DFO、DFO联合AS_2O_3对HL-60细胞移植瘤裸鼠的治疗作用及对NF-κBp65表达影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     采用铁螫合剂去铁胺(DFO)、去铁胺联合三氧化二砷(AS2O3)对高致瘤性HL-60白血病细胞移植瘤裸鼠进行治疗,观察上述药物对移植瘤裸鼠的治疗作用及对移植瘤组织NF-κBp65表达水平的影响,探讨其作用机制,为临床采用铁螫合剂治疗或辅助治疗白血病提供实验依据。
     研究方法
     1.采用皮下接种的方法,构建高致瘤性HL-60白血病细胞裸鼠移植瘤模型,将荷瘤裸鼠随机分为4组:50mg/kg DFO单药组、联合用药组(50mg/kg DFO+1.5 mg/kg As2O3)、3 mg/kg As2O3单药组、生理盐水对照组;于接种的当天开始给药,连续给药10天,全部采用腹腔注射,实验协议通过郑州大学第一临床学院伦理委员会批准。
     2.给药期间密切观察裸鼠的一般状况,裸鼠接种后的成瘤时间及移植瘤的生长特点,同时观察荷瘤裸鼠对药物的不良反应。用游标卡尺每天测量移植瘤块的最大长径(a)和短径(b),依据公式:体积=ab2/2,计算瘤体积,绘制肿瘤生长曲线。
     3.荷瘤裸鼠在全部用药结束后24小时处死,计算移植瘤的瘤重量、抑瘤率
     4.荷瘤裸鼠在处死后,取其移植瘤组织做常规病理学检查,观察移植瘤组织的形态学改变;取荷瘤裸鼠骨髓,观察有无骨髓抑制和白血病细胞浸润;取荷瘤裸鼠的心、肝、脾、肺、肾组织,观察有无病理改变及瘤转移。
     5.采用免疫组织化学即用型二步法(非生物素)检测各组移植瘤组织NF-κBp65的表达水平变化,运用专业图像分析系统Biosens Digital Imaging System (vl.6)进行积分光密度测定,用阳性区平均积分光密度值来表示NF-κBp65免疫组化染色阳性的表达程度。
     6.统计分析:采用SPSS 16.0 for Windows软件包进行统计学处理;样本数据采用均数±标准差(X±S)表示;治疗组与生理盐水对照组的移植瘤重量比较采用t检验,4组移植瘤组织免疫组化NF-κBp65表达水平比较采用单因素方差分析;统计检验均为双侧概率检验(α=0.05), P<0.05为差异有统计学意义。
     结果
     1.裸鼠接种后的成瘤情况及移植瘤的生长特点:用体外培养的高致瘤性HL-60细胞(约1×106个细胞/只)接种,于接种后第7~8天30只裸鼠全部成瘤,出现肉眼可见的瘤块,直径约0.5cm~1.0cm大小,成瘤率为100%。移植瘤生长早期仅在裸鼠接种局部皮下生长,生长迅速,呈向外膨胀性生长的特性,表现为圆形或椭圆形,随着瘤体增长逐渐成为不规则形,表面呈多个结节融合状。从外部观察这些移植瘤边界较清楚,肿瘤与皮肤无粘连,活动度可,似有包膜,表皮血管丰富,但随着移植瘤体积进行性增大,肿瘤活动度逐渐下降。当移植瘤直径长至2.0cm及其以上时,在移植瘤表皮中央出现褐色的边缘不规则的坏死灶,坏死面积随着时间延长持续扩大。该移植瘤组织较易剥离,离体后可见瘤组织有一层完整的包膜、包膜上血供丰富、切面似鱼肉状、组织松脆易碎。
     2.给药期间裸鼠的一般状况:给药第1天至给药第7天各组荷瘤裸鼠精神状态均良好,活动正常,反应敏捷,进食、进水正常,皮肤颜色如常,大便正常,未见明显异常反应。从给药第8天开始,随着移植瘤体积的增大,荷瘤裸鼠正常活动逐渐受到影响,行动较前迟缓,进食、进水减少。当移植瘤直径长至2.0cm及其以上时,荷瘤裸鼠逐渐呈现恶病质状态,肤色逐渐由粉色转为淡青色,且随着移植瘤的增大体重逐渐增长。给药期间,观察到As2O3单药组有2只裸鼠出现腹水,对照组有1只裸鼠出现眼部转移瘤,除此之外,各治疗组荷瘤裸鼠一般状况与对照组相比无明显差异。
     3.不同用药组移植瘤体积增长情况:随着时间的延长,荷瘤裸鼠移植瘤体积越来越大。各治疗组移植瘤体积增长速度均较对照组慢,其中以DFO联合As2O3组移植瘤体积增长最慢,其次为As2O3单药组和DFO单药组。给药第1天至给药第5天,所有裸鼠无移植瘤生长,从给药第6天开始,各治疗组的移植瘤平均体积均小于生理盐水对照组,且随着给药时间的延长,各治疗组与对照组移植瘤平均体积的差值进一步扩大。到第11天时,生理盐水对照组移植瘤平均体积最大,其次是DFO单药组,再次是As2O3单药组,而DFO联合As2O3用药组的移植瘤平均体积最小,说明不同用药组对高致瘤HL-60白血病细胞裸鼠异种移植瘤体积随时间变化的趋势有影响。
     4.DFO单药组和As2O3单药组对高致瘤性HL-60细胞裸鼠异种移植瘤的抑瘤率分别为2.56%和10.67%,移植瘤重量分别为(2.55±0.82)g和(2.34±0.79)g,与生理盐水对照组相比较,差异均无统计学意义(分别为F=1.290,P=0.866 >0.05和F=1.714,P=0.474>0.05):DFO联合As2O3用药组对高致瘤HL-60细胞裸鼠异种移植瘤的抑瘤率为25.49%,移植瘤重量为(1.95±0.39)g,与生理盐水对照组相比较,明显低于生理盐水对照组,差异有统计学意义(F=0.028,P=0.019<0.05),提示DFO联合As2O3用药对HL-60高致瘤细胞裸鼠异种移植瘤的生长具有抑制作用,DFO联合As2O3在抑制高致瘤HL-60细胞裸鼠异种移植瘤的生长上具有协同作用。
     5.荷瘤裸鼠在处死后,肉眼观察各组移植瘤组织,可见出血坏死区,有的瘤块表面可见黑色痂样改变。光镜下可见,对照组瘤细胞分布密集,瘤细胞圆形或椭圆形,细胞胞体较大,大小基本一致,明显异型,核大而深染,胞浆量少,呈嗜碱性,可见个别凋亡细胞及凋亡小体,内有散在的局灶性细胞坏死区:各治疗组移植瘤组织中瘤细胞数目明显较生理盐水对照组减少,细胞体积变小,核深染,有的细胞固缩,有的仅存胞核,可见不规则坏死、出血,呈片状的嗜伊红结构,凋亡细胞和凋亡小体小片状分布,其中以DFO联合As2O3用药组较DFO单药组和As2O3单药组显著。
     6.荷瘤裸鼠心、肝、脾、肺、肾病理组织学检查结果显示:在显微镜下观察可见,每只荷瘤裸鼠的心、肝、脾、肺、肾组织,结构完整,除充血程度不同外,均无明显的病理改变,未见HL-60白血病细胞转移。
     7.荷瘤裸鼠骨髓病理组织学检查结果显示:4组均可见有核细胞增生活跃,粒红比例正常,末见明显的骨髓抑制和HL-60白血病细胞浸润。
     8.免疫组织化学PowerVisionTM二步法检测移植瘤组织NF-κBp65的表达,统计学结果显示:DFO单药组,As2O3单药组与DFO联合As2O3用药组3个治疗组的平均积分光密度值均低于生理盐水对照组,与生理盐水对照组比较均有统计学差异(P<0.05);且NF-κBp65表达的积分光密度值:生理盐水对照组>As2O3单药组>DFO单药组>DFO联合As2O3用药组。4组两两相互比较差异均有统计学意义(P<0.05)。提示DFO和As2O3都可降低高致瘤HL-60细胞裸鼠异种移植瘤组织的NF-κBp65表达,二者联合降低移植瘤组织NF-κBp65表达的作用更强。
     结论
     1.采用高致瘤性HL-60白血病细胞(1×106个细胞/只)在裸鼠皮下接种,可成功建立移植瘤动物模型,接种后7~8天均能形成直径约0.5cm~1.0cm大小的移植瘤,成瘤率达100%,且成瘤后瘤体生长迅速。
     2.DFO和As2O3单药应用均可抑制高致瘤HL-60白血病细胞裸鼠异种移植瘤的生长,二者联合作用显著。
     3.DFO联合As2O3应用荷瘤裸鼠能较好耐受,DFO可降低As2O3用量,促进其杀伤肿瘤作用,且可降低As2O3毒副作用。
     4.DFO和As2O3均可降低高致瘤HL-60细胞裸鼠异种移植瘤组织的NF-κBp65的表达水平,二者联合降低移植瘤组织NF-κBp65表达的作用更明显。
Objective
     To observe the therapeutic effect and the influence on NF-KBp65 expression level of transplanted tumors of deferoxamine and deferoxamine(DFO) in combination with arsenic trioxide (As2O3)by establishing a model of implanted tumor of human high tumorigenic leukemia cell line HL-60 in nude mice,and investigate the mechanism,so as to provide the experimental evidence for treatment or auxiliary treatment clinically for leukemia of iron chelators.
     Methods
     1.Xenograft tumor model of human high tumorigenic leukemia cell line HL-60 in nude mice was established by means of inoculating subcutaneously,then the tumor-bearing mice were randomly divided into four groups:50mg/kg DFO group, combination group(50mg/kg DFO+1.5mg/kg As2O3),3mg/kg As2O3 group, normal saline control group. The tumor-bearing mice were given drugs from that day of inoculating subcutaneously,and drug administration continued for 10 days continuously through intraperitoneal injection.The experimental protocol was approved by the ethical committee of First Clinical Medical College of Zhengzhou University.
