MGF对肌卫星细胞增殖及Akt蛋白表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     骨骼肌卫星细胞是骨骼肌中具有分化增殖潜能的肌源性干细胞,在骨骼肌的生长、创伤修复和运动性骨骼肌的适应性肥大方面发挥重要的作用。IGF-1已被证实在骨骼肌的肥大过程中发挥重要的调节作用,可以促进离体培养的骨骼肌卫星细胞的增殖和分化。MGF (Mechano growth factor)是近年来发现的IGF-1的异构体,是惟一在运动训练和肌肉损伤后显著上调的因子,且具有促进肌卫星细胞增殖的功能。外源性MGF干预是否能够促进骨骼肌卫星细胞增殖,目前尚不明确。鉴于此目的,本研究且通过离体培养骨骼肌卫星细胞,通过不同剂量的MGF干预,探讨对卫星细胞增殖的影响及相关的信号通路中蛋白的表达,为进一步摸索MGF促进肌肉生长的机制,同时也为MGF在临床和运动实践中的应用提供实验依据。
     研究方法
     4周龄雄性SD鼠一只,约100g,无菌条件下分离大鼠腿部、背部肌肉,Ⅱ型胶原酶和胰酶两步酶消化法分离骨骼肌卫星细胞,差速贴壁法纯化细胞,用结蛋白(desmin)免疫组织化学进行细胞的鉴定。调整细胞密度,将细胞按MGF浓度分为Ong/ml、25ng/ml、50ng/ml、100ng/ml和150ng/ml五组,用CCK-8检测肌卫星细胞的增殖情况;BCA法测定各组卫星细胞中总蛋白的表达情况;Western Blot检测骨骼肌卫星细胞Akt及p-Akt蛋白的表达情况。
     研究结果
     1、肌卫星细胞原代培养:刚分离出来的卫星细胞圆形,折光性强。48小时后贴壁完全,细胞形状不规则,可见大小突起;4天后,细胞之间可见突起连接,细胞呈扁梭形,细胞密度增加。6天后细胞之间相互产生连接,部分细胞分化为肌管。
     2、肌卫星细胞增殖情况:与对照组相比,25ng/ml组和50ng/ml组在一定时间范围内促进骨骼肌卫星细胞的增殖(P<0.05)。25ng/ml组在24小时到96小时内显著促进细胞增殖(P<0.01)。50ng/ml在24小时到72小时内显著促进细胞增殖(P<0.01)。而100ng/ml和150ng/ml组与对照组相比没有显著差异。
     从不同时间段来看,与0小时相比,第24小时阶段仅25ng/ml组有高度显著性差异(P<0.01);第48小时和72小时阶段,25ng/ml和50ng/ml组具有高度显著性差异差异(P<0.01);特别是在72小时,两组的OD值均达到最高。在96小时时,25ng/ml组与0小时时相比显著性具有差异(P<0.05),其他组无差异。
     肌卫星细胞总蛋白表达情况:骨骼肌卫星细胞BCA测定结果显示,25ng/ml组总蛋白含量显著高于对照组(P<0.01);50ng/ml组与对照组相比差异具有显著性(P<0.05)。
     3、Western Bolt检测结果显示,p-Akt、Akt和GADPH在60 kD和36 kD表达,免疫印迹条带清晰。25ng组和50ng组p-Akt/Akt表达明显高于对照组,差异具有显著性(P<0.01,P<0.05)。100ng组和150ng组与对照组相比没有变化。
     结论:
     1. Desmin抗体鉴定表明本研究所采用的Ⅱ型胶原酶和胰蛋白酶两步消化加两次重复差速贴壁的方法成功地获取了骨骼肌卫星细胞。
     2.MGF干预卫星细胞后发现,25ng/ml和50ng/ml的MGF对骨骼肌卫星细胞具有很好的促增殖作用。
     3. Western Bolt结果显示,25ng/ml和50ng/ml组Akt和p-Akt的表达上调,MGF诱导的肌卫星细胞的增殖可能是通过Akt信号转导通路。
Purpose
     Skeletal muscle satellite cells are kind of muscle-derived stem cells with potential ability of differentiation and proliferation. Activated satellite cells can keep continued proliferation, differentiation, and ultimately fusing in the damage muscle or generating new muscle fibers. IGF-1 has been confirmed playing an important role in the regulation of skeletal muscle hypertrophy. More and more researches found that MGF, one of the isomers of IGF-1, increased significantly after exercise and muscle injury. And it can promote the cultured skeletal muscle satellite cell proliferation and differentiation in vitro. However, we still don't know the proper concentration of MGF on skeletal muscle satellite cell proliferation in vitro. And on the research of the mechanism of proliferation of satellite, more focus now is paid on the Akt signal transduction pathway. In the study, we cultured the rat skeletal muscle satellite cells in vitro and supplied them with five different concentrationes of MGF to find the proper concentration of MGF. Then we used the method of Western Blot to investigate the expression of Akt in all five groups.
