux contributes to protective effects of puerarin against cerebral ischemia in rats. Biomed Environ Sci 2007; 20: 336-42
    73. Gao Q, Yang B, Ye ZG, Wang J, Bruce IC, Xia Q: Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur J Pharmacol 2007; 574: 179-84
    74. Gao Q, Pan HY, Qiu S, Lu Y, Bruce IC, Luo JH, Xia Q: Atractyloside and 5-hydroxydecanoate block the protective effect of puerarin in isolated rat heart.Life Sci 2006; 79: 217-24
    75. Sue YM, Cheng CF, Chang CC, Chou Y, Chen CH, Juan SH: Antioxidation and anti-inflammation by haem oxygenase-1 contribute to protection by tetramethylpyrazine against gentamicin-induced apoptosis in murine renal tubular cells. Nephrol Dial Transplant 2009; 24: 769-77
    76. Kao TK, Ou YC, Kuo JS, Chen WY, Liao SL, Wu CW, Chen CJ, Ling NN, Zhang YH, Peng WH: Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats. Neurochem Int 2006; 48: 166-76
    77. Longa EZ, Weinstein PR, Carlson S, Cummins R: Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91
    78. Garcia JH, Wagner S, Liu KF, Hu XJ: Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995; 26: 627-34; discussion 635
    79. Phan TG, Wright PM, Markus R, Howells DW, Davis SM, Donnan GA: Salvaging the ischaemic penumbra: more than just reperfusion? Clin Exp Pharmacol Physiol 2002; 29: 1-10
    80. de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J: Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 1994; 138: 15-24
    81. Viktorov IV: [The role of nitric oxide and other free radicals in ischemic brain pathology]. Vestn Ross Akad Med Nauk 2000: 5-10
    82. Hsiao G, Chen YC, Lin JH, Lin KH, Chou DS, Lin CH, Sheu JR: Inhibitory mechanisms of tetramethylpyrazine in middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in rats. Planta Med 2006; 72: 411-7
    83. Wan H, Zhu H, Tian M, Hu X, Yang J, Zhao C, Zhang H: Protective effect of chuanxiongzine-puerarin in a rat model of transient middle cerebral arteryocclusion-induced focal cerebral ischemia. Nucl Med Commun 2008; 29: 1113-22
    84. Mehta SL, Manhas N, Raghubir R: Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007; 54: 34-66
    85. Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH: Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004; 1: 17-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700