     2.Observing closely general conditions and adverse drug effects of the tumor-bearing mice,time of forming tumor, growth characteristic of transplanted tumor during administration of drugs.The maximum longitudinal(a) and transverse(b) diameters of transplanted tumor were measured with slide callipers every day. Tumor volumes were calculated according to the equation(volume=ab2/2),and then transplanted tumor growth curves were drawn.
     3.The next day The tumor-bearing mice were executed after administration of drugs.Then tumor weights and tumor inhibitory rate of transplanted tumors were calculated.
     4.After the tumor-bearing mice were executed, the specimens of transplanted tumors were stained with HE.Routine pathological examination were performed on transplanted tumors to observe the changes of tissue morphology. Then the changes of each specimen in different experimental groups were analyzed. The bone marrows of the tumor-bearing mice were observed to determine whether bone marrow depression and infiltration of leukemic cells existed or not. The tissues of heart,liver,spleen,lung and kidney of the tumor-bearing mice were observed to determine whether pathological changes and tumor metastasis existed or not.
     5.NF-κBp65 expression levels of transplanted tumors were detected by two-step Immunohistochemistry detection(PowerVisionTM),and then integrate optical density(IOD) was detected by using professional software Biosens Digital Imaging System (v1.6).Mean integrate optical density value of the positive area was used for representing the expression levels of NF-κBp65.
     6.The results of experiment were analyzed by SPSS16.0 for Windows.Sample averages were expressed by X±S.The differences of the weights of transplanted tumors between treatment groups and control group were test by t test.The differences of the NF-κBp65 expression levels of transplanted tumors between four experimental groups were test by one-way ANOVA.Statistic test were two-sided test of probability(α=0.05).Probability of less than 0.05 were considered significant.
     Results
     1.General conditions of forming tumor, growth characteristic of transplanted tumor after inoculating:Inoculating human high tumorigenic leukemia cell line HL-60 (about 1×106 cells/each mouse) culturing in vitro,tumor grew in 100% of animals.From the seventh day to the eighth day, macroscopic tumors were observed 0.5cm~1.0cm in diameter. Tumors which were orbicular or elliptic grew only at the sites of cells inoculation and expansive grew outward with rapid growth at the time of early growth.After that, with the enlargement of tumor size, tumors became irregular gradually and multinodular confluent on the surface.From the outside watching, clear boundary, no adhesion with the skin, good mobility, having peplos apparently and epidermis rich in blood vessels were observed,but the mobility of tumor decreased gradually with the progressive increase of tumor volume. When the tumors were bigger than two centimeters in diameter, brown necrotic foci which had irregular margins were observed on the central Epidermis of tumors,and necrotic area continued to expand with time.The transplanted tumor tissues were easily stripped with layer of intact peplos rich in blood vessels.The section of tumors looks like fish.The tissues were crispy and easily broken.
     2.General conditions of the tumor-bearing mice during administration course:A good mental state, normal activities,agile response,eating and drinking normally, normal skin color, normal stool and no abnormal situation were observed in all the tumor-bearing mice from the first day to the seventh day of administration of drugs.With the enlargement of tumor size, normal activities of the tumor-bearing mice were influenced gradually from the eighth day of administration of drugs,for example,a slowing of movement and reduced eating and drinking.When the tumors were bigger than two centimeters in diameter, cachexia was observed in the tumor-bearing mice.Skin color gradually changed from pink to light cyan,and the weight of the tumor-bearing mice increased gradually with the enlargement of tumor size from the eighth day. Ascites were observed in two tumor-bearing mice of 3mg/kg As2O3 group,and metastatic tumor were observed in a tumor-bearing mice of control group. Apart from this,there was no significant difference between treatment groups and control group in general conditions of the tumor-bearing mice.