     Methods
     We isolated the leg and the back muscles of a 4-week-old male SD rat in sterile conditions. Satellite cells were obtained by two-step digestion method and velocity sedimentation method, seed in cell culture bottle. Then the anti-desmin was used to identify the satellite cells. Adjust the density; we were divided the satellite cells into five groups according to the concentration of MGF:Ong/ml,25ng/ml, 50ng/ml, 100ng/ml and 150ng/ml. The cells were incubated 96h with different concentration of MGF. A method of CCK-8 was used to test the proliferation of the five groups every 24 hours. The total protein content of the satellite cells was test by the method of BCA. Akt and p-Akt was tested by the method of Western Blotting.
     Results
     1. Muscle satellite cells primary culture:after isolated, satellite cells scattered in the bottom in the shape of round and have a strong cell refractive index. 24 hours later, the majority of cells were adhered and the adhesion completed in 48 hours. By then, the adherent cells were irregular in shape, and protruding could be seen in the microscope. The cells connection can be seen in the 96 hours. And the cells are in the shape of spindle. The cell density increased, too. In 144 (6d) hours, some cells differentiated into myotubes. Anti-desmin showed that the purity of muscle satellite cells was 95%. And the cells could be used for following research.
     2. Satellite cell proliferation test:compared with the control group,25ng/ml and 50ng/ml groups promoted skeletal muscle satellite cell proliferation within a certain time, especially the 25ng/ml group could promote cell proliferation within 24h to 96h (P<0.01) significantly. While the 50ng/ml group enhanced cell proliferation within 24h to 72h (P<0.01). However, both the 100ng/ml and 150ng/ml groups had no change compared with the control group.
     Viewed from the different time points:compared with Oh, only the 25ng/ml group showed significant increase in the first 24h stage (P<0.01). While between the 48h and 72h stage, both 25ng/ml and 50ng/ml groups had a great increase (P <0.01), particularly in the 72h stage, the two groups reached the highest OD value. In the 96h stage, only the 25ng/ml group increased (P<0.05), but had a less OD than the 72h stage.
     The BCA test showed that 25ng/ml group had a significantly higher total protein content than the control group (P<0.01). While the 50ng/ml group also increased compared with the control group (P<0.05). And the results were consistent with Western Blot.
     The Akt and p-Akt results had a significant raise in 25ng/ml (P<0.01) and 50ng/ml (P<0.05) group compared with the control group.
     Conclusions
     1. Two-step digestion and velocity sedimentation method was used to isolate skeletal muscle satellite cells. Anti-desmin test showed that the methods were successful for the skeletal muscle satellite cells release.
     2. In the study, concentrations of 25ng/ml and 50ng/ml of MGF on skeletal muscle satellite cells had a great promotional effect on the proliferation. And MGF-induced muscle satellite cell proliferation might be through the Akt signaling pathway.
引文
[1]Dhawan J, Rando TA. Stem cells in postnatal myogenesis:molecular mechanisms of satellite cell quiescence, activation and replenishment [J]. Trends Cell Biol,2005,15:666-673.
    [2]McKinnell IW, Parise G, Rudnicki MA. Muscle stem cells and regenerative myogenesis [J]. Curr Top Dev Biol 2005,71:113-130.
    [3]Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle regeneration:current concepts and controversies in adult myogenesis [J]. Cell,2005. 122:659-667.
    [4]Kadi F. Thornell LE. Concomitant Increases in Myonuclear and Satellite Cell Content in Female Trapezius Muscle Following Strength Training[J].HistochemCellBiol,2000,113 (2):99-103.
    [5]Regina M,Crameri, et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise[J].J. Physiol,2004,9(558):333-340.
    [6]Charifin, Kadif, Feassonl, et al.Effects of Endurance Training on Satellite Cell Frequency in Skeletal Muscle of Old Men [J]. Muscle Nerve.2003.28 (1):87-92.
    [7]Allen DG, Whitehead NP. Yeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle:role of ionic changes [J]. J Physiol (Lond) 2005,567:723-735.
    [8]Kastner S,Ellas MC,Rivera AJ, et al. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells[J].J Histochem Cytochem,2000,48(8):1079-1096.
    [9]Yablonka-Reuveni Z, Seger R and Rivera AJ. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats [J]. J Histochem Cytochem,1999,47(1):23-42.
    [10]Layane MD and Farmer SR. Tumor necrosis factor-a and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-Ⅰ induced expression of myogenin in C2C12 myoblast [J]. Expreimental Cell Research,1999, 249(1):177-187.
    [11]Napier JR, Thomas MF, Sharma M, et al. Insulin-like growth factor-Ⅰ protects myoblasts from apoptosis but requires other factors to stimulate proliferation.Journal of endocrinology [J],1999,163(1):63-68.
    [12]王劲,郭朝华,张勇等.成肌细胞增殖/分化的信号转导研究[J].生命的化学,2002,22(1):18-20.
    [13]Yang SY, Alnaqeeb M,Simpson H, et al. Cloning and Characterization of an IGF-I Isoform Expressed in Skeletal Muscle Subjected to Stetch [J]. J muscle Res Cell Motil,1996,17:487-495.
    [14]Bowers DC, Rimm EB, et al. Scatter factor/hepatocyte growth factor protects against cytctoxic death in human glioblastoma via phosphatidylinositol 3-kinase-and Akt dependent pathway [J].Cancer Res,2004,60(15):4277-4283.
    [15]Goldspink G, Yang SY, Skarli M, et al. Local Growth Regulation is Associated with an Isoform of IGF-I that is Expressed in Normal Muscles but not in Dystrophic Muscles [J]. J Physiol,1996,495:162-168.
    [16]危小焰,史仍飞等.不同频率张应变刺激对骨骼肌卫星细胞生长的影响[J].体育科学,2008,28(6):52-56.
    [17]Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair [J]. J Anat,2003,203:89-99.
    [18]Goldspink G, Harridge SDR. Growth factors and muscle ageing [J]. Exp Gerontol,2004,39 (10):1433-1438.
    [19]张兵兵,姜鹏等.力生长因子在大肠杆菌中的表达及活性分析[J].生物工程学报2008,24(7):1180-1185.
    [20]Nader GA. Molecular determinants of skeletal muscle mass:getting the "AKT" together [J]. Int J Biochem Cell Biol,2005,37:1985-1996.
    [21]Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways [J]. Int J Biochem Cell Biol,2005,37:1974-1984.
    [22]Machida S, Spangenburg EE, Booth FW. Forkhead transcription factor FoxO1 transduces insulin-like growth factor's signal to p27Kipl in primary skeletal muscle satellite cells [J]. J Cell Physiol,2003,196:523-531.
    [23]Adam RM, Roth JA, Cheng H L, et al. Signaling through PI3K P Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells [J]. J Urol,2003,169 (6):2388-2393.
    [24]Sedding DG, Seay U, Fink L, et al. Mechanosensitive p27 Kipl regulation and cell cycle entry in vascular smooth muscle cells [J].Circulation,2003,108 (5): 616-622.
    [25]Zhu Y, Yan ZhQ, Shen BR, et al. Effect of Akt/PKB activation on mechanical strain-induced vascular smooth muscle cell migration [J] Journal of Medical Biomechanics,2006,21 (4):259-261.
    [26]Wu RC,Wang Z, Liu MJ, et al. Beta2-integrins mediate a novel form of chemoresistance in cycloheximide-induced U937 apoptosis. [J] Cell.Mol.Life Sci, 2004,61(16):2071-2082.
    [27]Zheng CH, Gao JO, Zhang YP, Liang WQ. A protein delivery system: biodegradable alginate-chitosan-poly (lactic-co-glycolic acid) composite micro spheres [J]. Biochem Biophy Res Commun,2004,29,323(4):1321-1327.