     3.There was an increase of the transplanted tumor's volume as time went on. The rate of tumor volume increase in control group was the fastest, followed by 50mg/kg DFO group and 3mg/kg As2O3 group.And the rate in combination group(50mg/kg DFO+1.5mg/kg As2O3)was the lowest.No tumour grew from the first day to the fifth day of administration of drugs. From the sixth day mean volumes of tumors in control group were higher than them in treatment groups.And the differences of mean volumes of tumors between treatment groups and control group were further expanded as time went on.On the eleventh day the tumor volume of control group was the largest, followed by 50mg/kg DFO group, and 3mg/kg As2O3 group is next. The tumor volume of combination group(50mg/kg DFO+1.5mg/kg As2O3) was the smallest.So we can see that different drugs affected the trend of transplanted tumor's volume over time.
     4.The tumor inhibitory ratioes of 50mg/kg DFO group and 3mg/kg As2O3 group were 2.56% and 10.67% respectively.The transplanted tumor weights of 50mg/kg DFO group and 3mg/kg As2O3 group were(2.55±0.82)g and(2.34±0.79)g respectively.There was no significant difference between DFO group and the control group(F=1.290,P=0.866>0.05),and there was no significant difference between As2O3 group and the control group (F=1.714, P=0.474>0.05).The tumor inhibitory ratio of combination group(50mg/kg DFO +1.5mg/kg As2O3)was 25.49%, The transplanted tumor weight of combination group was(1.95±0.39)g,and significantly lower than that of control group(F=0.028,P=0.019<0.05).It indicated that DFO combined with As2O3 had the synergistic anti-tumor effect.
     5.After the tumor-bearing mice were executed, hemorrhage, necrosis and black scab were observed on the tumor tissue through macroscopic observation.By light microscope the tumor cells in control group were large, orbicular or elliptic, heterogeneous and basophilic,with high nucleocytoplasmic ratio,and distributed compactly. A few of apoptosis cells and apoptotic bodies were found in control group,in which areas of focal necrosis scattered. The number of tumor cells in tissue of treatment groups were smaller than that of normal saline control group.Small tumor cells with hyperchromatic nuclei,pycnosis, Some remaining nucleus,irregular necrosis,hemorrhage, flaky eosinophilic Structure,apoptosis cells and apoptotic bodies with a small flaky distribution were found in treatment groups.especially in combination group.
     6.By light microscope,Complete structure, no obvious pathological changes except of congestion in different degrees and no metastases were found in the tissues of heart,liver,spleen,lung and kidney of the tumor-bearing mice.
     7.After administration completed, bone marrow depression and infiltration of leukemic cells HL-60 were not observed in the bone marrows of the tumor-bearing mice,and the active proliferation of bone marrow karyocyte and normal myeloid erythroid ratio were observed in bone marrows.
     8.NF-κBp65 expression levels of transplanted tumors were detected by two-step Immunohistochemistry detection(PowerVisionTM),and then the statistical results showed that there was significant difference in average value of integrate optic density(IOD) among experimental groups(P<0.05).The average value of IOD of control group was the largest, followed by 3mg/kg As2O3 group, and 50mg/kg DFO group is next. The average value of IOD of combination group(50mg/kg DFO+1.5mg/kg As2O3) was the smallest. So both DFO and As2O3 could lower NF-icBp65 expression levels of transplanted tumors, and especially DFO combined with As2O3 had a stronger effect.
     Conclusion
     1.The xenograft model of the human leukemia cell line HL-60 in nude mice was successfully established by Inoculating human high tumorigenic leukemia cell line HL-60 (about 1×106 cells/each mouse).Transplanted tumor grew in 100% of animals,and grew rapidly after forming tumours.From the seventh day to the eighth day after inoculating, macroscopic tumors were observed 0.5cm~1.0cm in diameter.
     2.Both DFO and As2O3 could inhibit the growth of transplanted tumors,and DFO combined with As2O3 had a obvious and significant effect on inhibiting the growth of transplanted tumors.
     3.When DFO combined with As2O3,it was well tolerated and there were no significant adverse effects.DFO not only lowered the dosage of As2O3,but also increased the killing effect of As2O3 on tumor.
     4.Both DFO and As2O3 could lower NF-κBp65 expression levels of transplanted tumors, and especially DFO combinated with As2O3 had an obvious effect.
引文
[1]Munoz M,Villar I.Garcia-Erce JA.An update on iron physiology[J].World J Gastroenterol,2009.15(37):4617~4626.
    [2]Weinberg ED.The role of iron in cancer[J].Eur J Cancer Prev,1996,5(1):19~36.
    [3]Toyokuni S.Role of iron in carcinogenesis:cancer as a ferrotoxic disease[J].Cancer Sci,2009,100(1):9~16.
    [4]Hann HW, Stahlhut MW, Blumberg BS.Iron nutrition and tumor growth:decreased tumor growth in iron-deficient mice[J].Cancer Res,1988,48(15):4168~4170.
    [5]Hann HW, Stahlhut MW,Menduke H.Iron enhances tumor growth.Observation on spontaneous mammary tumors in mice[J].Cancer,1991,68(11):2407~2410.
    [6]Jiang XP, Wang F, Yang DC,et al.Induction of apoptosis by iron depletion in the human breast cancer MCF-7 cell line and the 13762NF rat mammary adenocarcinoma in vivo[J].Anticancer Res,2002,22(5):2685~2692.
    [7]Hoke EM,Maylock CA,Shacter E.Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin[J].Free Radic Biol Med, 2005,39(3):403~411.
    [8]Brard L, Granai CO, Swamy N.Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma[J].Gynecol Oncol, 2006,100(1):116~127.
    [9]Estrov Z, Tawa A,Wang XH,et al.In vitro and in vivo effects of deferoxamine in neonatal acute leukemia[J].Blood,1987,69(3):757~761.
    [10]Estrov Z, Cohen A,Gelfand EW, et al.Synergistic antiproliferative effects on HL-60 cells:deferoxamine enhances cytosine arabinoside, methotrexate, and daunorubicin cytotoxicity[J].Am J Pediatr Hematol Oncol,1988,10(4):288~291.
    [11]Dezza L,Cazzola M,Danova M,et al. Effects of desferrioxamine on normal and leukemic human hematopoietic cell growth:in vitro and in vivo studies[J]. Leukemia,1989,3(2):104~107.
    [12]Blatt J,Boegel F,Hedlund BE,et al.Failure to alter the course of acute myelogenous leukemia in the rat with subcutaneous deferoxamine[J].Leuk Res,1991,15(5):391~ 394.
    [13]Wang F,Elliott RL, Head JF.Inhibitory effect of deferoxamine mesylate and low iron diet on the 13762NF rat mammary adenocarcinoma[J].Anticancer Res, 1999,19(1A):445~450.
    [14]Selig RA,White L, Gramacho C,et al.Failure of iron chelators to reduce tumor growth in human neuroblastoma xenografts[J].Cancer Res,1998,58(3):473~478.
    [15]Simonart T,Boelaert JR, Andrei G, et al.lron withdrawal strategies fail to prevent the growth of SiHa-induced tumors in mice[J].Gynecol Oncol,2003,90(1):91~95.