    [28]Mauro A. The satellite cell of skeletal muscle implantation [J]. J Biophys Biochem Cytol,1961,9:493-496.
    [29]Webster C, Pavlath GK, Parks DR, et al. Isolation of human myoblasts with fluorescence-activated cell sorter[J]. Exp Cell Res,1988,174:252-265.
    [30]徐蓬,顾晓明.兔骨骼肌卫星细胞的体外培养及生长特性的研究[J].实用口腔医学杂志,2000,16(1):7-9.
    [31]夏家红,谢艾妮,徐磊,等.大鼠骨骼肌卫星细胞体外培养的实验研究[J].中华实验外科杂志,2005,22(2):214-215.
    [32]Burton NM, Vierck JL, Krabbenhoft L, et al. Methods for animal satellite cell culture under a variety of conditions [J]. Methods Cell Sci,2000,22:51-61.
    [33]司徒镇强,主编.细胞培养[M].西安,世界图书出版公司,2004.71-78.
    [34]Cardasis CA&Cooper GW. An analysis of nuclear numbers in individual muscle fibers during differentiation and growth:a satellite cell-muscle fiber growth unit[J].J Exp Zool,1975,191 (3):347-358.
    [35]Bischoff R and Heintz C. Enhancement of skeletal muscle regeneration [J]. Dev Dyn,1994,201(1):41-54.
    [36]Gibson MC&Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells [J].Muscle Nerve,1983,6(8):574-580.
    [37]吕捷,赵春礼,鲁强等.成年动物骨骼肌细胞原代培养及转染外源基因的初步研究[J].解剖学报,2000,31(1):87-89.
    [38]Menasche P. Skeletal muscle satellite cell transplantation [J]. Cardiovasc Res, 2003,58 (2):351-357.
    [39]Burton NM, Vierck J, KrabbenhoftL, et al. Methods for animal satellite cell culture under a variety of conditions [J]. Methods Cell Sci,2000,22 (1):51-61.
    [40]Thomas J. Hawke and Daniel J. Garry. Myogenic satellite cells:physiology to molecular biology [J]. J Appl Physiol,2001,91:534-551.
    [41]陈晓萍,范明.肌卫星细胞研究进展[J].生理科学进展,2003,34(2):136-138.
    [42]Mckoy G. Ashley W. Mander J. Expression of insulin growth factor-1 splices variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation [J]. J Physiol,1999,516 (Pt 2):583-592.
    [43]Aperghis, M, Johnson IP, Cannon, J., Yang, S.Y., Goldspink, G. Different levels of neuroprotection by two insulin-like growth factor-I splice variants [J]. Brain Res. 2004,1009,213-218.
    [44]Carpenter V, Matthews K, Devlin G, et al. Mechano growth factor reduces loss of cardiac function in acute myocardial infarction[J]. Heart Lung Circ,2008,17: 33-39.
    [45]李刚,刘强.肌卫星细胞体外培养及其对胰岛素样生长因子1刺激的反应[J].中华创伤杂志,2006,22(7):531-534.
    [46]Tang L L, Xian C Y, Wang Y L. The MGF expression of osteoblasts in response to mechanical overload [J]. Arch Oral Biol,2006,51(12):1080-1085.
    [47]邱敏,李大军,唐丽灵.力生长因子对成骨细胞增殖和分化行为的影响[J].医用生物力学,2009,24:87-88.
    [48]Adams GR. Invited Review:Autocrine/paracrine IGF-I and skeletal muscle adaptation [J]. J Appl Physiol.2002,93(3):1159-67.
    [49]Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle[J]. J Physiol. 2006,15; 576(Pt 2):613-614.
    [50]Thomson DM, Fick CA, Gordon SE. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions [J]. J Appl Physiol.2008,104(3):625-632.
    [51]Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways[J]. Nat Cell Biol.2001,3(11):1009-1013.
    [52]Bodine SC, Stitt TN, Gonzalez M. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J]. Nat Cell Biol.2001 Nov; 3(11):1014-1019.
    [53]Pallafacchina G., Calabria E., Serrano AL, Kalhovde JM. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification [J]. Proc Natl Acad Sci U S A.2002 Jul 9; 99(14):9213-9218.