    [16]刘玉峰,贾国存,曾利,等.铁剥夺诱导HL-60细胞凋亡及对化疗药物诱导HL-60细胞 凋亡的影响[J].中华儿科杂志,2001,39(12):735~738.
    [17]刘五峰,曾利,伍学强,等.支铁胺诱导HL-60细胞凋亡及对c-myc基因表达的影响[J].实用儿科临床杂志,2001,16(6):395~397.
    [18]贾国存,刘长峰.富铁对HL-60细胞增殖及化疗药物诱导其凋亡的影响[J].中华血液学杂志.2001,22(7):381~382.
    [19]虞婕,刘玉峰,贾国存.铁超载与铁剥夺对VP-16诱导HL-60细胞凋亡的影响[J].郑州大学学报医学版,2002,37(5):591~593.
    [20]贾国存,刘玉峰,汤有才.等.支铁胺联合阿糖胞苷诱导HL-60细胞凋亡作用的实验研究[J].中国当代儿科杂志,2003,5(4):368~370.
    [21]刘玉峰.王叼.张传新.支铁胺诱导白血病细胞HL-60凋亡线粒体膜电位变化的研究[J].中华儿科杂志,2005,43(4):300~301.
    [22]Wang D. Liu YF. Wang YC. Deferoxamine induces apoptosis of HL-60 cells by activating caspase-3[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2006,14(3):485~487.
    [23]金坤林,王树桐,陈莉莉,等.支铁胺对HL-60细胞增殖的影响[J].北京大学学报(医学版),1990,22(1):37~39.
    [24]赵晓晴,刘玉峰,伍学强,等.急性白血病患儿血清转铁蛋白受体与铁参数变化的研究[J].中华血液学杂志,2002,23(7):378~379.
    [25]刘玉峰,赵晓晴,左文丽.血清转铁蛋白受体和促红细胞生成素与急性白血病患儿贫血关系的研究[J].中华儿科杂志,2002,40(10):612~613.
    [26]Yan H.Peng ZG,Wu YL,et al.Hypoxia-simulating agents and selective stimulation of arsenic trioxide-induced growth arrest and cell differentiation in acute promyelocytic leukemic cells[J].Haematologica,2005,90(12):1607~1616.
    [27]Huang X.Iron overload and its association with cancer risk in humans:evidence for iron as a carcinogenic metal[J].Mutat Res,2003,533(1-2):153~171.
    [28]Kelland LR.Of mice and men:values and liabilities of the athymic nude mouse model in anticancer drug development[J].Eur J Cancer,2004,40(6):827~836.
    [29]Potter GK,Shen RN,Chiao JW.Nude mice as models for human leukemia studies[J]. Am J Pathol,1984,114(3):360~366.
    [30]许小平,丁训杰,阎影,等.裸小鼠高成瘤性人白血病细胞系的建立及其生物学特性观察[J].中华血液学杂志,1996,17(3):142~145.
    [31]Hann HW, Stahlhut MW, Rubin R,et al.Antitumor effect of deferoxamine on human hepatocellular carcinoma growing in athymic nude mice[J].Cancer,1992,70(8):2051~ 2056.
    [32]Hoke EM,Maylock CA,Shacter E.Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin[J].Free Radic Biol Med, 2005,39(3):403~411.
    [33]Rego EM, He LZ, Warrell RP Jr, et al.Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins[J].Proc Natl Acad Sci U S A,2000,97(18):10173~10178.
    [34]Xie LX, Lin XH,Li DR,et al.Synergistic therapeutic effect of arsenic trioxide and radiotherapy in BALB/C nude mice bearing nasopharyngeal carcinoma xenografts[J]. Exp Oncol,2007,29(1):45~48.
    [35]Gao Y, Cai QQ,Li S,et al.Effects of arsenic trioxide under different administration ways on T-cell lymphoma xenografts in nude mice:in vivo and in vitro experiments[J].Ai Zheng,2009.28(2):127~131.
    [36]Jiang H,Ma Y, Chen X,et al.Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma[J].Cancer Sci,2010,101,975-983.
    [37]Y. Yu, J.Wong. D.B.Lovejoy, et al.Chelators at the cancer coalface:desferrioxamine to triapine and beyond[J].Clin.Cancer. Res,2006,12(23):6876~6883.
    [38]N.F. Olivieri,G.M.Brittenham.Iron-chelating therapy and the treatment of thalassemia[J].Blood,1997,89(3):739~761.
    [39]Singh H,Sen R,Baltimore D,et al.A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobuling genes[J].Nature,1986,319 (6049):154~158.
    [40]Delhase M,Li NX,Karin M.Kinase regulation in inflammatory response[J]. Nature,2000,406(27):367~368.
    [41]Viatour P,Merville MP,Bours V,et al.PhosPhorylation of NF-κB and IκB Proteins:implications in cancer and inflammation[J].Trends in biochemical Sciences, 2005,30(1):43~52.
    [42]Shukla S,MacLennan GT,Fu P,et al.Nuclear factor-kappaB/p65(RelA) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression[J].Neoplasia,2004,6(4):390~400.
    [43]Bharti AC,Aggarwal BB.Nuclear factor-kappaB and cancer:it's role in prevention and therapy[J].Biochem Parmacol,2002,64(5-6):883~888.
    [44]Thornton MV, Kudo D,Rayman P, et al.Degradation of NF-kappa B in T cells by gangliosides expressed on renal cell carcinomas[J].J Immunol,2004,172 (6):3480~ 3489.
    [45]Oya M,Takayanagi A,Horiguchi A,et al.Increased nuclear factor-kappaB activation is related to the tumor development of renal cell carcinoma[J].Carcinogenesis,2003,24(3): 377~384.
    [46]Y Wu,BP Zhou.TNF-α/NF-kB/Snail pathway in cancer cell migration and invasion[J]. British Journal of Cancer,2010,102(4):639~644.
    [47]Rayet B,Gelinas C.Aberrant rel/nfkb genes and activity in human cancer[J]. Oncogene,1999,18(49):6938~6947.
    [48]Bentires-Alj M,Barbu V,Fillet M,et al.NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells[J].Oncogene,2003,22(1):90~97.
    [49]赵春,汤有才,廖清奎,等.铁剥夺对柔红霉素诱导K562细胞多药耐药基因1表达及 NF-κB活化的影响[J].郑州大学学报医学版,2005,40(2):265~267.
    [50]Turco MC, Romano MF, Petrella A,et al.NF-kappaB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors[J]. Abstract Leukemia,2004,18(1):11~17.
    [51]Kucharczak J, Simmons MJ, Fan Y,et al.To be, or not to be:NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis[J].Oncogene, 2003,22(56):8961~8982.
    [52]Xiong S, She H,Takeuchi H,et al.Signaling role of intracellular iron in NF-kappaB activation[J].J Biol Chem,2003,278(20):17646~17654.
    [53]Han SS, Kim K, Hahm ER,et al.Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60[J].J Cell Biochem,2005,94(4):695~707.
    [54]Gunther H. Iron-the wrong therapy for cancer patients[J]. Lancet Oncology,2000,1(3):133.
    [55]Le NT, Richardson DR. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene:a link between iron metabolism and proliferation[J].Blood,2004,104(9):2967~2975.
    [56]Miller WH Jr. Schipper HM, Lee JS, et al.Mechanisms of action of arsenic trioxide[J]. Cancer Res,2002,62(14):3893~3903.
    [57]Lunghi P, Giuliani N,Mazzera L,et al.Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways[J].Blood,2008,112(6):2450~2462.
    [58]Evan G.Cancer-a matter of life and cell death[J].Int J Cancer,1997,71(5):709~711.
    [59]Fan G,Steer CJ.The role of retinoblastoma protein in apoptosis[J].Apoptosis,1999,4(1):21~29.
    [60]Haq RU.Wereley JP, Chitambar CR.Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells [J].Exp.hemetol,1995,23(5):428~432.
    [61]Thompson CB.Apoptosis in the pathogenesis and treatment of disease[J].Science,1995, 267(5203):1456~1462.
    [62]Tomoyasu S, Fukuchi K, Yajima K, et al.Suppression of HL-60 cell proliferation by DFO Changes in c-myc expression[J].Anticancer Res,1993,13(2):407~410.
    [1]Zhang AS,Enns CA.Molecular mechanisms of normal iron homeostasis[J].Hematology Am Soc Hematol Educ Program,2009:207~214.
    [2]Munoz M, Villar I,Garcia-Erce JA.An update on iron physiology[J].World J Gastroenterol,2009,15(37):4617~4626.
    [3]Eisenstein RS.Iron regulatory proteins and the molecular control of mammalian iron metabolism[J].Annu Rev Nutr,2000;20:627~662.
    [4]Hentze MW, Muckenthaler MU, Andrews NC.Balancing acts:molecular control of mammalian iron metabolism[J].Cell,2004,117(3):285~297.
    [5]Richardson DR, Kalinowski DS, Lau S.Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents[J].Biochim Biophys Acta, 2009,1790(7):702~717.
    [6]Kalinowski DS, Richardson DR.The evolution of iron chelators for the treatment of iron overload disease and cancer[J].Pharmacol Rev,2005,57(4):547~583.
    [7]Kalinowski DS,Richardson DR.Future of toxicology--iron chelators and differing modes of action and toxicity:the changing face of iron chelation therapy[J].Chem Res Toxicol,2007,20(5):715~720.
    [8]Toyokuni S.Role of iron in carcinogenesis:cancer as a ferrotoxic disease[J].Cancer Sci. 2009,100(1):9~16.
    [9]Weinberg ED.The role of iron in cancer[J].Eur J Cancer Prev,1996,5(1):19~36.
    [10]Huang X.Iron overload and its association with cancer risk in humans:evidence for iron as a carcinogenic metal[J].Mutat Res,2003,533(1-2):153~171.
    [11]Vandewalle B,Hornez L, Revillion F, et al.Secretion of transferrin by human breast cancer cells[J].Biochem.Biophys. Res. Commun,1989,163(1):149~154.
    [12]Park S,Yoon SY, Kim KE,et al.Interleukin-18 induces transferrin expression in breast cancer cell line MCF-7[J].Cancer Lett,2009,286(2):189~195.
    [13]Vostrejs M,Moran PL, Seligman PA.Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation[J].J.Clin. Invest, 1988;82(1):331~339.
    [14]Morrone G, Corbo L, Turco MC, et al.Transferrin-like autocrine growth factor, derived from T-lymphoma cells, that inhibits normal T-cell proliferation[J].Cancer Res, 1988;48(12):3425~3429.
    [15]Larrick JW, Cresswell P.Modulation of cell surface iron transferrin receptors by cellular density and state of activation[J].J Supramol Struct,1979,11(4):579~586.
    [16]Syed BA,Sargent PJ,Farnaud S,et al.An overview of molecular aspects of iron metabolism[J].Hemoglobin.2006,30(1):69~80.
    [17]Daniels TR, Delgado T, Rodriguez JA,et al.The transferrin receptor part Ⅰ:Biology and targeting with cytotoxic antibodies for the treatment of cancer[J].Clin Immunol, 2006,121(2):144~158.
    [18]Sutherland R, Delia D, Schneider C,et al.Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin[J].Proc Natl Acad Sci U S A, 1981,78(7):4515~4519.
    [19]Prutki M,Poljak-Blazi M,Jakopovic M,et al.Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer[J].Cancer Lett,2006,238(2):188~ 196.
    [20]Trowbridge IS,Lopez F.Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro[J].Proc Natl Acad Sci U S A, 1982,79(4):1175~1179.
    [21]O'Donnell KA,Yu D, Zeller KI.et al.Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis[J].Mol Cell Biol,2006,26(6):2373~ 2386.
    [22]Napier I,Ponka P,Richardson DR.Iron trafficking in the mitochondrion:novel pathways revealed by disease[J].Blood,2005,105(5):1867~1874.
    [23]Brookes MJ,Hughes S,Turner FE,et al.Modulation of iron transport proteins in human colorectal carcinogenesis[J].Gut,2006,55(10):1449~1460.
    [24]Boult J,Roberts K, Brookes MJ,et al.Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma[J].Clin Cancer Res,2008,14(2):379~387.
    [25]Ellwood-Yen K,Graeber TG, Wongvipat J,et al.Myc-driven murine prostate cancer shares molecular features with human prostate tumors[J].Cancer Cell,2003,4(3):223~ 238.
    [26]Habel ME. Jung D.c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro[J].Biochem Biophys Res Commun, 2006,341(4):1309~1316.
    [27]Kawabata H,Yang R, Hirama T,et al.Molecular cloning of transferrin receptor 2.A new member of the transferrin receptor-like family[J].J Biol Chem,1999,274(30):20826~ 20832.
    [28]Kawabata H,Germain RS,Vuong PT,et al.Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo[J]. J Biol Chem, 2000,275(22):16618~16625.
    [29]Smilevska T, Stamatopoulos K, Samara M,et al.Transferrin receptor-1 and 2 expression in chronic lymphocytic leukemia[J].Leuk Res,2006,30(2):183~189.
    [30]Nakamaki T, Kawabata H,Saito B,et al.Elevated levels of transferrin receptor 2 mRNA, not transferrin receptor 1 mRNA,are associated with increased survival in acute myeloid leukaemia[J].Br J Haematol,2004,125(1):42~49.
    [31]Calzolari A,Oliviero I,Deaglio S,et al.Transferrin receptor 2 is frequently expressed in human cancer cell lines[J].Blood Cells Mol Dis,2007,39(1):82~91.
    [32]Calzolari A,Deaglio S,Maldi E,et al.TfR2 expression in human colon carcinomas[J]. Blood Cells Mol Dis,2009,43(3):243~249.
    [33]Pan LL, Gao J,Chen TT,et al.Expression of transferrin receptor 2 in mononuclear cells from children with acute leukemia[J].Sichuan Da Xue Xue Bao Yi Xue Ban, 2009,40(1):20~23,76.