    [54]Nader GA, and Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise [J]. J. Appl. Physiol.2001,90:1936-1942. PMID:11299288.
    [55]Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ. Akt signaling in skeletal muscle:regulation by exercise and passive stretch [J]. Am J Physiol Endocrinol Metab.2003,285:E1081-E1081.
    [56]Prado LG, Makarenko I, Andresen C. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol,2005,126:461-480.
    [57]Spangenburg EE, LeRoith D, Ward CW, and Bodine SC. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy [J]. J. Physiol.2008,586:283-291. doi:10.1113/jphysiol.2007.141507. PMID:17974583.
    [58]Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans [J]. FASEB J,2006,20:190-192.
    [59]Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle[J]. J Appl Physiol,2005,99:950-956.
    [60]Deshmukh A, Coffey VG, Zhong Z, Chibalin AV, Hawley JA, Zierath JR. Exercise-induced phosphorylation of the novel Akt substrates AS160 and Wlamin A in human skeletal muscle [J]. Diabetes,2006,55:1776-1782.
    [61]Bolster D.R, Kubica N, Crozier S J,et al. Immediae response of mammalian target of rapamycin-mediated signaling following acute resestance exercise in rat skeletal muscle [J].J Physiol,2003,553:213-220.
    [62]Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-la or PKB-TSC-mTOR signaling can explain specific adaptive responses to endurance of resistance training-like electrical muscle stimulation [J]. FASEB J,2005, 19:786-788.
    [63]Blomstrand E, Eliasson J, Karlsson HK, Kohnke R. Branched chain amino acids activate key enzymes in protein synthesis after physical exercise[J]. J Nutr,2006, 136:269S-273S.
    [64]Koopman R, Zorenc AH, Gransier RJ. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type Ⅱ muscle fibers [J]. Am J Physiol Endocrinol Metab,2006,290:E1245-E1252.
    [65]Eliasson J, Elfegoun T, Nilsson J, Kohnke R, Ekblom B, Blomstrand E. Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply [J]. Am J Physiol Endocrinol Metab,2006,291:E1197-E1205.
    [66]Mascher H, Andersson H, Nilsson P A, et al. Changes in signaling pathways regulating protein synthesis in human musle in the recovery period after endurance exercise[J].Acta Physiol,2007,191:67-75.
    [67]Wojtaszewski J F, Nielsen P, Kiens. Regulation of glycogen synthase kinase-3 in human skeletal muscle:effects of food intake and bicycle exercise [J].Diabetes, 2001,50:265-269.
    [1]Yang S Y, Alnaqeeb M,Simpson H, et al. Cloning and Characterization of an IGF-I Isoform Expressed in Skeletal Muscle Subjected to Stetch [J]. J muscle Res Cell Motil,1996,17:487-495.
    [2]Goldspink G, Yang S Y, Skarli M, et al. Local Growth Regulation is Associated with an Isoform of IGF-I that is Expressed in Normal Muscles but not in Dystrophic Muscles [J]. J Physiol,1996,495:162-168.
    [3]Nixon AJ, Brower B D. Primary Nucleotide Structure of Predominant and Alternate Splice Forms of Equine Like Growth Factor-1 and Their Gene Expressions Patterns in Tissues [J]. AmJ Vet Res,1999,60:1234-1241.
    [4]Hameed M, Orrell RW, Cobbold M, et al. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise [J]. J Physiol, 2003,547:247-254.
    [5]Cortes E, Fongl F, Hameed M, et al. Insulin-like Growth Factor-1 Gene Splice Variants as Markers of Muscle Damage in Levator ani Muscle after the First Vaginal Delivery [J]. AmJ Obstet Gynecol,2005,193 (4):1585-1594.
    [6]Mckoy G, Ashley W, Mander J. Expression of insulin growth factor-1 splices variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation [J]. J Physiol,1999,516 (Pt 2):583-592.
    [7]Goldspink G. Skeletal muscle as an artificial endocrine tissue [J].Best PractRes ClEn,2003,17(2):211-222.
    [8]Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair [J]. J Anat,2003,203:89-99.
    [9]Aperghis M, Johnson IP, Cannon J, Yang SY, Goldspink, G. Different levels of neuroprotection by two insulin-like growth factor-I splice variants [J]. Brain Res. 2004,1009,213-218.