    [34]Calzolari A, Finisguerra V, Oliviero l,et al.Regulation of transferrin receptor 2 in human cancer cell lines[J].Blood Cells Mol Dis,2009,42(1):5~13.
    [35]Kukulj S, Jaganjac M, Boranic M,et al.Altered iron metabolism, inflammation, transferrin receptors, and ferritin expression in non-small-cell lung cancer[J].Med Oncol.2009 Mar 24.
    [36]Marcus DM,Zinberg N.Measurement of serum ferritin by radioimmunoassay:results in normal individuals and patients with breast cancer[J].Natl Cancer Inst, 1975,55(4):791~795.
    [37]Ito H,Takagi Y, Ando Yet al.Serum ferritin levels in patients with cervical cancer[J]. Obstet Gynecol,1980,55(3):358~362.
    [38]Zhou XD, Stahlhut MW, Hann HL,et al.Serum ferritin in hepatocellular carcinoma[J]. Hepatogastroenterology,1988,35(1):1~4.
    [39]Hann HW, Levy HM,Evans AE.Serum ferritin as a guide to therapy in neuroblastoma[J].Cancer Res,1980,40(5):1411~1413.
    [40]Mahindra A,Bolwell B,Sobecks R,et al.Elevated ferritin is associated with relapse after autologous hematopoietic stem cell transplantation for lymphoma[J].Biol Blood Marrow Transplant,2008,14(11):1239~1244.
    [41]Roperto S, Borzacchiello G, Brun R,et al.Ferritin heavy chain (FHC)is up-regulated in papillomavirus-associated urothelial tumours of the urinary bladder in cattle[J].J Comp Pathol,2010,142(1):9~18.
    [42]Kikyo N,Suda M. Kikyo N,et al.Purification and characterization of a cell growth factor from a human leukemia cell line:immunological identity with ferritin[J].Cancer Res,1994,54(1):268~271.
    [43]Kikyo N,Hagiwara K, Fujisawa M,et al.Purification of a cell growth factor from a human lung cancer cell line:its relationship with ferritin[J].J Cell Physiol, 1994,161(1):106~110.
    [44]Fargion S,Fracanzani AL. Brando B,et al.Specific binding sites for H-ferritin on human lymphocytes:modulation during cellular proliferation and potential implication in cell growth control[J].Blood,1991,78(4):1056~1061.
    [45]Bretscher MS, Thomson JN.Distribution of ferritin receptors and coated pits on giant HeLa cells[J].EMBO J,1983,2(4):599~603.
    [46]Hugman A.Hepcidin:an important new regulator of iron homeostasis[J].Clin Lab Haematol,2006,28(2):75~83.
    [47]Ukarma L, Johannes H,Beyer U, et al.Hepcidin as a predictor of response to epoetin therapy in anemic cancer patients[J].Clin Chem,2009,55(7):1354~1360.
    [48]Sharma S, Nemeth E, Chen YH,et al.Involvement of hepcidin in the anemia of multiple myeloma[J].Clin Cancer Res,2008,14(11):3262~3267.
    [49]Tseng HH,Chang JG, Hwang YH,et al.Expression of hepcidin and other iron-regulatory genes in human hepatocellular carcinoma and its clinical implications[J].J Cancer Res Clin Oncol,2009,135(10):1413~1420.
    [50]Kamai T, Tomosugi N,Abe H,et al.Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma[J].BMC Cancer,2009,9:270.
    [51]Ward DG, Roberts K, Brookes MJ,Increased hepcidin expression in colorectal carcinogenesis[J].World J Gastroenterol,2008,14(9):1339~1345.
    [52]Dayani PN,Bishop MC,Black K,et al.Desferoxamine (DFO)--mediated iron chelation: rationale for a novel approach to therapy for brain cancer[J].J Neurooncol,2004 May;67(3):367~377.
    [53]Shao J,Zhou B, Chu B,et al.Ribonucleotide reductase inhibitors and future drug design[J].Curr Cancer Drug Targets,2006,6(5):409~431.
    [54]Kolberg M,Strand KR,Graff P.et al.Structure, function, and mechanism of ribonucleotide reductases[J].Biochim Biophys Acta,2004,1699(1-2):1~34.
    [55]Tsimberidou AM,Alvarado Y, Giles FJ.Evolving role of ribonucleoside reductase inhibitors in hematologic malignancies[J].Expert Rev Anticancer Ther, 2002,2(4):437~448.
    [56]Viprakasit V, Chan LL,Chong QT.Iron chelation therapy in the management of thalassemia:the Asian perspectives[J].Int J Hematol,2009,90(4):435~445.
    [57]Kontoghiorghes GJ.A new era in iron chelation therapy:the design of optimal, individually adjusted iron chelation therapies for the complete removal of iron overload in thalassemia and other chronically transfused patients[J].Hemoglobin, 2009.33(5):332~338.
    [58]Pathare A,Taher A,Daar S.Deferasirox(Exjade) significantly improves cardiac T2* in heavily iron-overloaded patients with beta-thalassemia major[J].Ann Hematol, 2010.89(4):405~409.
    [59]Estrov Z, Cohen A.Gelfand EW, et al.Synergistic antiproliferative effects on HL-60 cells:deferoxamine enhances cytosine arabinoside,methotrexate,and daunorubicin cytotoxicity[J].Am J Pediatr Hematol Oncol,1988,10(4):288~291.
    [60]Blatt J,Stitely S.Antineuroblastoma activity of desferoxamine in human cell lines[J]. Cancer Res,1987,47(7):1749~1750.
    [61]刘玉峰,贾国存,曾利,等.铁剥夺诱导HL-60细胞凋亡及对化疗药物诱导HL-60细胞凋亡的影响[J].中华儿科杂志,2001,39(12):735~738.
    [62]刘玉峰,王叼,张传新.去铁胺诱导白血病细胞HL-60凋亡线粒体膜电位变化的研究[J].中华儿科杂志,2005,43(4):300~301.
    [63]刘玉峰,曾利,伍学强,等.去铁胺诱导HL-60细胞凋亡及对c-myc基因表达的影响[J].实用儿临床杂志,2001;16(6):395~397.
    [64]贾国存,刘玉峰.富铁对HL-60细胞增殖及化疗药物诱导其凋亡的影响[J].中华血液学杂志,2001,22(7):381~382.
    [65]虞婕,刘玉峰,贾国存.铁超载与铁剥夺对VP-16诱导HL-60细胞凋亡的影响[J].郑州大学学报医学版,2002,37(5):591~593.
    [66]贸国存,刘玉峰,汤有才,等,去铁胺联合阿糖胞苷诱导HL-60细胞凋亡作用的实验研究[J].中国当代儿科杂志,2003,5(4):368~370.
    [67]王叼.刘玉峰,王颖超.去铁胺激活半胱天冬酶3诱导HL-60凋亡.中国实验血液学杂志,2006.14(3):485~487.