    [10]Dluzniewska J, Sarnowska A, Beresewicz M. A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-I Ec (MGF) in brain ischemia [J]. FASEB J.2005,19,1896-1898.
    [11]Joanna Riddoch-Contrerasa, Shi-Yu Yang, et al. Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improves muscle function in SOD1G93A mice [J]. Experimental Neurology.2009,215,281-289.
    [12]Carpenter V, Matthews K, Devlin G, et al. Mechano growth factor reduces loss of cardiac function in acute myocardial infarction [J]. Heart Lung Circ,2008,17: 33-39.
    [13]Goldspink G, Goldspink P.Use of the insulin-like-growth factor lsplice variant MGF for the prevention of myocardial damage [J]. US patent,20050048028A1. 2005-03-03
    [14]Tang LL, Xian CY, Wang YL. The MGF expression of osteoblasts in response to mechanical overload [J]. Arch Oral Biol,2006,51(12):1080-1085.
    [15]邱敏,李大军,唐丽灵.力生长因子对成骨细胞增殖和分化行为的影响[J].医用生物力学,2009,24:87-88.
    [16]Yang SY, Alnaqeeb M, Simpson H, and Goldspink G. Cloning and characterisation of an IGF-I isoform expressed in skeletal muscle subjected to stretch [J]. J Muscle Res Cell Motil,1996,17:487-495.
    [17]Haddad F and Adams GR. Selected contribution:acute cellular and molecular responses to resistance exercise [J]. J Appl Physiol,2002,93:394-403.
    [18]Hill M and Goldspink G. Expression and splicing of the insulin-like growth factor gene in rodent muscle are associated with muscle satellite (stem) cell activation following local tissue damage [J]. J Physiol,2003,549:409-418.
    [19]危小焰,史仍飞等.不同频率张应变刺激对骨骼肌卫星细胞生长的影响[J].体育科学,2008,28(6):52-56.
    [20]Carolyn AG, Mahiabeen H, et al. Skeletal muscle IGF-I isoform expression in healthy women after isometric exercise [J]. Growth Hormone and IGF Research, 2006,16:373-376.
    [21]Hameed M, et al. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise [J]. J Phydiol 547(Pt) 2003,247-254.
    [22]黄力平,曹龙军等.不同时间电刺激训练对大鼠骨骼肌IGF-1不同拼接体mRNA表达的时序性影响[J].中国康复医学杂志,2007,22(5):399-402.
    [23]Christopher JB, Bruce LM, Laszlo S, et al. A key functional role for the insulin-like growth factor I-terminal penta peptide[J].BiochemJ.1989,259:665-671.
    [24]Goldspink G. Age-related loss of skeletal muscle function:impairment of gene expression [J]. J Musculoskelet Neuronal Interact,2004,4(2):143-147.
    [25]Goldspink G, Harridge S D R. Growth factors and muscle ageing [J]. Exp Gerontol,2004,39 (10):1433-1438.
    [26]张兵兵,姜鹏等.力生长因子在大肠杆菌中的表达及活性分析[J].生物工程学报2008,24(7):1180-1185.
    [1]Pallafacchina G, Calabria E, Serrano A, Kalhovde JM, SchiaVino S. A protein kinase B-dependent and rapamycin sensitive pathway controls skeletal muscle growth but not fiber type specification [J]. Proc Natl Acad Sci USA,2002, 99:9213-9218.
    [2]Hornberger TA, McLoughlin TJ, Leszczynski JK. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth [J]. J Nutr,2003, 133:3091-3097.
    [3]Hansen AK, Fischer CP, Plomgaard P. Skeletal muscle adaptation:training twice every second day vs. training once daily [J]. J. Appl. Physiol.2005,98:93-99.
    [4]Coffey VG and Hawley JA. The molecular bases of training adaptation [J]. Sports Med.2007,37:737-763.
    [5]Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, and Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise [J]. J.Appl. Physiol.2005,98:482-488.
    [6]Yang Y, Creer A, Jemiolo B, and Trappe S. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle [J]. J.Appl. Physiol.2005,98:1745-1752.
    [7]MacLean PS, Zheng D, and Dohm GL. Muscle glucose transporter (GLUT 4) gene expression during exercise [J]. Exerc.Sport Sci. Rev.2000,28:148-152.
    [8]Phillips SM, Tipton KD, Aarsland A, Wolf SE, and Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans [J]. Am. J. Physiol.1997,273:E99-E107.
    [9]Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, and Smith K. Changes in human muscle protein synthesis after resistance exercise [J]. J. Appl. Physiol.1992,73:1383-1388.
    [10]Baar K, and Esser K. Phosphorylation of p70S6kcorrelates with increased skeletal muscle mass following resistance exercise [J]. Am. J. Physiol.1999,276: C120-C127.
    [11]Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J]. Nat. Cell Biol.2001,3:1014-1019.
    [12]Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, et al. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects [J]. Eur. J. Appl. Physiol.2008,102:145-152.
    [13]Wullschleger S, Loewith R Hall MN. TOR signaling in growth and metabolism [J]. Cell,2006,124:471-484.
    [14]Nader GA, McLoughlin TJ, Esser KA. mTOR function in skeletal muscle hypertrophy:increased ribosomal RNA via cell cycle regulators[J]. Am J Physiol, 2005,289:C1457-C1465.
    [15]Reiling JH, Sabatini DM. Stress and mTORture signaling [J].Oncogene,2006, 25:6373-6383
    [16]Ohanna M, Sobering AK. Atrophy of S6k1-/-skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control [J]. Nat Cell Biol,2005, 7:286-294.
    [17]Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise [J]. Med Sci Sports Exerc,2006,38:1950-1957.
    [18]Bodine SC, Stitt TN. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J]. Nat Cell Biol,2001, 3:1014-1019.
    [19]Hornberger TA, Chien S. Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle [J]. J Cell Biochem,2006,97:1207-1216.
    [20]Hornberger TA, Mak YW, Hsiung JW. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle [J]. Proc Natl Acad Sci USA,2006,103:4741-4746.
    [21]Ohanna M, Sobering AK. Atrophy of S6k1-/- skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control [J]. Nat Cell Biol,2005, 7:286-294.
    [22]Hornberger TA, Stuppard R, Conley K.E. Mechanical stimuli regulate rapamycin sensitive signaling by a phosphoinositide 3-kinase, protein kinase B-and growth factor-independent mechanism [J]. Biochem J,2004,380:795-804.
    [23]Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-Rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions [J]. J Biol Chem,2000,275:7416-7423.
    [24]Thiimmaiah KL, Easton JB, Germain GS. Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt Signaling [J]. J Biol Chem, 2005,280:31924-31935.
    [25]Reynolds TH, Bodine SC, Lawrence Jr JC. Control of Ser 2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load [J]. J Biol Chem,2002,277:17657-17662.
    [26]Kubica N, Bolster D, Farrell PA. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Be mRNA in a mammalian target of rapamycin-dependent manner [J]. J Biol Chem,2005,280:7570-7580.
    [27]Sarbassov DD, Ali SM, and Sabatini DM. Growing roles for the mTOR pathway [J]. Curr Opin Cell Biol,2005,17(6):596-603.
    [28]Eliasson J, Elfegoun T, Nilsson J. Maximal lengthening contractions increase p70s6k kinase phosphorylation in human skeletal muscle in the absence of nutritional supply[J]. Am J Physiol,2006,291:E1197-E1205.
    [29]Fujita S, Abe T, Drummond MJ. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis [J]. J Appl Physiol,2007,103:903-910.
    [30]Mascher H, Andersson H, Nilsson PA. Changes in signaling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise [J]. Acta Physiol,2007,191:67-75.
    [31]Chiang GC, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70s6 kinase [J]. J Biol Chem,2005, 280:25485-25490.
    [32]Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase [J]. J Biol Chem,2005, 280:26089-26093.
    [33]Fang Y, Park IH, Wu AL. PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1 [J]. Curr Biol,2003,13:2037-2044.
    [34]Kam Y, Exton JH. Role of phospholipase D1 in the regulation of mTOR activity by lysophosphatidic acid [J]. FASEB J,2004,18:311-319.
    [35]Lee S, Park JB, Kim JH. Actin directly interacts with phospholipase D, inhibiting its activity [J]. J Biol Chem,2001,276:28252-28260.
    [36]Park JB, Kim JH, Kim Y, Ha SH. Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by alpha-actinin in an ADP-ribosylation factor-reversible manner[J]. J Biol Chem,2000,275:21295-21301.