    [68]Estrov Z, Tawa A,Wang XH,et al.In vitro and in vivo effects of deferoxamine in neonatal acute leukemia[J].Blood,1987,69(3):757~761.
    [69]Dezza L,Cazzola M,Danova M,et al.Effects of desferrioxamine on normal and leukemic human hematopoietic cell growth:in vitro and in vivo studies[J]. Leukemia,1989,3(2):104~107.
    [70]Donfrancesco A,Deb G, Dominici C,et al.Effects of a single course of deferoxamine in neuroblastoma patients[J].Cancer Res,1990,50(16):4929~4930.
    [71]Donfrancesco A,De Bernardi B, Carli M,et al.Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma:preliminary results[J].Italian Neuroblastoma Cooperative Group. Eur J Cancer,1995,31(4):612~615.
    [72]Blatt J.Deferoxamine in children with recurrent neuroblastoma[J].Anticancer Res, 1994,14(5B):2109~2112.
    [73]Blatt J,Boegel F, Hedlund BE, et al.Failure to alter the course of acute myelogenous leukemia in the rat with subcutaneous deferoxamine[J].Leuk Res,1991,15(5):391~ 394.
    [74]Y. Yu, J.Wong, D.B.Lovejoy, D.S.Kalinowski,D.R. Richardson,et al.Chelators at the cancer coalface:desferrioxamine to triapine and beyond[J].Clin.Cancer. Res, 2006,12(23):6876~6883.
    [75]Samuni AM.Krishna MC,DeGraff W,et al.Mechanisms underlying the cytotoxic effects of Tachpyr--a novel metal chelator[J].Biochim Biophys Acta,2002,1571(3):211~218.
    [76]Torti SV,Torti FM,Whitman SP,et al.Tumor cell cytotoxicity of a novel metal chelator[J].Blood,1998,92(4):1384~1389.
    [77]Zhao R,Planalp RP, Ma R, et al.Role of zinc and iron chelation in apoptosis mediated by tachpyridine, an anti-cancer iron chelator[J]. Biochem Pharmacol, 2004,67(9):1677~1688.
    [78]Abeysinghe RD, Greene BT, Haynes R,et al.p53-independent apoptosis mediated by tachpyridine, an anti-cancer iron chelator[J].Carcinogenesis,2001,22(10):1607~1614.
    [79]Chantrel-Groussard K.Gaboriau F. Pasdeloup N,et al.The new orally active iron chelator ICL670A exhibits a higher antiproliferative effect in human hepatocyte cultures than O-trensox[J].Eur J Pharmacol,2006,541(3):129~137.
    [80]Lescoat G, Chantrel-Groussard K, Pasdeloup N,et al.Antiproliferative and apoptotic effects in rat and human hepatoma cell cultures of the orally active iron chelator ICL670 compared to CP20:a possible relationship with polyamine metabolism[J].Cell Prolif, 2007,40(5):755~767.
    [81]Whitnall M,Howard J,Ponka P,et al.A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics[J].Proc Natl Acad Sci U S A,2006,103(40):14901~14906.
    [82]Richardson DR,Sharpe PC,Lovejoy DB,et al.Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity[J]. J Med Chem,2006,49(22):6510~6521.
    [83]Kalinowski DS. Sharpe PC,Bernhardt PV,et al.Design, synthesis, and characterization of new iron chelators with anti-proliferative activity:structure-activity relationships of novel thiohydrazone analogues[J].J Med Chem,2007,50(24):6212~6225.
    [84]Ohyashiki JH,Kobayashi C.Hamamura R, et al.The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1[J].Cancer Sci,2009,100(5):970~977.
    [85]Chaston TB, Richardson DR.Interactions of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone class of chelators with iron and DNA:implications for toxicity in the treatment of iron overload disease[J].J Biol Inorg Chem,2003,8(4):427~438.
    [86]Green DA,Antholine WE, Wong SJ,et al.Inhibition of malignant cell growth by 311,a novel iron chelator of the pyridoxal isonicotinoyl hydrazone class:effect on the R2 subunit of ribonucleotide reductase[J].Clin Cancer Res,2001,7(11):3574~3579.
    [87]Gao J,Richardson DR.The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, Ⅳ:The mechanisms involved in inhibiting cell-cycle progression[J].Blood,2001,98(3):842~850.
    [88]Le NT, Richardson DR.Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene:a link between iron metabolism and proliferation[J].Blood,2004,104(9):2967~2975.
    [89]Chaston TB,Lovejoy DB,Watts RN,et al.Examination of the antiproliferative activity of iron chelators:multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311[J].Clin Cancer Res,2003,9(1):402~414.
    [90]Shao J,Zhou B, Di Bilio AJ,et al.A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase[J].Mol Cancer Ther,2006,5(3):586~592.
    [91]Cooper CE,Lynagh GR,Hoyes KP,et al.The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase[J].J Biol Chem, 1996,271(34):20291~20299.
    [92]Nyholm S,Mann GJ,Johansson AG,et al.Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators[J]. J Biol Chem, 1993,268(35):26200~26205.
    [93]Karp J E, Giles FJ, Gojo I,et al.A phase I study of the novel ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) in combination with the nucleoside analog tludarabine for patients with refractory acute leukemias and aggressive myeloproliferative disorders[J].Leuk Res,2008,32(1):71~ 77.
    [94]Schelman WR,Morgan-Meadows S,Marnocha R,et al.A phase Ⅰ study of Triapine in combination with doxorubicin in patients with advanced solid tumors[J].Cancer Chemother Pharmacol,2009.63(6):1147~1156.
    [95]Ma B,Goh BC, Tan EH,et al.A multicenter phase Ⅱ trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone(3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells[J].Invest New Drugs,2008,26(2):169~173.
    [96]Nutting CM,van Herpen CM,Miah AB,et al.Phase Ⅱ study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma[J].Ann Oncol, 2009,20(7):1275~1279.
    [97]Traynor A M.Lee JW, Bayer GK,et al.A phase Ⅱ trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced non-small cell lung cancer:Eastern Cooperative Oncology Group Study 1503[J].Invest New Drugs,2010,28(1):91~97.
    [98]Finch RA,Liu M,Grill SP, et al.Triapine(3-aminopyridine-2-carboxaldehyde-thiosemicarbazone):A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity[J].Biochem Pharmacol,2000,59(8):983~991.
    [99]Kunos CA,Waggoner S, von Gruenigen V,et al.Phase I trial of pelvic radiation, weekly cisplatin, and 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) for locally advanced cervical cancer[J].Clin Cancer Res,2010,16(4):1298~ 1306.
    [100]Wadler S, Makower D, Clairmont C,et al.Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor,3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion[J].J Clin Oncol,2004,22(9):1553~1563.
    [101]Foltz LM,Dalal BI,Wadsworth LD,et al.Recognition and management of methemoglobinemia and hemolysis in a G6PD-deficient patient on experimental anticancer drug Triapine[J].Am J Hematol,2006,81(3):210~211.
    [102]Gojo I,Tidwell ML, Greer J,et al.Phase I and pharmacokinetic study of Triapine, a potent ribonucleotide reductase inhibitor, in adults with advanced hematologic malignancies[J].Leuk Res,2007,31(9):1165~1173.
    [103]Mackenzie MJ, Saltman D, Hirte H,et al.A Phase Ⅱ study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the Princess Margaret hospital Phase II consortium[J].Invest New Drugs,2007,25(6):553~558.
    [104]Yuan J,Lovejoy DB,Richardson DR.Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity:in vitro and in vivo assessment[J].Blood,2004, 104(5):1450~1458.
    [105]Noulsri E, Richardson DR,Lerdwana S,et al.Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells[J].Am J Hematol, 2009,84(3):170~176.
    [106]Rao VA,Klein SR,Agama KK,et al.The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase Ilalpha in breast cancer cells[J].Cancer Res, 2009,69(3):948~957.
    [107]Yu Y, Kovacevic Z, Richardson DR.Tuning cell cycle regulation with an iron key[J]. Cell Cycle,2007,6(16):1982~1994.
    [108]Fu D. Richardson DR.Iron chelation and regulation of the cell cycle:2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIPl/WAF1 by iron depletion[J].Blood,2007,110(2):752~761.
    [109]Nurtjahja-Tjendraputra E,Fu D, Phang J M,et al.Iron chelation regulates cyclin D1 expression via the proteasome:a link to iron deficiency-mediated growth suppression[J]. Blood,2007,109(9):4045~4054.
    [110]Bilello JP, Cable EE, Isom HC.Expression of E-cadherin and other paracellular junction genes is decreased in iron-loaded hepatocytes[J].Am J Pathol, 2003,162(4):1323~1338.
    [111]Koo SW, Casper KA,Otto KB,et al.Iron chelators inhibit VCAM-1 expression in human dermal microvascular endothelial cells[J].J Invest Dermatol,2003,120(5):871~ 879.
    [112]Zhang WJ,Frei B.Intracellular metal ion chelators inhibit TNFalpha-induced SP-1 activation and adhesion molecule expression in human aortic endothelial cells[J].Free Radic Biol Med,2003,34(6):674~682.
    [113]Kaomongkolgit R, Cheepsunthorn P, Pavasant P,et al.Iron increases MMP-9 expression through activation of AP-1 via ERK/Akt pathway in human head and neck squamous carcinoma cells[J].Oral Oncol,2008,44(6):587~594.
    [114]Fahling M,Steege A,Perlewitz A,et al.Role of nucleolin in posttranscriptional control of MMP-9 expression[J].Biochim Biophys Acta,2005,1731(1):32~40.
    [115]Jin H,Terai S,Sakaida I.The iron chelator deferoxamine causes activated hepatic stellate cells to become quiescent and to undergo apoptosis[J].J Gastroenterol, 2007,42(6):475~484.
    [116]Brenneisen P, Briviba K, Wlaschek M,et al.Hydrogen peroxide(H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts[J].Free Radic Biol Med,1997,22(3):515~524.
    [117]Kovacevic Z, Richardson DR.The metastasis suppressor, Ndrg-1:a new ally in the fight against cancer[J].Carcinogenesis,2006,27(12):2355-2366.
    [118]Ellen TP, Ke Q, Zhang P,et al.NDRG1,a growth and cancer related gene:regulation of gene expression and function in normal and disease states[J].Carcinogenesis, 2008.29(1):2~8.
    [119]Elford HL,Freese M, Passamani E,et al. Ribonucleotide reductase and cell proliferation.Ⅰ.Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas[J].J Biol Chem,1970,245(20):5228~5233.
    [120]Jordan A,Reichard P.Ribonucleotide reductases[J].Annu Rev Biochem,1998,67:71~ 98.
    [121]Tanaka H,Arakawa H,Yamaguchi T,et al.A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage[J].Nature, 2000,404(6773):42~49.
    [122]Byun DS, Chae KS, Ryu BK, et al.Expression and mutation analyses of P53R2, a newly identified p53 target for DNA repair in human gastric carcinoma[J].Int J Cancer, 2002,98(5):718~723.
    [123]Shao J,Zhou B,Zhu L, et al.In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase[J].Cancer Res, 2004,64(1):1~6.
    [124]Cooper CE, Lynagh GR, Hoyes KP,et al.The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase[J].J Biol Chem, 1996,271(34):20291~20299.
    [125]Nyholm S, Mann GJ,Johansson AG,et al.Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators[J]. J Biol Chem, 1993.268(35):26200~26205.
    [126]Le NT,Richardson DR.The role of iron in cell cycle progression and the proliferation of neoplastic cells[J].Biochim Biophys Acta,2002,1603(1):31~46.
    [127]Bohnsack BL,Hirschi KK.Nutrient regulation of cell cycle progression[J].Annu Rev Nutr,2004,24:433~453.
    [128]Ruan K, Song G,Ouyang G.Role of hypoxia in the hallmarks of human cancer[J].J Cell Biochem,2009,107(6):1053~1062.
    [129]Chaudary N,Hill RP.Hypoxia and metastasis[J].Clin Cancer Res,2007,13(7):1947~ 1949.
    [130]Wenger RH.Mammalian oxygen sensing, signalling and gene regulation[J].J Exp Biol, 2000.203(Pt 8):1253~1263.
    [131]Pugh CW, Ratcliffe PJ.Regulation of angiogenesis by hypoxia:role of the HIF system[J].Nat Med,2003,9(6):677~684.
    [132]Semenza GL.Nejfelt MK, Chi SM,et al.Hypoxia-inducible nuclear factors bind to an enhancer element located 3'to the human erythropoietin gene[J].Proc Natl Acad Sci U SA,1991,88(13):5680~5684.
    [133]Callapina M,Zhou J,Schnitzer S,et al.Nitric oxide reverses desferrioxamine-and hypoxia-evoked HIF-lalpha accumulation--implications for prolyl hydroxylase activity and iron[J].Exp Cell Res,2005,306(1):274~284.
    [134]Beerepoot LV,Shima DT, Kuroki M,et al.Up~regulation of vascular endothelial growth factor production by iron chelators[J].Cancer Res,1996,56(16):3747~3751.
    [135]Chong TW, Horwitz LD,Moore JW,et al.A mycobacterial iron chelator, desferri~ exochelin, induces hypoxia~inducible factors 1 and 2, NIP3, and vascular endothelial growth factor in cancer cell lines[J].Cancer Res,2002,62(23):6924~6927.
    [136]Le NT, Richardson DR.Competing pathways of iron chelation:angiogenesis or anti-tumor activity:targeting different molecules to induce specific effects[J].Int J Cancer,2004,110(3):468~469.
    [137]Liang SX,Richardson DR.The effect of potent iron chelators on the regulation of p53: examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1 [J].Carcinogenesis,2003,24(10):1601~1614.
    [138]Ho TC, Chen SL, Yang YC,et al.PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells[J].Cardiovasc Res, 2007,76(2):213~223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700