    [37]Hornberger TA, Sukhija KB, Chien S. Regulation of mTOR by mechanically induced signaling events in skeletal muscle [J]. Cell Cycle,2006,13:1391-1396.
    [38]Ingber DE. Cellular mechanotransduction:putting all the pieces together again [J]. FASEB J,2006,20:811-827.
    [39]Boppart MD, Burkin DJ, Kaufman SJ. Alpha7betal-integrin regulates mechanotransduction and prevents skeletal muscle injury [J]. Am J Physiol,2006, 290:C1660-C1665.
    [40]Coffey VG, Zhong Z, Shield A, Canny BJ. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans [J]. FASEB J, 2005,20:190-200.
    [41]Rommel C, Bodine SC, Clarke BA. Mediation of IGF-1 induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways [J]. Nat Cell Biol,2001,3:1009-1013.
    [42]Hornberger TA, Stuppard R. Mechanical stimuli regulate rapamycin sensitive signaling by a phosphoinositide 3-kinase-, protein kinase B-and growth factor-independent mechanism [J]. Biochem J,2004,380:795-804.
    [43]Sakamoto K, Aschenbach WG, Hirshman ME Akt signaling in skeletal muscle: regulation by exercise and passive stretch [J]. Am J Physiol,2003, 285:E1081-E1088.
    [44]Bolster DR, Kubica N, Crozier SJ. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle [J]. J Physiol,2003,15:213-220.
    [45]Dreyer HC, Fujita S, Cadenas J. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle [J]. J Physiol,2006,576:613-624.
    [46]Sakamoto K, Hirshman MF, Aschenbach WG. Contraction regulation of Akt in rat skeletal muscle [J]. J Biol Chem,2002,277:11910-11917.
    [47]Atherton PJ, Babraj J, Smith K, Singh J. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation [J]. FASEB J,2005,19:786-798.
    [48]Dreyer HC, Fujita S, Cadenas J. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle [J]. J Physiol,2006,576:613-624.
    [49]Deshmukh A, CoVey VG, Zhong Z. Exercise-induced phosprolylation of the novel Akt substrates AS 160 and Wlamin A in human skeletal muscle [J]. Diabetes, 2006,55:1776-1782.
    [50]Turinsky J, Damrau-Abney A. Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo:study with insulin and exercise [J]. Am J Physiol,1999, 276:R277-R282.
    [51]Nader GA, Esser K. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise [J]. J Appl Physiol,2001,90:1936-1942.
    [52]Aoki MS, Myiabara EH, Soares AG, Saito ET, Moriscot AS. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching[J]. Cell Tissue Res,2006,324:149-156.
    [53]Cuthberson DJ, Babraj J, Smith K. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortenin or lengthening exercise[J].Am J Physiol,2006,290:E731-E738.
    [54]Sheffield-Moore M, Yeckel CW, Volpi. Post exercise protein metabolism in older and younger men following moderate intensity aerobic exercise [J]. Am J Physiol,2004,287:E513-E522.
    [55]Widrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training [J]. Am J Physiol,2002, 283:R408-R416.
    [56]Parkington JD, Siebert AP, Lebrasseur NK, Fielding RA. Diffierential activation of mTOR signaling by contractile activity in skeletal muscle [J]. Am J Physiol,2003, 285:R1086-R1090.
    [57]Koopman R, Zorenc AHG, Gransier RJJ, Cameron-Smith D, Van Loon LJC. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in Type Ⅱ muscle fibers [J]. Am J Physiol,2006, 290:E1245-E1252.
    [58]Rennie MJ. Why muscle stops building when it's working [J]. J Physiol,2005, 569:3.
    [59]Ruvinsky I, Meyuhas O. Ribossomal protein S6 phosphorylation:from protein synthesis to cell size [J]. Trends Biochem Sci,2006,31:342-348.
    [60]Goldspink G. Gene expressions in skeletal muscle [J]. Biochem SocTrans,2002, 30:285-290.
    [61]Rasmussen BB, Phillips SM. Contractile and nutritional regulation of human muscle growth [J]. Exerc Sports Sci Rev,2003,31:127-131.
    [62]Cuthberson DJ, Babraj J, Smith K. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise [J].Am J Physiol,2006,290:E731-E738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700